
Preliminary Exam: Quantum Mechanics, Friday January 13, 2017. 9:00-1:00

Answer a total of any FOUR out of the five questions. For your answers you can use either the
blue books or individual sheets of paper. If you use the blue books, put the solution to each
problem in a separate book. If you use the sheets of paper, use different sets of sheets for each
problem and sequentially number each page of each set. Be sure to put your name on each book
and on each sheet of paper that you submit. If you submit solutions to more than four problems,
only the first four problems as listed on the exam will be graded.
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1. A particle of the mass m is bound by the asymmetric one-dimensional potential V (x):

V (x ≤ 0) =∞, V (0 < x ≤ a) = −U, V (x > a) = 0

where U is a positive constant.

This potential can support a weakly bound state with an eigenenergy E, which is much
smaller than the depth of the potential: |E|/U � 1.

(a) Derive an exact transcendental equation for the determination of the spectrum of
discrete eigenenergies, and show that it can be written in the form:

sin(ka) = ±
(

h̄2

2ma2U

)1/2

ka, where k =

(
2m(U + E)

h̄2

)1/2

(b) Find a threshold value of the potential depth U = UC for which the first discrete level
occurs.

(c) Calculate the energy of the first weakly bound state as a function of δU = U − UC , if
δU/UC � 1.

Hint: Expand the left and right sides of the equation given in part (a) with respect to small
parameters δU/UC � 1 and |E|/UC � 1 and keep the leading terms. This then yields a
relation between E and δU .

2. The Hamiltonian operator Ĥ of a 2-dimensional charged particle moving in the (x, y) plane
in a uniform magnetic field B = Bez is given by the formula:

Ĥ =
1

2m
(p̂− eA)2

where ez is a unit vector pointing in the z-direction, e and m are the particle’s charge and
mass, c is speed of light, and A is the vector potential. The components of the vector
potential are given by: Ax = −By, Ay = 0, Az = 0.

(a) Write down the Schrödinger equation for this system.

(b) Show that operator p̂x commutes with the Hamiltonian, and show that the particle
wave function can be expressed as Ψ(x, y) = exp(ipxx/h̄)Ypx(y) where px is an integral of
the motion and Ypx(y) is a function of y.

(c) Determine the particle’s eigenenergies and wave functions, using the known solutions
to the one-dimensional harmonic oscillator.

(d) Explain why the particle’s energy does not depend on px, which is an integral of the
motion.
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3. The Hamiltonian of a free 2-dimensional harmonic oscillator moving in the (x, y) plane is
given as

H0 =
p2x
2m

+
p2y
2m

+
1

2
mω2(x2 + y2)

(a) What are the energy eigenfunctions and eigenvalues of this system, and what is their
degeneracy?

(b) The oscillator is perturbed by an interaction V = V0xy
2 where V0 is a constant. Calcu-

late the shift in energy of the ground and first excited levels of the oscillator in both first
and second order in the interaction, and state how much of the degeneracy is lifted in each
order.

Hint: you might find it useful to set x = (a†x + ax)(h̄/2mω)1/2, y = (a†y + ay)(h̄/2mω)1/2.

4. A quantum particle is confined to the one-dimensional interval [−a, a]. It is described by
the time-dependent wave function

ψ(x, t) = λ cos(πx/2a) exp(−ih̄π2t/8ma2)− λ sin(πx/a) exp(−ih̄π2t/2ma2)

where λ is a constant.

(a) Determine the value of λ that normalizes the wave function to unity at t = 0,

(b) Check the equation of continuity involving the probability current and density, and use
this fact to argue that the value of λ as derived in part (a) is the same for all times.

(c) Find the probability

Pleft(t) =
∫ 0

−a
|ψ(x, t)|2dx

for the particle to be in the left half of the interval. Compare the probabilities Pleft(t = 0)
and Pleft(t = τ) where τ = 4ma2/h̄π and explain why they are different. Interpret the time
dependence of Pleft(t) in terms of a description of the physical motion of the particle.

5. (a) For a system with a density matrix ρ one can define the average of an operator Ω as
Ωav = 〈Ω〉 = TrρΩ. In what way is the time derivative of Ωav related to the Hamiltonian
H of the system. Allow for the possibility that Ω could have an intrinsic dependence on
time.

(b) A single electron with magnetic moment µ = γS (where γ is its gyromagnetic ratio)
is prepared with a spin projection of h̄/2 in the positive x-direction. It is placed in a
uniform, time-independent magnetic field B pointing in the z-direction to which it couples
with Hamiltonian H = −µ · B. Determine the two-component column vector spin wave
function of the electron at time t. (Take the spatial part of the wave function to be in a
zero-momentum eigenstate.)

(c) A beam containing N electrons (each with gyromagnetic ratio γ) is prepared at time
t = 0 in a partially polarized state in which N+ electrons have their spin projection in
the positive x-direction (i.e. spin up) and N− have their spin projection in the negative
x-direction (i.e. spin down). What is the polarization vector (the average value 〈σ〉 of
the Pauli matrix spin operator σ) of the beam at time t = 0? The beam is now placed
in a time independent external magnetic field of magnitude B pointing in the z-direction.
Determine the polarization vector of the beam at some later time t.
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