
ELECTRICITY AND MAGNETISM

Preliminary Examination

January 17, 2013

9:00 - 12:00 in P-121

Answer a total of THREE questions. If you turn in excess solutions, the ones to be
graded will be picked at random.

Each answer must be presented separately in an answer book or on individual sheets
of paper stapled together. Make sure you clearly indicate who you are, and the
problem you are answering. Double-check that you include everything you want
graded, and nothing else. On the last page you will find some “potentially useful
formulas.”
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1. A point dipole ~p is placed at the center of a sphere of linear dielectric material
with the dipole axis pointing along the z-axis of a Cartesian coordinate system
(see Fig. 1). The sphere has radius R and dielectric constant ε.

(a) Let us suppose that R is very large (i.e., R→∞). Write down an expres-
sion for the electrostatic potential at any point on the z-axis due to this
dipole ~p.

(b) Now for finite R > 0, show that the electric potential inside the sphere is

p cos θ

4πε0εr2

[
1 + 2

r3(ε− 1)

R3(ε+ 2)

]

where θ is the polar angle with respect to the z-axis. Compare and com-
ment on your answer for part (a) with this one.

(c) Find the electric field at r � R. How does it behave in the limit r →∞?

~p

z
sphere radius = R, dielectric constant = ε

Fig. 1
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2. A sphere of radius R carries a charge q that is distributed uniformly over the
surface of the sphere. The sphere spins at constant angular velocity ~ω (see Fig.
2).

(a) Calculate the magnetic moment ~m of this sphere and determine the leading

term of the multipole expansion of the vector potential ~A at large distances
r : i.e., r � R.

(b) Calculate the interaction energy between this sphere and an infinite straight
wire carrying a steady current I. The angle between the direction of the
current and the angular velocity vector ~ω is θ while the distance ρ be-
tween the wire and the sphere is much greater than the sphere radius: i.e.,
ρ� R. Consider the case when ~ω is perpendicular to êρ.

(c) Determine the interaction energy between the wire and the sphere, if the
charge q is uniformly distributed over the sphere volume instead of the
sphere surface.

R

ω

I
θ

ρ
q

Fig. 2
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R

z

B = 0 B = 0

~B = B0 êz

Fig. 3

3. Consider a magnetic field that has a constant magnitude and direction inside
an infinite cylinder of radius R and vanishes everywhere outside (see Fig. 3):
i.e.,

~B(ρ, φ, z) = B0 êz, ρ ≤ R and B = | ~B| = 0, ρ > R

where êz is the unit vector along the axis of the cylinder and B0 is a positive
constant.

(a) Calculate the vector potential ~A(ρ, φ, z) in the entire space.

(b) There is a current density associated with the above magnetic field as
dictated by Maxwell’s equations. Find the density of the electric current
that induces this magnetic field.
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x

2a

ρ(x) = ρ0 sin(πx/a)

Fig. 4

4. An infinite slab of thickness 2a has a volume charge density ρ(x) given by

ρ(x) =

{
ρ0 sin(πx/a) if |x| ≤ a
0 if |x| > a

where ρ0 and a are positive constants (see Fig. 4). The geometry of this
system is such that x = 0 is the central plane contained inside the slab with
the x−axis being perpendicular to it. In addition, take this plane to be the
potential reference plane; i.e., φ(x = 0) = 0. For the above charge distribution,
calculate the potential φ(x) and the electric field E(x) everywhere in space.
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Standard vector operations in three common coordinate systems

Cartesian coordinates x, y, z

∇ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

∇×A = êx

(
∂Az
∂y
− ∂Ay

∂z

)
+ êy

(
∂Ax
∂z
− ∂Az

∂x

)
+ êz

(
∂Ay
∂x
− ∂Ax

∂y

)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

cylindrical coordinates ρ, φ, z

∇ = êρ
∂

∂ρ
+ êφ

1

ρ

∂

∂φ
+ êz

∂

∂z

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

∇×A = êρ

[
1

ρ

∂Az
∂φ
− ∂Aφ

∂z

]
+ êφ

[
∂Aρ
∂z
− ∂Az

∂ρ

]
+ êz

1

ρ

[
∂

∂ρ
(ρAφ)− ∂Aρ

∂φ

]

∇2 =
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

spherical polar coordinates r, θ, φ

∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ

∇ ·A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

∇×A = êr
1

r sin θ

[
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

]
+ êθ

[
1

r sin θ

∂Ar
∂φ
− 1

r

∂

∂r
(rAφ)

]
+ êφ

1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]

∇2 =
1

r2
∂

∂r
r2

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2[
1

r2
∂

∂r
r2

∂

∂r
≡ 1

r

∂2

∂r2
r

]
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