
Preliminary Exam: Quantum Mechanics, Friday January 16, 2015, 9:00-1:00

Answer a total of any FOUR out of the five questions. For your answers you can use either
the blue books or individual sheets of paper. If you use the blue books, put the solution to
each problem in a separate book. If you use the sheets of paper, use different sets of sheets
for each problem and sequentially number each page of each set. Be sure to put your name
on each book and on each sheet of paper that you submit. If you submit solutions to more
than four problems, only the first four problems as listed on the exam will be graded.
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Problem 1

Consider a finite set of operators Bi. Let H be a Hamiltonian which commutes with each Bi;
i.e., [H,Bi] = 0 for all i. Suppose the |an〉s form a complete set of eigenstates of H satisfying
H|an〉 = an|an〉.

(a) Let us choose one particular value of i and one particular value of n. Under what
circumstances can it be deduced that Bi|an〉 is proportional to |an〉?

(b) Show that if the above is true for all i and for all n, then [Bi, Bj] = 0 for all i, j.

(c) How can you reconcile the rule stated in part (b) with the fact that for angular momentum
operators Li, we can have a situation where [Li, H] = 0 but [Li, Lj] 6= 0 when i 6= j?

Problem 2

Consider a quantum particle in 1D with mass m and energy E = −E ′ < 0 bound in the
double δ-function potential V (x) = −c0 δ(x− L)− c0 δ(x+ L) where c0 > 0.

(a) Derive the transcendental equation for the ground state energy E0 and show (by plotting
an appropriate freehand graph) that a solution of this equation exists, for all (positive) values
of c0.

(b) Derive the transcendental equation for the energy E1 of the first (and only) excited state,
show (by plotting an appropriate freehand graph) that it has a solution only if the constant
c0 is above a certain threshold cmin, i.e. c0 > cmin, and determine the value of cmin.

Problem 3

Let the 3D scattering of a quantum particle with mass m, energy E > 0, and k =
√

2mE/h̄
off a spherically symmetric potential be described by the scattering amplitude f(θ) given

by f(θ) = 1
k

∞∑
l=0

(2l + 1)Pl(cos θ) sin δl e
iδl . It is assumed that the potential falls off at large

distances sufficiently fast.

(a) Using the expression for f(θ), derive the optical theorem connecting the total cross
section σ with the imaginary part of the forward scattering amplitude.

(b) In s-wave scattering the differential cross section dσ
dΩ

= A is measured for a given (small)
k. Determine the scattering amplitude f(θ). Is the result unique? What does “small k”
mean in this context?
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Problem 4

(a) Consider the angular momentum operator L = r × p. Evaluate the commutator
[Lx, az

2p2
y + bx2r2] where a and b are pure numbers and r2 = x2 + y2 + z2.

(b) Consider the addition of two angular momentum operators according to L1 + L2 = L.
Eigenstates |`1,m1〉 are associated with the operators L2

1 and L1z, eigenstates |`2,m2〉 are
associated with the operators L2

2 and L2z, and eigenstates |L,M〉 are associated with the
operators L2 and Lz. In terms of the quantum numbers (`1,m1) and (`2,m2) determine (i.e.
derive as well as state the answer) the values which are allowed for the quantum numbers
(L,M). Express the |L,M〉 eigenstate with the largest M value in terms of the |`1,m1〉 and
|`2,m2〉 eigenstates.

(c) Consider a general ket |`,m〉 where ` designates the orbital angular momentum eigenvalue
and m its z component. Consider a specific ket |2, 1〉. Determine for which |`,m〉 values the
matrix elements

〈2, 1|r2|`,m〉, 〈2, 1|rr|`,m〉

are non-zero, and determine their values (you can give your answers as closed form integrals
in which everything is known with there being no need to actually evaluate the integrals).

Problem 5

A particle of mass M is constrained to move on the surface of a sphere of radius r. Its
dynamics can be described by a free Hamiltonian H0 and a set of free eigenstates Y m

` (θ, φ).
The sphere is then embedded in a uniform gravitational field with acceleration g directed
along the −z axis, so that the particle experiences the potential

V (θ, φ) = mgr cos θ.

(a) Compute the values of all non-zero matrix elements of the potential operator V (θ, φ)
in a basis consisting of those Y m

` (θ, φ) that have ` = 0, 1, and 2. Explicit forms for these
spherical harmonics are given above. Hint: Do not attempt to work out every case, there
are 81 of them! Use symmetry arguments to save work.

(b) Consider matrix elements of the full Hamiltonian between the states in this basis and
the free ground state. Identify for which particular states in the basis these matrix elements
are non-zero. Reduce the dimension of the basis to just these particular states, and write
down the full Hamiltonian as a matrix in this reduced basis.

(c) Approximate the ground state of the full Hamiltonian as a superposition of the particular
states found in part (b) and use a variational method to estimate the energy and wave
function of the ground state of the full Hamiltonian in this basis. Hint: With the coefficients
of the ground state wave function as the variational parameters, minimize the expectation
value of the Hamiltonian.
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