
Classical Mechanics/Electricity and Magnetism

Preliminary Exam

August 20, 2008

09:00 - 15:00 in P-121

Answer THREE (3) questions from each of the TWO (2) sections A and B for a total of SIX
(6) solutions. If you turn in excess solutions, the ones to be graded will be picked at random.

Each answer must be presented separately in an answer book, or on consecutively numbered
sheets of paper stapled together. Make sure you clearly indicate who you are, and what is
the problem you are solving. Double-check that you include everything you want graded, and
nothing else.
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Section A — mostly mechanics

A1. What is the gravitational force of a uniform sphere of mass M on an infinite uniform
plane with the constant mass density (per unit area) σ? The sphere and the plane do
not intersect.

A2. A fixed sphere A of radius a rests on a horizontal plane and a second sphere B of radius
b (b ≤ a) and mass m is placed upon it with the line from the center of sphere A to the
center of sphere B at an angle θ0 from the upward vertical. The second sphere then starts
rolling down from rest in this position. The contact surface between the two spheres is
rough.

Show that, as long as the spheres remain in contact and there is no sliding, the inclination
of the line between the centers of the spheres from the upward vertical, θ, satisfies

7(a+ b)θ̇2 = 10g(cos θ0 − cos θ) .

Moreover, show that the moving sphere will leave the fixed sphere when cos θ = 10

17
cos θ0.

A3. Identify a set of principal axes and write down the inertia tensor for a supposedly uniform
circular coin with respect to these principal axes. The precise values of the moments of
inertia are unimportant here, but their relative magnitudes do matter.

The coin is tossed into the air with initial angular velocity components Ω1 about a
diameter through the coin and Ω3 about an axis perpendicular to the coin through its
center. Take

~ω(t) = [ω1(t), ω2(t), ω3(t)]
T

to be the angular velocity vector at any time t with respect to the above axes during its
motion.

(a) Show that if Ω3 = 0 and Ω1 6= 0, then the coin simply spins about its diameter with
angular velocity component ω1(t) = Ω1 throughout its motion.

(b) Explain how the angular velocity vector ~ω evolves in time when both Ω1 and Ω3

are nonzero. Specifically, describe how ~ω(t) changes in time t with respect to the
principal axes.
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A4. Recall that a constant (in time and space) magnetic field B may be derived from the
vector potential A(r) = 1

2
(B× r).

(a) Consider a particle with mass m and charge q in the constant magnetic field B =
B ê3. The motion in the third direction is unaffected by the magnetic field, and is
henceforth ignored. Show that the minimal coupling Hamiltonian for the charged
particle reads

H =
1

2m
(p2

1
+ p2

2
) −

ω

2
(x1p2 − x2p1) +

mω2

8
(x2

1
+ x2

2
) .

Here x1 and x2 are the remaining Cartesian coordinates, p1 and p2 are the corre-
sponding canonical momenta, and ω = qB/m is the cyclotron frequency.

(b) Show that the equations

x1 = 1√
2mω

[(α1 + α∗
1
) − i(α2 − α∗

2
)] , p1 = 1

2

√

mω
2

[−i(α1 − α∗
1
) − (α2 + α∗

2
)] ,

x2 = 1√
2mω

[−i(α1 − α∗
1
) + (α2 + α∗

2
)] , p2 = 1

2

√

mω
2

[−(α1 + α∗
1
) − i(α2 − α∗

2
)]

define canonical-conjugate pairs {x1, p1} and {x2, p2} if [and, actually, only if] the
new variables α1 and α2 have the Poisson brackets [α1, α

∗
1
] = [α2, α

∗
2
] = −i, and zero

Poisson brackets for all other variable pairs picked from the set {α1, α
∗
1
, α2, α

∗
2
}.

(c) A direct substitution shows that, in terms of the variables α1 and α2, the Hamil-
tonian reads H = ωα1α

∗
1
. Show that the new variables evolve in time according to

α1(t) = α1(0)e−iωt, α2(t) = α2(0).

(d) Describe the motion of the charged particle in physical terms.
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Section B — mostly E&M

B1. No electrostatic trap.

(a) Consider any sphere with no charge inside. By applying a suitable Green’s identity
to the electrostatic potential φ(x) and the function ψ(x) = 1/|x|, show that the
value of the potential at the center of the sphere equals the average of the potential
over the surface of the sphere.

(b) Earnshaw’s theorem says that an electrostatic potential cannot have a minimum
or a maximum in free space. A purely electrostatic trap for a charged particle
is therefore impossible. Prove Earnshaw’s theorem on the basis of the result of
part (a).

B2. A circular wire loop of radius a in the xy plane centered on the z axis carries the current
I(t). Assume that there is never a net charge in any macroscopic part of the wire loop.
Also recall that in the Lorentz gauge, the manifestly causal retarded electromagnetic
potentials from a distribution of charges and currents are

φ(x, t) =
1

4πε0

∫

d3x′
%

[

x′, t− |x−x
′|

c

]

|x − x′|
, A(x, t) =

µ0

4π

∫

d3x′
j
[

x′, t− |x−x
′|

c

]

|x − x′|
.

(a) Verify the following expansions valid for |x| � |x′|:

|x − x′| = |x| −
x · x′

|x|
+ O|x′|2,

1

|x − x′|
=

1

|x|
+

x · x′

|x|3
+ O|x′|2 .

(b) Assume now that the current genuinely varies in time; j, ∂t′j and ∂t′t′j do not tend to
zero with increasing distance from the origin |x| for any retarded time t′ = t−|x|/c
relevant to our argument. The leading contribution to the vector potential, in the
limits when the current loop is small compared with the distance to the point of
observation and the observation point is “sufficiently far” away, reads

A(x, t) '
µ0

4πc|x|2

∫

d3x′ x′ · x
∂j(x′, t′)

∂t′

∣

∣

∣

∣

∣

t′=t−|x|/c

=
µ0a

2

4c|x|2
d

dt
I(t− |x|/c) êz × x .

Fill in the details to verify these assertions.

(c) What is the electric field far from the current loop? How does it fall off with
increasing distance?
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B3. Find the magnetic field due to a uniformly magnetized, spherical permanent magnet
everywhere in space. Discuss the difference between magnetic induction and magnetic
field using your solution. Take the permeability of the surrounding material to be µ0,
and the magnetization of the sphere to be M0ẑ.

B4. An electromagnetic plane wave of (angular) frequency ω is propagating through an opti-
cally active (chiral) medium so that the polarization of the medium is P = (2γ/cµ0ω)∇×
E, with γ � 1. The medium has no free charges or currents, and it will not magnetize.

(a) In the absence of free charges one of Maxwell’s equations for a polarizable medium
says ∇·D = 0, where the electric displacement is D = ε0E+P as usual. Show that
in the present case ∇ · E = 0 holds true, too.

(b) Where convenient you may, of course, assume that the wave with the real wave
number k propagates along the z axis. By virtue of ∇·E = 0, the complex amplitude
vector of the electric field is then of the form Exêx +Eyêy. Show that the amplitudes
Ex and Ey, the wave number k, and the frequency ω have to satisfy the equations

[

k2 − k2

0
2iγk0k

−2iγk0k k2 − k2

0

] [

Ex

Ey

]

= 0 ,

where k0 = ω/c = 2π/λ would be the wave number in vacuum.

(c) There will be two plane wave modes of electromagnetic fields in the medium with
different refractive indices. Find the refractive indices and characterize the modes
at least to the lowest nontrivial order in γ.
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