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Abstract

A method of coherent bremsstrahlung (CB) polarimetry based on the analysis of the shape of the photon energy
spectrum is presented. The influence of a number of uncertainty sources, including the choice of atomic form-factors,
has been analyzed. For a CB source consisting of a diamond radiator and multi-GeV electrons, an absolute accuracy of

polarimetry at the level of 0.01-0.02 is attainable.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Coherent bremsstrahlung (CB) of electrons in a
crystal radiator is a well-known method for the
production of intense, linearly polarized photon
beams in the range of intermediate and high
energies [1]. The availability of a GeV-scale
electron beams with steadily increasing quality
and intensity has created opportunities for experi-
ments that exploit secondary beams of polarized
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photons generated using the CB technique (see, for
example, Ref. [2] and references therein). Together
with the improvements in the intensity and quality
of the CB beam has come increasingly stringent
requirements on the degree of polarization of the
beam and, in particular, on how well the
polarization is known. Beginning with the experi-
mental discovery of the CB process in the 1960s,
the polarization of the coherent radiation was
calculated based on the known theoretical correla-
tion between the CB intensity and polarization
spectra [3]. By this approach, the task of polari-
metry becomes the task of understanding and
fitting the shape of the bremsstrahlung photon
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energy spectrum, which is known as CB shape
analysis (CBSA).

A very few direct and precise measurements of
CB polarization had been done, exploiting electro-
magnetic or nuclear processes. The earliest of them
was carried out at DESY [4] for a CB peak energy
of 2.05 GeV by means of an azimuthal asymmetry
measurement of the ete™ coherent pair production
in a diamond crystal. The data obtained estab-
lished a fairly good agreement between the
measured polarization and that inferred using a
CBSA method, although no measure of quantita-
tive agreement was extracted.

Polarization data, recently measured at the CB
peak energy of 300 MeV using the analyzing power
of coherent n° production on a “He target [5] are
also in good agreement with CBSA calculations,
however, without stating the uncertainty on the
CBSA result which appears to be on the order of
0.02-0.03 or better.

The use of nuclear reactions for CB polarimetry
is mainly restricted by the rapid decrease of the
coherent nuclear photoproduction cross-sections
with a photon energy, as compared to accompany-
ing incoherent processes.

Pushing the precision of CB polarimetry to-
wards the percent level will require a combination
of direct polarimetry measurements and CBSA,
together with a quantitative understanding of the
uncertainties of each. Even in the presence of a
polarimeter with a known analyzing power, a
cross-check using a CBSA method is essential for
substantiating a claim of 1-2% absolute polariza-
tion uncertainty. The CBSA method also provides
a continuous monitor of the polarization during
regular data collection periods, unlike direct
methods which generally require the interruption
of regular data collection for dedicated polarime-
try runs. CBSA relies only on data from the
tagging spectrometer, without requiring any addi-
tional detector hardware or electronics than is
essential to the operation of any tagged brems-
strahlung source.

In this paper we present and discuss a specific
approach to CBSA that has been developed at
YERPHI, and show how this method can reach a
level of accuracy that is required for it to serve as a
precise polarimetry method as well as an effective

cross-check of direct polarimetry measurements at
the level of 1-2%.

2. CB shape analysis methods

The CB intensity spectrum and polarization
arising from 4.5GeV electrons incident on a
diamond crystal in a direction close to the [100]
axis are shown in Fig. 1. The kinematics of the
bremsstrahlung process are shown in the inset
Fig. 1(a), where angles 0 and « define the incident
electron momentum vector within the right-
handed coordinate system formed by the three
principal crystal axes of the diamond lattice
(b;,bg,li). Panels (b) and (c) show the CB photon
intensity and polarization spectra, respectively, for
a crystal orientation that places the primary
coherent edge of the reciprocal lattice vector
(022) at 1.3 GeV. The secondary peaks appearing
at simple multiples of the primary peak energy
arise from higher-order recurrences of the lattice
vector (022), while contributions from other
lattice vectors appear superimposed upon each
other in the region of the end point. The solid
curves in Fig. 1 represent the theoretical intensity
and polarization spectra under the assumption of a
perfect crystal, perfect beam, and perfect resolu-
tion. The dashed curves represent the deformation
of the actual measured spectra from the ideal case,
after realistic experimental conditions are taken
into account. Analytical expressions for the CB
intensity and polarization are presented in Appen-
dix A. One important thing to note in Fig. 1 is
that, even though a single lattice vector may
dominate in the vicinity of a peak in the intensity
spectrum, contributions from the tails of all
higher-lying peaks are also present and must be
taken into account.

CBSA methods generally use a fit of the
measured CB spectrum to the convolution of the
theoretical intensity I™ ((x, 0, «)) with a smearing
function W (6, «) according to the equation

1°(x) = / I'(x, 0,0) W(0, %) do da (1)

where x = E,/E, is a relative energy of the radi-
ated photon and W(0,a) describes the influence of
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Fig. 1. (a) Orientation of the primary electron momentum
relative to the crystallographic axes of the diamond lattice. (b,
¢) The sample of the theoretical spectra of the intensity and
polarization (full curves) and the Monte-Carlo-simulated ones
(dashed curves), illustrating the influence of the experimental
smearing factors.

different experimental factors on a CB spectral
shape, such as are an angular divergence of the
primary electrons, collimation of the secondary
photons, multiple scattering and imperfections of
the crystal, energy resolution of the experimental
setup, etc.

The smearing function is parameterized in an
analytical form involving several free parameters
that are adjusted during the fitting procedure.

Once the function W(6,«) has been fixed, the
polarization spectrum is determined according to
the expression

PP(x) = / PP (x, 0,0) 1™ (x, 0, )
x W(0,0)d0do/T7P(x) 2)

or

PP(x) = /2(1 — x)Y5(x, 0, )
x W (0, o) d6 do/ TP (x) 3)

that follows from the definitions of the CB
polarization [6,7] (see details in Appendices A
and B).

The quality of the fit to the intensity spectra and
therefore the accuracy of the parameters is
determined by the correctness of the smearing
model expressed by the analytical form of the
function W (6, ) and, with an appropriate choice,
can attain the level required to extract the
polarization PP with a precision of 0.01-0.02
[8,9]. Uncontrolled experimental factors such as an
unpredictable beam angular structure or crystal
radiation damage can modify the theoretical
functions P"(x, 0, 2) and I'"(x, 6, o) so that is not
possible to describe these distortions in a simple
analytical form of W (0,x) to obtain a good fit to
the intensity spectra. Achieving a good fit, how-
ever, 1s not sufficient in itself to demonstrate an
absolute precision on P®P at that order because
W (0, o) is not the only source of error in Eq. (2).
The choice of the atomic form factor (AFF) that
appears in the function I™(x, 6, ) can introduce
systematic errors of theoretical origin. We have
verified the achievable polarimetry precision and
corresponding impact of the relevant systematic
uncertainties using the methods presented below.

3. Method 1

Method 1 employs the Fourier convolution
theorem to extract the experimental smearing
function W from the measured and theoretical
intensity spectra [8]. The idea is based on an
assumption that all experimental factors, which



78 S. Darbinyan et al. | Nuclear Instruments and Methods in Physics Research A 554 (2005) 75-84

work to smooth out the sharp features seen in the
theoretical spectra can formally be represented by
a function which describes the distribution of the
measured CB photon energy about its ideal
theoretical value. Thus, Eq. (1) can be rewritten as

TP (x0) = / I™(x)g, W(x — x0) dx 4)

where 1"(x),, = I"(x,0,0) is defined as the
theoretical intensity spectrum for fixed values of
a crystal angles (0, «).

The validity of this idea rests upon a general
feature of the theoretical functions 7™ (x, 0, «) and
PM(x,0,0) that their dependence upon the crystal
orientation angles 6 and o is principally through
the value that they imply for the high-energy edge
of the primary coherent peak (see Fig. 1). That is,
for small changes in 0 and o, the principal effect on
I™(x,0,2) and P™(x,0,0) is simply to shift the
coherent peak by a small amount Ax. Thus, the
smearing over 6 and o that arises from the small
divergence of the electron beam and multiple-
scattering effects can effectively be described by a
convolution of the ideal theoretical spectra with a
sharply peaked empirical function W (Ax).

Similarly, Eq. (2) can be rewritten as

PG = [ POy 1000,
x W(x — xo) dx /TP (xy). (5)

Expression (4) is classified as Fredholm’s integral
equation of the first type with the kernel W(x —
xo) depending only on the difference of the
arguments and may be solved by means of Fourier
transforms [10]. Carrying out a Fourier transform
of both sides of Eq. (4) the Fourier spectrum of the
smearing function is given by

W) = (I () /1" (k) /v 2m (6)
where I°°(k),I"(k) are the Fourier spectra of
I%P(x) and I'"(x), respectively. Using the inverse
Fourier transformation one can reconstruct W(x).

Substituting the expression for W (x) into Eq. (4)
one may obtain the polarization spectrum:

P(x) = F~'[PU) I (k)] /1 (x) )

where PI (k) is the Fourier spectrum of the product
Pth (x)llh (X)

As can be seen, a final expression (7) uses the
Fourier decomposition amplitudes of the experi-
mental and theoretical spectra only. There is no
need of other information, which is a visible
advantage of this approach.

4. Method 2

Method 2 is based upon the complete theoretical
expression for PP(x, 0, ) (see Eq. (A.9)), supple-
mented with two corrections. The first one consists
in replacement of the ratio of coherent to
incoherent intensity I°°"(x,0,0)/I"™(x) by its
experimental value P = [°P(x)/I"SP(x) [11]
to account for the possible inconsistence between
the incoherent component in theoretical and
experimental spectra and the presence of extended
tails on the smearing functions (see Fig. 1):

2(1 — x)5(x, 0,00
I°hx,0,0)  pP+1

where I°“P(x) and I°"(x) are the normalized
coherent intensities of the experimental and
theoretical spectra. The second correction arises
from the need to account for the relatively strong
smearing of (022) lattice vector contribution to a
coherent intensity as compared to the weakly
distorted tails from higher-order lattice vector
recurrences 044, 066, 088 and others whose
contribution is peaking at the high-energy end of
the CB intensity spectrum. The correction factor is
defined as

C(x) = 1+ (I (x) = I°M) /157" (x) )

where I‘{"h(x) is the theoretical contribution of the
022 lattice vector. The factor C(x) is introduced
into the expressions for the shape functions (see
Egs. (A.5), (A.6) and (A.8)) as a weight of the 022
lattice vector.

The polarization in the vicinity of the primary
coherent peak is dominated by diminishing con-
tributions of the series 022, 044, 066, 088, while
the tails of the peaks appearing at the end of
the CB spectra give practically non-polarized
contribution at the intermediate x region and
may be neglected in 5 (Eq. (A.8)). With these

P(x,0,0) = (8)
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modifications, the expression given in Eq. (8) is
used for computing the polarization.

5. Scheme of methods tests

First of all the methods presented above were
examined using a variety of the Monte-Carlo
(MC) simulated CB spectra for primary peak
energies (X35, = 0.2 —0.5), for the conditions of
the y-2 beam line of a YERPHI’s eclectron
synchrotron (E. =4.5GeV, diamond crystal
thickness 72 um, beam effective divergence app.
0.1 mrad, collimation 0.15mrad (half-aperture). In
addition, CB spectra with higher degrees of
distortion were generated (collimation 0.3 mrad,
average beam divergence 0.3—0.5 mrad) in order to
provide more discriminating tests of the CBSA
methods presented.

As a first step, the coherent theoretical spectrum
has to be constructed corresponding with a given
experimental spectrum according to the expression
for I'™(x, 0, o) (see Eqs. (A.1)—(A.8)). The choice of
a crystal azimuthal angle o (0 is fixed to a 0.05 rad)
is defined by the energy of the (022) discontinuity
in the theoretical spectrum and may be approxi-
mated by the midpoint of the sloping right-hand
edge of the peak in the experimental intensity
spectrum (Fig. 1b). It is worth mentioning that
special care must be taken in the construction of
the theoretical spectrum for the case where strong
photon beam collimation (6 <m/E)) is applied, in
order to correctly include the contributions from
all reciprocal lattice vectors that satisfy the known
selection criteria [1].

The second step consists of the evaluation and
subtraction of a possible incoherent contamination
in the CB spectrum. Some level of incoherent
contamination is generally present under realistic
experimental conditions, in addition to the in-
trinsic incoherent component in the CB spectrum
itself. Possible sources of this contamination
include interactions of the tails of the electron
beam in the crystal mount material, tails of the
electron beam angular distribution, disoriented
inclusions in the diamond crystal, and crystal
radiation damage. The subtraction procedure is
based on the assumption that the experimental

effects which smear the theoretical spectrum to
produce the experimental one do not appreciably
affect the coherent integral over a wide region of
the spectrum, so that the integrals of /**P(x) and
I™(x) should be the same. Using this assumption it
is possible to remove the incoherent contamination
from the measured spectrum by subtracting the
incoherent bremsstrahlung spectrum of standard
shape rescaled such that the integrals of I®*P(x)
and I'™(x) are equal. As in the Monte-Carlo
simulations we used a full screening case [1] for
incoherent structure functions. To fix the normal-
ization of the experimental and theoretical spectra,
it is convenient to form ratios of spectral integrals
and compare them, rather than comparing the
integrals directly. For this purpose, two regions of
the CB spectrum are chosen for integration, the
first being the region around the primary peak
Xmin <X<Xy¢,) and the second being the plateau
region (0.65<x<0.8 in Fig. 1b). The coherent
component dominates in the first region, whereas
it contributes only 10-20% in the plateau, so that
the above-mentioned ratio has good sensitivity to
a small incoherent contamination The region of
the peaks associated with lattice vectors (022),
(044) and (066) in Fig. 1b is visibly distorted by
smearing effects and so is included in the
subsequent Fourier analysis, while the flat regions
are only weakly distorted and do not contain
significant information for this purpose.

Once the incoherent contamination has been
removed, the relation between the experimental
and theoretical intensity spectra, in analogy with
Eq. (4), is replaced by

19(0) = [ 100, W = 30) dy (10)

where I°*P, [N are the coherent intensities of the
experimental and theoretical spectra and it is
assumed that the function W x — xo) is the same
function as that in Eq. (4).

The Fourier transform was realized by means of
the Fast Fourier Transform (FFT) algorithm [12]
which requires N =2" point in the function
discrete presentation. Our choice of N = 64
spans the region of the (022), (044), (066) peaks.
Before submitting a function to Fourier analysis, a
statistical smoothing procedure was applied within
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the region of interest, which helped to control the
generation of large but statistically insignificant
high-frequency components in the decomposition
spectra. These procedures have been repeated for
seven types of AFFs in order to study the influence
of the form-factors on the extracted polarization.

6. Results and discussion

The MC-simulated CB spectra for I**P(x) and
P%P(x) and the corresponding results for polariza-
tion obtained with methods 1 and 2 are shown for

(a)

E.=4.5 GeV
100 F 6=50 mard
a=0.96°
6,=0.5 mard
- coll=0.3 mard
50

Ey (MeV)

Fig. 2. (a) The part of the simulated CB intensity spectrum at
E. =4.5GeV and x5, = 0.22 with the incoherent contam-
ination subtracted. (b) The polarization spectra: MC (full
curve), method 1 (dashed), method 2 (dot—dashed).

different peak energies in Figs. 2-4. A good
agreement is seen between MC and the results
from method 1 with an accuracy AP = 0.01 in the
region of Ax/x<0.6, reaching 0.02 at the flat ends
which are weakly distorted by the smearing factors
and have low significance in terms of figure of
Merit (IP?).

The results from method 2 agree as a whole
satisfactorily with MC. The agreement is good
above the primary peak energies x>0.3 and even
better than for method 1 on the left-hand side of
the primary peak. The agreement is somewhat
worse at low values of x when the crystal angle o
becomes comparable to the smearing angle Ao
(see Fig. 2). Even there, however, the observed

(a)
E.=4.5 GeV
6=50 mard
80 - 0=1.45°
G6¢=0.3 mard
coll=0.3 mard

Fig. 3. The same as in Fig. 2 for x3, = 0.3.
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Fig. 4. The same as in Fig. 2 for x3, = 0.5.

deviation from the MC data does not exceed
0.02-0.03 in the region of Ax/x<0.2. In the case of
the smaller collimation, method 2 reproduces the
MC data for P with an accuracy 0.01-0.02 in the
wide region (Ax/x<0.6) of the peak energies
0.2<x934)<0.5.

We have investigated the several sources of the
systematic uncertainties which have an impact on
a polarization calculation:

6.1. Choice of the atomic form-factors

The AFFs enter into any CB polarimetry
method which involve electromagnetic scattering
from an atomic target as a whole. Analyses of
experimental CB spectra for diamond and silicon
crystals [4,13] have shown that Hartree—Fock
(HF)-type form-factors give the best description
of the data. However, improving the precision in
the description of CB spectra may require further

refinements to these form-factors, which are
expected to be continuously improving on the
basis of faster computers and advances in atomic
theory. We have investigated the relative influence
of the different AFF choice on the polarization
calculated using CBSA methods. Fig. 5a shows the
part of a CB intensity spectrum around X3, =
0.22 measured by the 30 channel pair spectrometer
[14] and the corresponding polarization spectra
(Fig. 5¢) obtained for a few selected AFF models:
exponential, Molier, HF, Dirac-Slater wave
functions-based HF, relativistic HF and the
latest shell model-based HF one, respectively (see
Ref. [15a—f]).

An important result of this study is the high
degree of agreement between all polarization
spectra in the region of Ax/x<0.6 within the
tolerance of <0.02, which is also clearly confirmed
in the plot of the differences (Pi(x)— Pp—r(x))
(Fig. 5d), where Pp—r(x) is the result found using
the Doyle-Turner AFF [15¢]. The sensitivity to the
choice of AFF becomes more noticeable on the
right-hand side of the plots in Fig. 2. This may be
interpreted as a dominance of the (022) lattice
vector in the primary CB peak region and
difference in the dependence of AFFs presented
on the momentum transfer to the crystal, more
pronounced for the higher-order lattice vectors.

As is seen from Fig. 5c the data obtained are
divided into two groups by being closest each to
the other. The first group involves exponential and
Moliere AFFs while the second one contains the
others. Similar results were also obtained for the
CB peak 1 setting around x5, = 0.5.

6.2. Uncertainty in the peak energy

By varying the x5, position within a range of
5-10% for the theoretical spectrum construction,
we verified the method for sensitivity to errors in
the crystal angle settings. This variation was
chosen to be similar in size to the width of the
smearing function and is immediately responding
on a position shift of the smearing function
spectrum. This shift, however, has no visible
influence with an accuracy AP<0.005. The plot
of the smearing function W(x), superimposed by
Gaussian fit, is shown in Fig. 5b extracted from the
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Fig. 5. (a) The part of the experimental CB spectrum for the xy5,, = 0.3 and Ec = 3350 MeV. (b) The smearing function, fitted by
Gaussian. (c) The results of the polarization calculations within method 1 for the AFFs noted. (d) The difference of the polarization

data obtained with AFFs noted and Doyle-Turner’s one [15f].

experimental spectrum (see Fig. 5a). As seen from
the figure, W (x) is centered satisfactorily close to
zero, indicating the correctness of the value
assigned to x( 3.

6.3. Choice of widths for the shape analysis regions

The widths of the integration regions used for
the incoherent contamination correction were
varied to verify for systematics in the subtraction
procedure. Also, the size of the region used to
extract the smearing function was varied, and the
number of points used in the FFT was changed
from 64 to 128. None of these variations resulted

in changes in the polarization outside the tolerance
AP<0.005.

6.4. Effects from smoothing

For this study, the statistical errors on the
individual data points in the experimental spec-
trum were taken at the level of 5%. This statistical
error is high compared to the usual case of the CB
spectrum, but it presents a good test of smoothing
because it leads to large oscillations in the
extracted shape for W(x) unless smoothing is
applied. The results obtained show the possible
effect of a coherent peak’s shape, the most at its
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maximum with suppression in the calculated
polarization value up to 0.005, so this was applied
in a region where the spectrum is relatively flat.

7. Conclusion

As one may conclude, CBSA methods of
polarimetry are capable of determining beam
polarization with a precision level of 0.01-0.02
within the investigated CB peak energy range
X3 = 0.2-0.5. The extension of these techni-
ques to larger values of x without loss in accuracy
will require a more precise knowledge of the AFF
of carbon than has been used in the past. One way
of achieving this would be to measure the beam
polarization at a CB source using a direct
polarimetry method with a precision AP<0.02,
and simultaneously measuring the CB energy
spectrum [16].

Comparison between the direct and CBSA
results will lead to improvements in the determina-
tion of AFF of carbon in the momentum range
relevant to CBSA polarimetry. With this cross-
check, we claim, in combination with a direct
polarimetry technique, CBSA methods are an
essential tool for any CB facility with a need for
percent-level polarimetry.
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Appendix A

The CB’s weighted intensity 7" (x, 6, o) relates to
the bremmstrahlung cross-section da(x, 0, o) /dx as

I'"(x,0,0) = xd(da(x, 0, o) /dx (A.1)

where x = FE,/E. is the ratio of the radiated
photon energy to that of the incident electron, 6
and o are the azimuthal and polar angles defined
relative to the crystallographic axes as shown in
Fig. la. The intensity /' is defined as a sum of the
coherent (I°°") and incoherent (/™) components

of CB spectrum:
I"(x,0,0) = I°M(x, 0, ) + I'™(x), (A.2)

I, 0,0) = [1 + (1 — x)*1Y5(x, 0, 0)
—(2/3) (1 = x)5(x, 0,2), (A3)
x)lplnc
(A.4)

where the coherent structure functions (x, 0, o)
V5(x, 0,0) are defined as:

Ix) = [14+ (1= )W = 2/3)(1 -

i 0.2) = 2 '3 ISt LGt
g

(A.5)

(271}2

3 3 ISP e F(g?)

g
(92 + qz)(qu - 5)
gi

The incoherent structure functions y"(x), yr(x)
depending on the momentum transfer to the atom,
are described by different approximations [1].

The crystal lattice constant of diamond is
denoted by @ =922 in units of the electron
Compton wavelength, g is a vector belonging to
the crystal reciprocal lattice, g = sin(0)(g, cos « +
g3 sina) is the projection of g on the direction of
the incident electron, & = (mec?/2E:)x/(1 — x) is
the minimum momentum transfer allowed at a
given value of x, S(g) is the crystal structure factor,
A(g?) is the Debeye-Waller factor and F(g?) is the
AFF of carbon. The value for the linear polariza-
tion is expressed through a ratio of Y5 structure
function to the full intensity as

2(1 — x)Y5(x, 0,0)

lpg'xa s

(A.6)

PY(x,0,0) = A7
(x,0,2) (. 0.) (A7)
where structure function /5 is written as a
(27‘[) _
Y5(x, 0,0) = & Z IS(9))* e F(g?)

y [(95 — )Cos 20 + 2g,g; sin 20(]
gi
(A.8)
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Eq. (A.8) For the definition of polarization, see
Appendix B.

For the polarization calculation we also use a
corrected expression in the place of Eq. (A.7):

2(1 — 5(x, 0,0) B

I°"(x,0,0) p+1
where f = I°°" /'™ is the ratio of the coherent to
the incoherent CB components which can be
adjusted to account for small incoherent contam-
inations.

PU(x,0,0) = (A.9)

Appendix B

The CB polarization is defined as
Ii}_l _ Ihh 3 ](fh _ ]leloh

Jth - Jth
where I'" and I'" are the components of a
radiation intensity (/" = 1" 4 1 ‘t‘h) with the polar-
ization vector perpendicular (parallel) to the plane
Do x by (see Fig. 1).

Each polarization component may be addition-
ally decomposed into its coherent and incoherent
parts:

Iy =19} + 3. (B.2)

PU(x,0,0) = (B.1)

In analogy with the expression given in Eq. (B.1)
one may define an experimental polarization as
exp It‘e‘xp

PP(x) = = (B.3)

JeXp

where 177, 1| are the components of experimen-

tal intensity 1P =/ITP + I, which can be
expressed in terms of the theoretical ones accord-
ing to a linear smearing operator as:

I (x) = / I (x, 0,) W(0, ) 4 dex. (B.4)

With this definition and without use of a
‘factorization’ hypothesis [6,7] one may rewrite
Eq. (B.3) as

Ja® = 1w, %) do dx

P = 177 (x)

(B.5)

Taking into account Eq. (B.1) leads to the final
expression:

[(P™(x,0,0) I™(x, 0, ) W(0, ) d0 da

PP (x) = 00)

(B.6)
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