
Preliminary Examination: Quantum and Statistical Mechanics, 1/12/2007

Answer a total of SIX questions, choosing TWO from section A and FOUR
from section B. If you turn in excess solutions, the ones to be graded will be
picked at random.

Each answer must be presented separately in an answer book, or on con-
secutively numbered sheets of paper stapled together. Make sure you clearly
indicate who you are, and the problem you are answering. Double-check that
you include everything you want graded, and nothing else.

Possibly Useful Information
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Section A

A1. (a) Consider a simple chemical reaction A+B ↔ AB. As the double
arrow indicates, all chemical reactions go both ways. Show that
in a mixture of reactants the condition for chemical equilibrium is
expressed in terms of chemical potentials as µA + µB = µAB.

(b) Show that in an ideal gas where the only relevant degree of free-
dom is the center-of-mass motion of the atoms or molecules, the
chemical potential in the classical (high temperature/low density)
limit is µ = kT ln(nλ3), where λ = (2πh̄2/mkT )1/2 is the usual
thermal de Broglie wavelength.

(c) Consider the formation of diatomic molecules A2 out of atoms
A. Assume that the binding energy of the molecule is I, so that
the difference in internal energy between a molecule and a pair
of atoms is −I. Show that in the limit when the atoms and
molecules may be regarded as classical ideal gases, except for the
formation of the molecules, the equilibrium densities of the atoms
and molecules satisfy nA2

/n2A =
√
8λ3A exp(I/kT ). The chemical-

equilibrium densities of atoms and molecules depend manifestly
on the de Broglie wavelength, i.e., on quantum mechanics, even
at room temperature.

.
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A2. A system has 3 single-particle energy levels, ε0, ε1 and ε2. Suppose the
system contains two noninteracting identical particles, and each level
may accommodate 0, 1 or 2 particles. Assume that the spacing between
the levels is ∆ (i.e., ε2 = ε1 + ∆, ε1 = ε0 + ∆, with ∆ > 0). Hint: Do

not blindly use Fermi-Dirac or Bose-Einstein statistics.

(a) How many different ‘two-particle’ states can exist here? Are they
degenerate?

(b) Show that at any temperature T, the mean occupancy < n1 > of
the single-particle level having energy ε1 is

< n1 >= (x+ 2 x2 + x3)/(1 + x+ 2 x2 + x3 + x4) and identify x.

(c) Find the mean energy < E > of the two-particle system at tem-
perature T. Evaluate the limiting value of < E > as T goes to
zero. Does this make sense? Why?

3



A3. Assume you have an ideal Fermi gas in a volume V , consisting of N
noninteracting, neutral, spin-1/2 particles with magnetic moment µ
and mass m at zero temperature. This gas is placed in a uniform
magnetic field B (choose +z direction to be the field direction, i.e.,
B = B ẑ).

(a) Sketch the problem, i.e., plot the single particle energies for each
spin as a function of momentum. Where is the Fermi energy, EF ,
in this plot?

(b) Write down expressions for the particle numbers N+ and N− for
the two types of spins as integrals over momenta and hence show
that,

N
2

3

+ −N
2

3

− =
4mµB

h̄2

(

V

6π2

)

2

3

.

Hint: Remember that

∑

k

→ V

(2π)3

∫

d3k.

(c) Now assume that the magnetic field B is weak and therefore the
difference, 2n ≡ N+ − N− ¿ N . Calculate n and the resulting
magnetization, M ≡ µ(N+ −N−), of the gas approximately.

(d) What do you understand by saturated magnetization? Using the
result from part (b), find the magnitude of the threshold magnetic
field at which the magnetization saturates.
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Section B

B1. Consider a two-level system (states |1〉 and |2〉) coupled to an external
time dependent driving field, so that the Hamiltonian reads

H

h̄
= ω1|1〉〈1|+ ω2|2〉〈2|+ f(t)(|2〉〈1|+ |1〉〈2|) .

Take the driving field to be of the form

f(t) =
λ√
πτ







exp



−
(

t+ T
2

τ

)2


+ exp



−
(

t− T
2

τ

)2










.

This represents two pulses of length τ hitting the system at times∓T/2.
Let us assume that the amplitude of the driving field ∝ λ is “very
small.” Moreover, let us take the pulse width τ to be the smallest time
parameter in the problem, so that the excitation pulses are, in effect,
delta function kicks. Before the pulses, the system starts in the state
|1〉. Show that the probability that the system is in the state |2〉 after
the two pulses approximately equals

P2 ' 2λ2{1 + cos[(ω2 − ω1)T ]} .

This is the basic idea of what is known as Ramsey fringes: By making
the separation of the two pulses T longer, one may measure the energy
difference between the states with increasing accuracy.
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B2. In an atom the spins of the electrons and of the nucleus are coupled
by what is known as hyperfine interaction. The hyperfine interaction
is invariant under a simultaneous rotation of all spins.

(a) Describe qualitatively the ensuing hyperfine structure in the ground
state of hydrogen. Of course, an electron and a proton both have
spin 1/2.

(b) In a Stern-Gerlach experiment an inhomogeneous magnetic field
separates the atoms according to the projection of their angular
momentum on the direction of the magnetic field. Describe the
outcome of a Stern-Gerlach experiment (how many directions, ra-
tios of the numbers of atoms going in each direction) for ground-
state hydrogen in the usual case when the thermal energy kT
greatly exceeds the energy scale of the hyperfine structure.
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B3. Consider the following Hamiltonian of a system, H = L2/(2I)− µ Lz,
where L and Lz denote orbital angular momentum operator and its z
component respectively. (I and µ are constants.) Assume that at time
t = 0, the system is found in the state

ψ(θ, φ, 0) = c1 sin θ cosφ+ c2 cos2 θ,

where c1 and c2 are constants and θ and φ are the polar and azimuthal
angles. Hint: Some knowledge of spherical harmonics may be useful.

(a) What are the possible values of L2 and Lz that a measurement
will find? What are their respective probabilities?

(b) Evaluate the fluctuations in energy, < ψ|H2|ψ > − < ψ|H|ψ >2,
and explain why this expression is not necessarily zero.

(c) How does ψ evolve in time? (i.e., write down an expression for
ψ(θ, φ, t) at time t.) Do you expect the probabilities in (a) and
fluctuations in (b) to vary with time? Why?
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B4. The Hamiltonian for an electron in a one dimensional harmonic oscil-
lator potential and a time independent electric field, E , is given by the
quantum mechanical Hamiltonian

H =
p2

2m
+
mω2

2
x2 − eEx,

with e being the charge of an electron. The other symbols have their
usual meanings.

(a) Using the Heisenberg representation, find the equations that de-
termine the time derivatives of x and p.

(b) Using (a) or otherwise, obtain complete solutions for x(t) and p(t)
in terms of their t = 0 values, i.e., x(0) and p(0). Is there a
classical analog here? Briefly explain.

(c) Evaluate the commutator [x(t1), x(t2)], where t1 and t2 are not
necessarily equal, and show that it need not vanish for arbitrary
t1 and t2. Is there a classical analog here? Briefly explain.
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B5. (a) Assume a one-dimensional (1D) potential with

U(x) =











∞ for x < 0
−U0 for 0 ≤ x ≤ a
0 for x > a

For which minimum value of U0 (> 0) does this system support
at least one bound state?

(b) Now assume a spherical well potential in 3D with

V (r) =

{

−V0 for r ≤ a
0 for r > a

Assume a spherically symmetric (` = 0) wavefunction ψ. Show
that this problem can be reduced to the one-dimensional problem
in part (a). To do this, make an ansatz ψ(r, θ, φ) = rsR(r). For
which s does R(r) solve the 1D problem? What, therefore, is the
minimum V0 (> 0) that can support at least one bound state?
Hint: The Laplace operator in polar coordinates can be written as

∇2 = 1

r2∂rr
2∂r − ~L2

h̄2r2
.

(c) Show that this is possible in general, if we compare U(x) in 1D
and a spherically symmetric V (r) in 3D:

U(x) =











∞ for x < 0
−U0(x) for 0 ≤ x ≤ a
0 for x > a

and V (r) =

{

−V0(r) for r ≤ a
0 for r > a

Note the boundary conditions!
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B6. Assume a two-dimensional harmonic oscillator,

H =
p2x
2m

+
p2y
2m

+
mω2

2
(x2 + y2),

where the symbols have their usual meanings.

(a) Use perturbation theory to find out what happens to the first
excited state if one adds a potential V = αxy, with α ¿ mω2.
(Hint: This problem might be easier to solve using raising and

lowering operators.)

(b) Compare with the exact solution, using the fact that

k

2
(x2 + y2) + αxy =

k + α

4
(x+ y)2 +

k − α
4

(x− y)2.
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