
Preliminary Exam: Quantum Mechanics, Friday January 12, 2018. 9:00-1:00

Answer a total of any FOUR out of the five questions. Put the solution to each problem in a separate blue book
and put the number of the problem and your name on the front of each book. If you submit solutions to more
than four problems, only the first four problems as listed on the exam will be graded.
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1. (a) Consider the addition of two general angular momentum operators according to L1 + L2 = L. Eigen-
states |`1,m1〉 are associated with the operators L2

1 and L1z, eigenstates |`2,m2〉 are associated with
the operators L2

2 and L2z, and eigenstates |L,M〉 are associated with the operators L2 and Lz. In
terms of the quantum numbers (`1,m1) and (`2,m2) state (i.e. no need to derive) the values which are
allowed for the quantum numbers (L,M).

(b) Consider (a) in the specific case in which L1 = 1 and L2 = 2. In terms of the basis vectors |`1,m1〉
and |`2,m2〉 appropriate to this case, construct all the relevant eigenstates |L,M〉 which possess the
two highest allowed positive M values.

(c) Consider a general state |`,m〉 where ` designates the orbital angular momentum eigenvalue, and m
its z component, Determine for which |`,m〉 values the matrix elements

〈1, 0|r2|`,m〉, 〈1, 0|rr|`,m〉

are non-zero, and determine their values. There is no need to include any radial wave function or do
any radial integrations.

2. The differential cross-section in a certain scattering process is known to be given by

σ(θ) = α+ β cos(θ) + γ cos2(θ).

(a) What is the scattering amplitude?

(b) Express α, β, γ in terms of the phase shifts.

(c) Are there any constraints on the magnitudes of α, β and γ if the scattering amplitude is not allowed
to grow any faster than lnE as the energy E becomes very large?

(d) Deduce the total scattering cross-section and show that it is consistent with the optical theorem.

3. What do you understand by parity? The parity πA of an operator Â is defined using PÂP−1 = πAÂ and
the parity πψ of a state vector |ψ〉 is defined using P |ψ〉 = πψ|ψ〉 (if and when they exist).

(a) Show that the selection rule
παπAπβ = 1

applies to the matrix element 〈α|A|β〉 (i.e. this matrix element has to be zero when the above product
of parities is not equal to 1).

(b) Deduce that a nucleon dipole moment in a state |ψ〉 defined as 〈ψ|d|ψ〉 has to be zero where d (= qr)
is the dipole moment operator.

(c) Show explicitly how you would determine the parity of a spherical harmonic Y`m(θ, φ).
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4. The time-dependent Schrodinger equation for a non-relativistic charged particle moving in a magnetic field
is given by the formula:

ih̄
∂

∂t
ψ(r, t) = Ĥψ(r, t), Ĥ =

1

2m
(p̂− qA(r, t))2 + qφ(r, t)

where ψ(r, t) is the particle wave function, p̂ = −ih̄∇ is the momentum operator, m and q are the particle
mass and charge, and φ(r, t) and A(r, t) are the scalar and vector potentials respectively.

(a) Derive from the Schrodinger equation the following analytic expression for the probability current
density j(r, t):

j(r, t) =
ih̄

2m
[ψ(r, t)∇ψ∗(r, t)− ψ∗(r, t)∇ψ(r, t)]− q

m
A(r, t)|ψ(r, t)|2,

taking into account that the probability density ρ(r, t) = |ψ(r, t)|2 and the current density j(r, t) satisfy
the continuity equation

∂ρ(r, t)

∂t
+ ∇ · j(r, t) = 0

(b) Show that the current density j(r, t) is an invariant under the gauge transformation

A′(r, t) = A(r, t) + ∇f(r, t), φ′(r, t) = φ(r, t)− ∂

∂t
f(r, t)

for arbirtrary f(r, t).

Hint: The gauge transformation of the wave function has to be taken into account. In this problem
the velocity of light c is taken to be c = 1.

5. A non-relativistic particle with mass m is bound by a deep, spherically symmetric potential of small radius
r0, with the center of the potential being located at Rj . The particle Hamiltonian Ĥ = −(h̄2/2m)∇2

describes free particle motion in the entire region, except only for the small r < r0 region inside the
potential well. The well radius is allowed to go to zero (r0 → 0), but the well is so deep that it can support
a single discrete energy level with angular momentum ` = 0. In the r0 → 0 limit the effect of potential well
can be replaced by a boundary condition for the particle wave function ψ(r) of the form:

ψ(r→ Rj) = C

[
1

rj
− βj +O(rj)

]
where rj = |r−Rj | is the distance between the particle and the center of the well at Rj , C is a constant,
and βj is a positive constant.

(a) Calculate the bound state wave function ψ(r) and energy ε1 of the particle moving in the potential
with parameters β1 and R1 = 0.

(b) Derive the secular equation that determines the allowed energies ε of discrete states if the particle is
bound by two short-range potentials with parameters β1 at R1 = 0 and β2 at R2.

Hint: The eigenfunction ψ2(r) of the particle in the presence of the two short-range potentials can be
represented by a linear combination of two functions that are centered at R1 = 0, R2 = R:

ψ2(r) = Aψ(r) +Bψ(r−R)

where A and and B are constants.
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