
Preliminary Exam: Quantum Physics 1/15/2010, 9:00-3:00

Answer a total of SIX questions of which at least TWO are from section A, and at least THREE are from section
B. For your answers you can use either the blue books or individual sheets of paper. If you use the blue books, put
the solution to each problem in a separate book. If you use the sheets of paper, use different sets of sheets for each
problem and sequentially number each page of each set. Be sure to put your name on each book and on each sheet
of paper that you submit. Some possibly useful information:
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Section A: Statistical Mechanics

A.1 Consider a one-dimensional closed chain of N spins si where N ≫ 1. Each spin variable can take two values:

si = 1 or si = −1. The spins interact with nearest-neighbor interactions of strength J , and they also interact with

an external magnetic field h. The Hamiltonian of the system is

H [s] = −J
∑

{i,j}

sisj − h
∑

i

si

The system is at temperature T .

(a) Show that the statistical sum for the system

Z =
∑

{si}

e−βH[s]

can be written as

Z = Tr(τN )

where τ is a 2 × 2 “transfer” matrix

τ11 = exp{βJ + βh}; τ12 = τ21 = exp{−βJ}; τ22 = exp{βJ − βh}.

(Hint: To do this write e−βH[s] = ΠN
i=1Q(si, si+1) with Q(si, si+1) = eβJsisi+1+β h

2
(si+si+1), and then map e−βH into

the form above. Remember that the chain is closed, which means that sN = s1.)

(b) Evaluate the statistical sum Z by finding the eigenvalues of the matrix τ .

(c) Calculate the free energy F (T, h) in the thermodynamic limit N ≫ 1.

(d) Calculate the magnetization

m(h) =
1

N

∂F

∂h
.

Show that at h = 0 the spontaneous magnetization m(0) vanishes at all nonzero temperatures T 6= 0, while at exactly

zero temperature m(0) = 1.

A.2 For an ideal gas of N non-interacting, non-relativistic particles of mass m in a volume V at a temperature T ,

one defines a partition function QN (V, T ) according to

QN(V, T ) =
∑

{np}

g({np})e
−βE({np}).

Here ǫp = p2/2m, E({np}) =
∑

p
npǫp, g({np}) is the number of states associated with each allowed occupation

number configuration {np}, and the summation is made over all allowed {np} subject to the constraint N =
∑

np.

In addition one introduces a fugacity z and defines a grand partition function Q(z, V, T ) according to

Q(z, V, T ) =
N=∞
∑

N=0

zNQN (V, T ).
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(a) If the particles in the gas are spin one-half fermions, evaluate Q(z, V, T ).

(b) For this Q(z, V, T ) evaluate the average occupation number 〈np〉.

(c) For the gas determine the pressure P and the energy density U/V . (You can reduce these expressions to

one-dimensional integrals that you do not need to evaluate.) Then find a z-independent, closed form relation between

U/V and P .

(d) What is the entropy of the gas? (Again, you can reduce the expression to a one-dimensional integral that you

do not need to evaluate.)

A.3

(a) Taking into account the nucleons of number A = N +Z and electrons of number Z in a given atom, which of

the following atoms are composite bosons and thus could in principle form a Bose-Einstein condensate (BEC)? To

receive credit, explain your reasoning.

(1) 1H, A=1, Z=1

(2) 3He, A=3, Z=2

(3) 4He, A=4, Z=2

(4) 40K, A=40, Z=19

(5) 40Ca, A=40, Z=20

(6) 85Rb, A=85, Z=37

(b) For a gas of non-interacting bosonic atoms, a simple estimate of the BEC transition temperature Tc can be

determined by solving for the temperature at which the de Broglie wavelength λdB is equal to the average interatomic

spacing. Use this approach to estimate Tc for an atom of mass M in a gas with density N atoms per unit volume.

(c) In an optical lattice (which forms a periodic egg carton potential), things are more interesting because a

condensate can form only if a sufficient fraction of the lattice sites are occupied. Assume that the lattice has Ns total

sites, of which a fraction p are randomly occupied, so the total number of atoms is N = pNs. The total number of

possible states Ω of this lattice can then be found using simple combinatorics: it is the number of combinations of

Ns objects taken N at a time. Find an expression for Ω, and use it to determine the entropy S associated with the

partial filling of the lattice. Using Stirling’s large n approximation ln n! = nln n − n, simplify the result into the

form S = kBNsf(p) assuming that both Ns and N are large.

(d) At a given temperature the lattice will undergo a BEC transition if S is greater than the corresponding entropy

of a Bose-Einstein condensate, which is given by SBEC = 1.283kBN at T = Tc. Verify that at this temperature the

BEC transition occurs at approximately p = 0.54 (Note: ln(0.54) = −0.616 and ln(1 − 0.54) = −0.777.)
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Section B: Quantum Mechanics

B.1 In a time-dependent external magnetic field B a quantum system has two eigenstates |a〉 and |b〉. State |a〉

has an energy that depends linearly on B, which is ramped linearly in time so that the eigenenergy is Ea = αt

where α is a constant. The other state, |b〉, has a constant energy Eb. A small perturbative coupling 〈b|H ′|a〉 = Vab

is introduced, which as shown in the figure, leads to an avoided crossing at the field value B0 where the energy

levels would otherwise have intersected. In the presence of Vab, a system that starts in state |a〉 and is swept slowly

through the crossing as B is increased will follow the adiabatic trajectory shown by the solid line, ending up in the

continuation of state |b〉 labeled as |2〉. However, if it is swept rapidly, it will instead take the so-called “diabatic”

(i.e. non-adiabatic) path labeled as |1〉. Here we will estimate the probability that |a〉 takes the adiabatic path as it

is swept through the crossing.

(a) If the coupling matrix element between the states |a〉 and |b〉 has a constant value 〈b|H ′|a〉 = Vab, find the size

∆E of the avoided crossing at B0.

(b) Now assume that in the presence of Vab the system starts in state |a〉 and the magnetic field is ramped up

linearly, so that Ea = αt. Working in the |a〉, |b〉 basis set, use lowest-order time-dependent perturbation theory in

H ′ to find the probability P2a that the system ends up in the adiabatic final state |2〉. Because the linear ramp in

energy is large, it cannot be treated perturbatively. However, it can be built into the zero-order wave function in the

interaction representation by replacing the usual phase term with one having the time dependence:

e−iEat/h̄ → e
−i

∫

t

0
Ea(t)dt/h̄

.

Assume that the ramp extends well beyond the crossing on both sides, so that the limits of the integral given by

perturbation theory can be extended indefinitely to t = ±∞. You will probably need to evaluate an integral that

simplifies to the form:
∫ ∞

−∞

dte−i(at2+bt) = (1 − i)

√

π

2a
exp

(

ib2

4a

)

, if a > 0.

(c) A more exact non-perturbative approach gives the Landau-Zener formula for the adiabatic transition proba-

bility, which can be written for this case as

P2a(LZ) = 1 − exp

(

−
2πV 2

ab

h̄α
.

)

Check your result by showing that it is equivalent to a lowest-order expansion of this expression for small probabilities.
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B.2 Consider the Hamiltonian of a non-relativistic charged particle moving in the xy plane in a constant magnetic

field B perpendicular to the plane:

H =
1

2m

[

(px −
e

2
By)2 + (py +

e

2
Bx)2

]

.

(a) Show (as is to be expected on physical grounds) that the Hamiltonian is invariant with respect to translations

in the xy plane, and that the generators of the translations are

Px = px +
e

2
By; Py = py −

e

2
Bx.

(b) Calculate the commutation relation between the two generators Px and Py. This is called the “projective

representation” of the translation group. Using this algebra show that even though Px and Py commute with the

Hamiltonian H , one cannot diagonalize all three operators simultaneously. Prove that the ground state of the

Hamiltonian H must be infinitely degenerate (i.e. that there is an infinite number of states with the same energy).

(c) Find an eigenstate of H which has a gaussian wave function of the form ψ ∝ exp
{

−(Ω(x2 + y2)/2
}

. Determine

the associated frequency Ω, and calculate the energy of this state. By applying a translation transformation with

parameters (a, b) to this state (i.e. translation a along x and b along y), find another state which is centered around

the point x = a, y = b. Find the energy of this state.

(d) Now suppose that the plane is not infinite, but rather has a very large but finite area A. This can be achieved

by placing a potential barrier along the boundary of a large region. In this situation translational symmetry strictly

speaking is broken (it is not a symmetry anymore). Nevertheless, wave functions which are centered far away from

the boundary practically do not feel the potential barrier and the energy splittings between them are exponentially

small: ∆E ∝ exp{−AΩ}. Thus the ground state now is not infinitely degenerate but has finite degeneracy. Given

the size of the eigenstates you found above, estimate the degeneracy when AΩ ≫ 1.

B.3

(a) A particle of mass m and energy E = h̄2k2/2m is incident from the left on the one-dimensional potential

V (x < −a) = 0, V (−a ≤ x ≤ 0) = −V0, V (x > 0) = ∞,

where V0 and a are positive constants. If the incoming wave is of the form of a plane wave ψ(x) = Ae−ikx where A

is a constant, determine the form of the reflected wave function and its associated phase shift.

(b) Consider a three-dimensional Schrödinger equation with Hamiltonian

H = −
h̄2

2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

+ V (r).

With the potential being time-independent, the Hamiltonian possesses a complete set of stationary eigenstates

ψj(r, t) = χj(r)e
−iωj t with energies Ej = h̄ωj . In terms of the Green’s function G(r′, t′; r, t) any general wave

function solution to the Schrödinger equation at time t′ may be related to that at time t according to

ψ(r′, t′) = i

∫

d3rG(r′, t′; r, t)ψ(r, t).

Find a closed form expression for G(r′, t′; r, t) in terms of the eigenfunctions and eigenfrequencies of H .
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B.4 The ground-state wave function of a non-relativistic, spinless hydrogen atom (n = 1, ℓ = 0, m = 0) is

ψ1s(r) =
1

π1/2a
3/2
0

e−r/a0.

(a) The Hamiltonian describing a perturbation due to introducing an external electric field in the z-direction is

H ′ = eEz = eEr cos θ.

Show that this perturbation does not cause any first-order shift to the hydrogen atom ground-state energy.

(b) In second-order perturbation theory, the energy is shifted by coupling of the hydrogen atom ground state to

the entire spectrum of |np〉 states via the matrix elements 〈np|H ′|1s〉. Show that the energy shift can be written

in the form ∆E = −(1/2)αE2, and write an expression for the polarizability α as an infinite sum over states, as

expressed in terms of the unperturbed energies E1s and Enp and the matrix elements 〈np|H ′|1s〉/E . Why do only

the states with ℓ = 1 contribute?

(c) Although an exact solution is possible, an approximate solution is much easier to find. Show that if it is assumed

that all of the |np〉 states have approximately the same energy as the first excited state, i.e. Enp ≡ E2p, then the

infinite sum can easily be evaluated and the problem is reduced to evaluating the matrix element 〈1s|(H ′)2|1s〉.

(Hint: Rearrange the sum over a product of matrix elements to take advantage of the completeness relation for a

sum over a complete set of states.)

(d) Evaluate the integral for 〈1s|(H ′)2|1s〉 and use the explicit forms for the energy levels E1s and E2p to find a

closed form expression for the polarizability α. Compare it with the exact value α = (9/2)a3
0 as given in cgs units.

(Note that in cgs units the Rydberg constant can be expressed as Ry = e2/2a0, where a0 is the Bohr radius.)

B.5 Consider the two harmonic oscillator Hamiltonians

H1 =
p2

2m
+

1

2
κ2x2, H2 =

(p− p0)
2

2µ
+

1

2
λ2(x− x0)

2.

(a) What conditions should be satisfied by the coefficients m, µ, κ, λ, p0, and x0 so that the two Hamiltonians

are unitarily equivalent: i.e. that there exist a unitary operator U such that U †H1U = H2.

(b) Given that the coefficients satisfy the required condition, construct the operator U .

(c) Consider a general homogeneous linear transformation

p→ αp+ βx; x→ γx+ δp

Find the conditions on the transformation coefficients α, β, γ, δ, in order for the transformation to be unitary.

B.6

(a) You are given N particles which have altogether N states available to them. How many distinct configurations

are allowed for the system if the particles are (i) identical fermions, (ii) identical bosons? For each of these two cases

write down the appropriate wave functions for each allowed configuration in the special case where N = 3.

(b) A single electron is prepared with its spin quantized in the positive z direction. The state is then rotated

through an angle θ about the y axis.

(i) What is the electron spin state vector after the rotation?

(ii) Of what operator is the rotated state an eigenvector?

(iii) What is the eigenvalue associated with the eigenvector of part (ii)?
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