
Specifications for the bias voltage control

software API for Hall D tagger microscope

Hovanes Egiyan, Richard Jones

April 29, 2013

Abstract

We specify the interface required to integrate the voltage control

of the GlueX tagger microscope detector into the experimental control

system of Hall D.

1 Introduction

The tagger microscope detector consists of five columns of 100 rows of scin-
tillators that will be read out using silicon photodetectors (SiPMs). The bias
voltage on each of the SiPMs needs to be individually adjusted with a pre-
cision of 0.01 Volts. The control points for the voltage supply to the SiPMs
are divided into groups of 30 channels with a total of 17 groups. Each group
is controlled using a custom designed board that can set and report values of
the different parameters for each SiPM channel. The remote communication
with the board can be done through an RG45 Ethernet port using custom-
designed Transport Layer protocol. Each control board is identified by an
address set using a jumper, and each channel is identified by a geographical
address header word in the response packets sent by the device to the host.

The programming of the firmware on the control boards has been done by
the University of Connecticut group, and in order to be able to integrate the
bias voltage control and monitoring into the EPICS-based controls frame-
work of Hall D an interface layer needs to be developed to be used by the
EPICS Input/Output Controllers (IOCs) running on a regular Linux-based
computer. Within the EPICS framework different parameters of each volt-
age channel will have their corresponding EPICS variables. The set-point

1

variables that write to the control boards will be processed (and thus com-
municate with the board) whenever the desired value is changed by the user,
while the variables that obtain their values from the boards will need to be
updated at about 1 Hz frequency. Note that the initial version of the API
will not contain some of the parameters representing the actual values, such
as the voltage and current readback. The design of the control board will be
modified at a later time to include the readback values. This document spec-
ifies the requirements for such a library assuming that the time for sending
a single requests to a control board and receiving a response from it over a
local network is on average under one millisecond during the operations with
the full configuration. It does not assume though that the values of parame-
ters obtained from the control boards necessarily match the actual values of
these parameter at a time within one millisecond of the readout time. This
assumption merely allows the EPICS software layer not to consider possibil-
ities of backing up the queues for communicating with the control boards.

There will also be a set of parameters related to the microscope control
boards themselves. Each board will have a read-only temperature value as
well as a status word to indicate the health of the control board and its
firmware.

2 List of parameters

Table 1 lists the parameters that will be controlled and monitored by EPICS
for every voltage channel. A brief description for each parameter is given in
the second column. The column “Access by EPICS” indicates whether the
parameter is expected to be read, written, or both by EPICS. The status

parameter should indicate the state the channel is in, such as On, Off, Ramp-

up, Ramp-down, Tripped, Over-temperature, etc. The enable parameter can
be written by EPICS to turn on and off the channel, and it also can be read
by EPICS to determine what the most recent EPICS request for enabling
or disabling that channel was. Note that it provides us with different infor-
mation from what is reported in status parameter which reports the actual
state of the voltage channel. The status word will be read from the board
for each channel and represent the status of the channel and will indicate if
there is any problem with the channel. The API will provide a translation
for each of these states.

Table 2 shows the parameters pertaining to the microscope control boards.

2

Short Name Brief Explanation Units Access by EPICS

v sp Voltage setpoint V Read/Write
v max Maximum allowed voltage V Read/Write
temp rb Temperature reading 0C Read
ramp up Ramp-up rate V/s Read/Write
ramp dn Ramp-down rate V/s Read/Write
status Channel status N/A Read
enable Enable/Disable channel N/A Read/Write
gain mode Preamp gain mode N/A Read/Write

Table 1: List of the parameters than need to be controlled/monitored by
EPICS for each microscope voltage channel.

Short Name Brief Explanation Units Access by EPICS

temp rb Temperature reading 0C Read
status Board status N/A Read

Table 2: List of the parameters than need to be monitored by EPICS for
each microscope control board.

3

3 List of functions

In order to access and modify the parameters in Table 1 we need to develop
a library of functions that will be used by a program running on a remote
host and communicating with the control boards over a local network. This
program will serve the EPICS variables corresponding to different parame-
ters using ChannelAccess protocol. The most commonly used programming
languages for developing an EPICS ChannelAccess servers are C and C++,
therefore the set of functions needs to be easily usable by C and C++ codes.

The methods that are required in the API can be divided into three types.
The first type of the functions will be accessing and modifying the param-
eters listed in Table 1 that are related to a particular bias voltage channel.
These functions are included in the C++ header file presented in Sec. 5.1.
The second type of functions would change or report the status of the com-
munication between the server and individual boards (or ports). The list of
functions operating on an individual control board can be found in the sam-
ple C++ header file in Sec. 5.2. The third type can represent the functions
that refer to the API as whole and are not related to any channel or board.
All details of the communication protocol will be hidden from EPICS sup-
port allowing EPICS to open communication ports for each control board,
to determine the list of channels available on each port, and to send requests
for individual channel and receive responses using function calls. EPICS will
call these functions asynchronously, that is the requests for each board will
be queued, and when it is time for the request to be processed a callback
function is processed in a separate thread. In general, the calls to the com-
munication ports for the control boards will be made from multiple threads
at the EPICS support level, therefore the API implementation should have
its own mutual exclusion scheme such that there are no collisions between
the calls from multiple threads and that the dead-time of the communication
ports due to locking of the shared resources on the server side is not pro-
hibitively high. EPICS support level will not attempt to prevent accesses to
the communication ports from multiple threads and will threat all methods
and functions in the API as re-entrant and thread-safe.

4

4 Summary

In this document we specified the requirements for the API that needs to
be implemented to integrate the bias voltage control into the Hall D exper-
imental control system. This paper defines a list of parameters that should
be represented in the firmware as well as a set of functions that are needed
for EPICS device support (see the Sec. 5). The software library will need to
be compiled and run on a Linux-based system, and will only require external
libraries that are part of the major Linux distributions.

5

5 Appendix

5.1 Header file example for a class corresponding to

the bias voltage channels

/*

* UConnBiasChannel.hh

*

* Created on: Apr 28, 2013

* Author:

*

* This class provides interface that EPICS support will use to monitor

* and control bias voltage channels on UCon Tagger Microscope detector.

* All methods, including accessotrs, need to be thread-safe since they

* may be executing simultaneousely on multiple threads.

*

*/

#ifndef UCONNBIASCHANNEL_HH_

#define UCONNBIASCHANNEL_HH_

#include <stdint.h>

#include <iostream>

#include <string>

#include <vector>

#include <map>

class UConnBiasChannel {

protected:

// Prevent copying boards

UConnBiasChannel(const UConnBiasChannel& chan);

UConnBiasChannel& operator=(const UConnBiasChannel& chan);

public:

// Constructor of a channel with geo-address chanAddress on boards with an

// address boardAddress

UConnBiasChannel(const std::string boardAddres, const std::string chanAddress);

6

// Destrcutor

~UConnBiasChannel();

// Set and get the setpoints for bias voltage

void SetVoltageSetPoint(double voltage);

double GetVoltageSetPoint();

// Set and read the firmware limit on bias voltage

void SetMaxVoltage(double maxVoltage) ;

double GetMaxVoltage();

// Set and read the ramp-up rate for bias voltage

void SetRampUpRate(double rate);

double GetRampUpRate();

// Set and read the ramp-down rate for bias voltage

void SetRampDownRate(double rate);

double GetRampDownRate();

// Read the 32-bit status word for this channel

uint32_t GetStatus();

// Enable, disable this bias channel

void Enable();

void Disable();

bool IsEnabled();

// Read the temperature value

double GetTemperature();

// Get the board address to which this channel belongs to

std::string GetBoardAddress();

// Get the geographical address of this channel

std::string GetChannelAddress();

};

#endif /* UCONNBIASCHANNEL_HH_ */

7

5.2 Header file example for a class corresponding to

the control boards

/*

* UConnCtrlBoard.hh

*

* Created on: Apr 28, 2013

* Author:

*

* This class provides interface that EPICS support will use to monitor

* and control the control boards on UCon Tagger Microscope detector.

* All methods, including accesssors, need to be thread-safe since they

* may be executing simultaneousely on multiple threads.

*/

#ifndef UCONNCTRLBOARD_HH_

#define UCONNCTRLBOARD_HH_

#include <stdint.h>

#include <iostream>

#include <string>

#include <vector>

#include <map>

#include "UConnBiasChannel.hh"

class UConnCtrlBoard {

protected:

// Prevent copying boards

UConnCtrlBoard(const UConnCtrlBoard& board);

UConnCtrlBoard& operator=(const UConnCtrlBoard& board);

// Map that keeps track of the channels served by the board

// Key is the address, the address is the address of the

// corresponding UConnBiasChannel object instance.

std::map<std::string,UConnBiasChannel*> uccbChannelMap;

// This static member is a map that keep record of all control board

8

// object instances. It is accessible through a class method to ensure

// the thread safety.

static std::map<std::string,UConnCtrlBoard*> uccbBoardMap;

public:

// Constructor. Open communication for board specified by "address"

// Create all channel objects on that board and fill the channel map. It also

// registers the create board in the map of boards. Throws an

// exception if fails to create the object.

UConnCtrlBoard(std::string address);

// Destructor. Closes this communication channel. Removes the address of

// this board from the map of the boards.

~UConnCtrlBoard();

// Reset the communication channel

int Reset();

// Method to check if communication is active

bool IsConnected() ;

// Return the measured temperature of the board

double GetTemperature();

// Return the 32-bit status word for this board

uint32_t GetStatus();

// Return the number of channels this board is serving

unsigned GetNumberOfChannels();

// Return the address of the board

std::string GetAddress();

// Create and return a vector with pointer to all channels

// served by this control board.

std::map<std::string,UConnBiasChannel*>GetChannelMap();

// Translate the status word to a list of human readable messages

9

static std::vector<std::string> StatusString(unsigned long status);

// Get the map of pointers to all active boards.

static std::map<std::string,UConnCtrlBoard*>GetBoardMap();

};

#endif /* UCONNCTRLBOARD_HH_ */

10

