ELECTRICITY AND MAGNETISM

Preliminary Examination

Thursday 08/21/2014

09:00 - 12:00 in P-121

Answer a total of **THREE** questions. If you turn in excess solutions, the ones to be graded will be picked at random.

Each answer must be presented **separately** in an answer book or on sheets of paper stapled together. Make sure you clearly indicate who you are and what is the problem you are solving on each book/sheet of paper. Double-check that you include everything you want graded, and nothing else.

You are allowed to use a result stated in one part of a problem in the subsequent parts even if you cannot derive it. On the last page you will find some potentially useful formulas.

- **Problem 1.** A dielectric sphere carries a charge density which depends only on the distance from the center, $\rho(r)$. The sphere undergoes purely radial oscillations, i.e. ρ at any time depends only on the distance r. Show that no radiation can occur.
- **Problem 2.** A plane wave is incident (normal incidence) on a medium with two layers. The first layer has an index of refraction n and is of thickness d. The second layer has an index of refraction n_1 and is of infinite thickness. Show that if $n = n_1^{1/2}$ and $d = \frac{\lambda}{4}$ where λ is the wavelength of the wave, no reflected wave is observed.
- **Problem 3.** Consider a conductor of width a in x direction. The conductivity is due to electrons and the charge carrier density is n. The conductor is placed in magnetic field B in positive z direction. When the current I_y in y direction is flowing through the conductior, the Hall voltage V_H is generated between the edges x = 0 and x = a. Find the magnitude and the direction of the Hall voltage.

(You can think of charge carriers as moving with constant drift velocity v_d parallel to the direction of the current.)

Problem 4. Two infinite parallel conducting planes. separated by distance a carry uniform current density J in opposite directions.

a). Determine the magnetic field between the two planes.

b). What is the pressure of magnetic field on one plane due to the current in the other?

Standard vector operations in three common coordinate systems

Cartesian coordinates x, y, z

$$\nabla = \hat{\mathbf{e}}_x \frac{\partial}{\partial x} + \hat{\mathbf{e}}_y \frac{\partial}{\partial y} + \hat{\mathbf{e}}_z \frac{\partial}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{e}}_x \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{e}}_y \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{e}}_z \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

cylindrical coordinates ρ, ϕ, z

$$\nabla = \hat{\mathbf{e}}_{\rho} \frac{\partial}{\partial \rho} + \hat{\mathbf{e}}_{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi} + \hat{\mathbf{e}}_{z} \frac{\partial}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{e}}_{\rho} \left[\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right] + \hat{\mathbf{e}}_{\phi} \left[\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{z}}{\partial \rho} \right] + \hat{\mathbf{e}}_{z} \frac{1}{\rho} \left[\frac{\partial}{\partial \rho} (\rho A_{\phi}) - \frac{\partial A_{\rho}}{\partial \phi} \right]$$

$$\nabla^{2} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$

spherical polar coordinates r, θ, ϕ

$$\nabla = \hat{\mathbf{e}}_{r} \frac{\partial}{\partial r} + \hat{\mathbf{e}}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{\mathbf{e}}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2}A_{r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{e}}_{r} \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{\partial A_{\theta}}{\partial \phi} \right] + \hat{\mathbf{e}}_{\theta} \left[\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{1}{r} \frac{\partial A_{r}}{\partial \theta} \right] + \hat{\mathbf{e}}_{\phi} \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_{\theta}) - \frac{\partial A_{r}}{\partial \theta} \right]$$

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$$

$$\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} \equiv \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r \right]$$