CLASSICAL MECHANICS

Preliminary Examination

August 19, 2013

9:00am - 12:00pm in P-121

Answer a total of **THREE** questions. If you turn in excess solutions, the ones to be graded will be picked at random.

Each answer must be presented **separately** in an answer book or on individual sheets of paper. Make sure you clearly indicate who you are and the problem you are solving on each book/sheet of paper. Double-check that you include everything you want graded, and nothing else.

Problem 1

Three particles in a row with masses m_1 , m_2 , and m_3 are connected to each other and to the walls around by identical massless springs, as shown in Fig.1. The spring constant and the equilibrium length are k and a respectively, and the distance between walls is 4a. For the one-dimensional motion of all particles:

- (a) Construct the Lagrangian of the system.
- (b) Derive the Lagrange equations of motion.
- (c) Find the eigenfrequencies of harmonic oscillations if the masses of all three particles are equal, $m_1 = m_2 = m_3 = m$. Describe the character of the motion for each eigenmode.
- (d) Find the eigenfrequencies if $m_1=m_3=m$ and $m_2=M$.

Fig.1

Problem 2

The one-dimensional harmonic oscillator can be studied using a complex variable α that encompasses both position and momentum at once:

$$H = \frac{p^2}{2m} + \frac{m \omega^2 x^2}{2}; \quad \alpha = \sqrt{\frac{m\omega}{2}} x + i \sqrt{\frac{1}{2m\omega}} p.$$

- (a) Show that the Poisson brackets for the new variable α and its complex conjugate α^* are $[\alpha, \alpha] = [\alpha^*, \alpha^*] = 0$ and $[\alpha, \alpha^*] = -i$.
- (b) Express the Hamiltonian H as a function of α and α^* .
- (c) Derive the equations of motion for the variables α and α^* using Hamilton's equations of motion, and show that $\dot{\alpha} = -i\omega\alpha$ and $\alpha(t) = \alpha(0)\exp(-i\omega t)$.
- (d) Obtain the solutions x(t) and p(t) of the harmonic oscillator for the given initial values x(0) and p(0) using methods outlined in this problem.

<u>Hint:</u> The Poisson bracket [f,g] of two functions f and g is defined in classical mechanics as $[f,g]=\frac{\partial f}{\partial x}\frac{\partial g}{\partial p}-\frac{\partial f}{\partial p}\frac{\partial g}{\partial x}$, where x and p are the generalized coordinate and momentum. Poisson brackets play the same role in classical mechanics as operator commutators in quantum mechanics.

Problem 3

A particle of mass m is trapped in the field of the "spherical potential well" of radius R₀:

$$U(r) = \begin{cases} -U_0, & r \leq R_0, \\ 0, & r > R_0, \end{cases}$$

where U_0 is a positive constant. For this central potential, the total energy E and angular momentum L are integrals of motion.

- (a) Write the Hamiltonian describing the radial motion of the particle, and find the relationship between E and L values required to keep the trajectory inside the sphere of radius R_0 .
- (b) Describe particle trajectories at different values of E and E: calculate the radius $r_C = r_C(E, L)$ of the closest approach to the center of the sphere, and the angle $\Theta = \Theta(E, L)$ of reflection from the surface of the potential well at $E = R_0$.
- (c) Establish conditions necessary for circular motion. Are these circular trajectories stable?
- (d) Find a relationship between E and L for closed trajectories.

Problem 4

An excited diatomic molecule, moving with the velocity V in the Laboratory Frame (LF), decays into two identical atoms. The decay process is isotropic in the Center of Mass Frame (CMF), where the speeds of the atoms are equal to v_0 . Calculate the atomic angular distribution function $\varrho(\theta)$ in the LF, where θ is the angle between the LF atomic velocity vectors.

<u>Hint:</u> The function $\varrho(\theta)$ gives the probability density to detect the angle θ between atomic velocity vectors in the LF, and it has to be normalized according to a standard rule: $\int_0^{\pi} \varrho(\theta) \frac{1}{2} sin\theta d\theta = 1$.