Classical Mechanics/Electricity and Magnetism
General Eixam
January 11, 2006
09:00 - 15:00 in P-121

Answer three (3) questions from each of the two (2) sections for a total of
six (6) solutions. If you turn in excess solutions, the ones to be graded will
be picked at random.

Each answer must be presented separately in an answer bock, or on con-
secutively numbered sheets of paper stapled together. Make sure you clearly
indicate who you are, and what is the problem you are answering. Double-
check that you include everything you want graded, and nothing else.



Section 1 — mostly mechanics

1. Two athletes run on a track in the z direction. The lanes they run in are
separated by a distance Az in the z direction. The first runner crosses the
finish line by time AT earlier than the second one.

(a)

(b)

Is there an inertial system K’ in which the two runners cross the finish

line simultaneously? Does your answer depend on the values of Az and
AT?

If such a system K’ exists, find explicitly the Lorentz transformation
between the original system K and K’. If in the system K the two
athletes started running simultaneously, who started off earlier and by
how much from the point of view of an observer moving with K’?

2. Kinematic Doppler width reduction.

(a)

The Doppler broadening of an optical transition is caused by the inho-
mogeneous distribution of Doppler shifts for atoms moving at different
speeds; to an atom moving in the propagation direction of light at the
speed v, the frequency of light appears downshifted by the fraction v/c.
Assume that a sample of atoms with the rest-frame resonant frequency
wg 1s lluminated by light propagating along Z. For simplicity, assume
that the atoms have a uniform distribution of momenta along the z
axis over the interval [—p,p|, with kinetic energies ranging up to E.
Find the corresponding Doppler width Aw.

Now a fast atomic beam is formed by passing the entire sample of
atoms through an accelerating potential, also directed along z, that
adds the energy FEj to each atom. Assume that Fy > E, but that
the motion is still non-relativistic. In this approximation, solve for the
corresponding spread in velocities Av, and for the resulting Doppler
width Aw. By what ratio are these quantities reduced compared with
the unaccelerated sample in part (a)?
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Figure 1: Drawing for problem 3.

3. A uniform bar of mass M and length 2! is suspended from one end by a
spring of force constant k; see the figure. The bar can swing freely only in
one vertical plane, and the spring is constrained to move only in the vertical
direction along gravity. Find the small-oscillation frequencies around the
stationary configuration.

4. A small charged object (mass m, charge ¢) is moving in a magnetic field
of the form B(t) = B(t) é,. If the variation of the magnetic field is so slow
that light has ample time to propagate across the experimental setup during
any characteristic time such as the inverse of the cyclotron frequency, all
electromagnetic fields on the particle may be derived from a vector potential
A(r,t) = [B(t) x r]. This is known as the quasistatic approximation. The
motion along the direction of the magnetic field separates, and need not be
considered any further.

(a) The Hamiltonian for the system in terms of the Cartesian coordinates
z and y (collectively, x) and their corresponding canonical momenta,
(p) reads

1
H=--(p—qA).
5 (P —gA)
Please explain.

(b) Find the expression of the kinetic energy mx?/2 in terms of canonical
coordinates and momenta.

(¢) Iskinetic energy a constant of the motion? What’s the physical reason?



Section 2 — mostly E&M

Figure 2: Drawing for problem 5.

5. The two dimensional region a < p < oo, 0 € ¢ < ( is bounded by
conducting surfaces at ¢ == 0, ¢ = f and p = ¢ held at zero potential, & =0
as indicated in the figure. At large distances there are charges, so that the
potential is not identically zero.

(a) Write down the general solution for the potential ®(p, ¢) in the neigh-
borhood of p = a, taking into account the appropriate boundary con-
ditions.

(b) Find the form (direction and dependence on the angle ¢) of the electric
field on the surface p = a. Assume that a is the smallest relevant length
scale in the problem, and that the configuration of the far-away charges
has no particular symmetry.

Recall that, as long as one does not require that the solution has the period
27 in the angle ¢, any constant and all of the functions p*” sinv¢, P cosvg,
Inp, ¢, and ¢Inp are solutions to the 2D Laplace equation for an arbitrary
(even complex) number v.



6. Free electron plasma frequency and pondermotive energy.

(a)

(b)

A free clectron is placed in an electromagnetic plane wave. Provided
the wavelength is long enough for our purposes, the electric field is
given by
~ ' EO —iwt
E = Fpé, coswt = &, ~2~(e +c.c.),

where &, denotes the direction of polarization. Assuming the motion is
nonrelativistic, find the position x (¢} of the oscillating electron, and the
average “quiver energy” B, = $m(v?) . In high-field physics this energy
is called the pondermotive energy or frequently, but misleadingly, the
pondermotive potential. Assume here that the electron started at rest
and the electric field was turned on slowly, so that there is no drift
velocity and the time averaged position did not change when the field
was turned on.

Now consider the electron to be part of a free-electron or “Drude model”
of a metal or plasma, with a density of n electrons per unit volume.
Assuming that the electrons are stationary without the external field,
find the macroscopic polarization P(t) associated with the oscillating
dipole moments d(t) of the electrons. Use this to find the dielectric
constant of the medium, or equivalently the index of refraction. At
what frequency w, does the index of refraction equal zero? (Hints:
This is one way to derive the plasma frequency of the free electron gas.
As the electrons are not bound, you do not have to worry about local-
field corrections. Nonetheless, the lattice of ions in a metal provides a
neutralizing background charge, so that it makes sense to talk about
the dipole moment associated with a moving electron.)
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Figure 3: Drawing for problem 7.

7. Evanescent waves and gradient forces. A plane wave is incident on a
dielectric interface with its electric field in the plane of incidence, as shown in
the figure. You are given that the angles of incidence and refraction satisfy
Snell’s law sin8;/sinf, = n'/n, and for a generic plane wave of the form
E = Ege'®r=%% the ratio of transmitted and incident field amplitudes is

(a)

(b)

Ey 2n cos b,
Ey  wcosf+ncosb,

Now consider the case of total internal reflection with an angle of in-
cidence just above the critical angle, so that the angle of refraction
obtained from Snell’s law is imaginary. The electric field is neverthe-
less non-zero in a small region beyond the dielectric interface. We can
define two real parameters to characterize the system, A = sin6, > 1
(but A~ 1), and B =icosf, (and 0 < B <« 1). Solve for the electric
field on the far (n’) side of the interface as a function of these param-
eters, by writing out the wave vector k' explicitly as a function of the
parameters and the incoming frequency. Show that the wave propa-
gates mostly along X and that it is exponentially damped as a function
of the distance z from the surface; hence the term evanescent wave.
Find the amplitude of the wave, assuming (as above) that 4 is close to
unity and B is small.

Even though the evanescent wave transimits no power, it can exert
forces. In fact, if the light is tuned “far” (several natural linewidths)
to the short-wavelength side of an atomic resonance, the atom experi-
ences a gradient force that is proportional to the gradient of the energy
density of the electromagnetic field, and points toward lower energy
densities. What, then, happens to a slow enough atom when it hits the
evanescent wave?



8. Uniformly magnetized bodies.

(a)

(b)

Consider a situation when there are no free currents and a constant
(in space and time) magnetization M inside an arbitrary shape object.
Since the magnetization cuts off abruptly at the surface, there will be a
singularity in the magnetization current V x M. Show that V x M =
M x #16(z), where i is the outward normal and z is a local Cartesian
coordinate along A such that z = 0 is on the surface and z > 0 is on
the outside.

As a result, the magnetic induction fleld B is exactly the same as
if there were no magnetization, but instead a surface current density
K =M x n. Supply a simple argument.

Demonstrate that a rotating sphere with a constant surface charge
density and nonmagnetic material inside gives off the same magnetic
induction field as a stationary sphere with no free charges and a certain
magnetization inside.



