Exotic and excited-state radiative transitions in charmonium from lattice QCD

Christopher Thomas, Jefferson Lab

Hadron Spectroscopy Workshop, INT, November 2009

In collaboration with:
Jo Dudek, Robert Edwards, David Richards and the Hadron Spectrum Collaboration

Outline

- Introduction and motivation
- Method
- Result highlights and interpretations
- Conclusions

Charmonium radiative transitions

BABAR, Belle, BES, CLEO-c

Meson - Photon coupling

Broader Picture

Develop Lattice QCD Techniques

Test in the charmonium system

Apply to lighter mesons...

Photoproduction at GlueX

Exotic 1^{-+}?

For progress on the light meson spectrum see Jo Dudek's talk from Tuesday

Spectroscopy on the lattice

Calculate energies and matrix elements (Z) from correlation functions of meson interpolating fields

$$
O=\bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x)
$$

$$
\begin{aligned}
C(t)= & <0\left|O_{i}(t) O_{j}(0)\right| 0>\quad Z_{i}^{(n)} \equiv<n\left|O_{i}\right| 0> \\
= & \sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|O_{i}(0)\right| n><n\left|O_{j}(0)\right| 0> \\
& \xrightarrow[t \rightarrow \infty]{\longrightarrow} \frac{Z_{i}^{(0)} Z_{j}^{(0) *}}{2 E_{0}} e^{-E_{0} t}
\end{aligned}
$$

Variational Method

Consider a large basis of operators \rightarrow matrix of correlators $C_{i j}(t)$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$Z^{(n)}$ related to eigenvectors

Photocouplings on the Lattice

Calculate from 3-point correlators:

$$
C_{i j}\left(t_{f}, t_{,} t_{i}\right)=<0\left|O_{i}\left(t_{f}\right) \bar{\psi}(t) \gamma^{\mu} \psi(t) O_{j}\left(t_{i}\right)\right| 0>
$$

$$
\begin{array}{r}
\sim \sum_{n} \sum_{m}<0\left|O_{i}(0)\right| n><n\left|\bar{\psi} \gamma^{\mu} \psi\right| m><m\left|O_{j}(0)\right| 0> \\
\times e^{-E_{n}\left(t_{f}-t\right)} e^{-E_{m}\left(t-t_{i}\right)} /\left(2 E_{n} 2 E_{m}\right)
\end{array}
$$

Known from 2-point analysis

What we want: parameterize in terms of multipoles (\sim form factors) and known factors

Multipoles

$$
<n\left|\bar{\psi} \gamma^{\mu} \psi\right| m>\sim \sum_{k} K_{k, n, m}^{\mu}\left(\overrightarrow{p_{i}}, \overrightarrow{p_{f}}\right) F_{k, n, m}\left(Q^{2}, t\right)
$$

Multipoles

$$
J_{i}=J_{f} \otimes k \quad(k>0)
$$

Experimentally measure multipoles at $\mathrm{Q}^{2}=0$

Discrete momenta on the lattice

Charmonium radiative transitions

- Caveats:
- Quenched (no quark loops; no light quarks at all)
- One lattice spacing $\left(a_{t}^{-1}=6.05 \mathrm{GeV}\right)$
- One volume ($\mathrm{L}_{\mathrm{s}} \approx 1.2 \mathrm{fm}$)
- Only connected diagrams

Only a selection; results and details in Dudek, Edwards \& CT, PR D79 094504 (2009)

Exotic 1^{++}- Vector 1^{--}

Spectrum analysis: $1^{++} \eta_{\mathrm{c} 1}$ state found at $4300(50) \mathrm{MeV}$

Exotic quantum numbers - can't be fermion-antifermion pair

Can't be a molecular/multi-quark state in quenched lattice calc.
\rightarrow Strongly suggests a hybrid

What about radiative transitions?

Exotic 1^{-+}- Vector 1^{--}

M_{1} multipole dominates

Same scale as many measured conventional charmonium transitions

BUT very large for an M_{1} transition

$$
\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}
$$

- Usually $\mathrm{M}_{1} \rightarrow$ spin flip (e.g. $\left.{ }^{3} \mathrm{~S}_{1} \rightarrow{ }^{1} \mathrm{~S}_{0}\right) \rightarrow 1 / \mathrm{m}_{\mathrm{c}}$ suppression
- Spin-triplet hybrid \rightarrow extra gluonic degrees of freedom
$\rightarrow \mathrm{M}_{1}$ transition without spin flip \rightarrow not suppressed

Exotic 1^{-+}- Vector 1^{--}

- Usually $\mathrm{M}_{1} \rightarrow$ spin flip (e.g. $\left.{ }^{3} \mathrm{~S}_{1} \rightarrow{ }^{1} \mathrm{~S}_{0}\right) \rightarrow 1 / \mathrm{m}_{\mathrm{c}}$ suppression
- Spin-triplet hybrid \rightarrow extra gluonic degrees of freedom
$\rightarrow \mathrm{M}_{1}$ transition without spin flip \rightarrow not suppressed

Tensor 2^{++}- Vector 1^{--}

- Lattice: discrete set of allowed momenta
- Can't calculate at $\mathrm{Q}^{2}=0$ and so extrapolate:

$$
F_{k}\left(Q^{2}\right)=F_{k}(0)\left(1+\lambda Q^{2}\right) e^{-\frac{Q^{2}}{16 \beta^{2}}}
$$

Tensor 2^{++}- Vector 1^{--}

$$
E_{1}, M_{2}, E_{3}
$$

PDG08: 406(31) keV

Quark models $\left(1^{3} \mathrm{P}_{2}\right)$
~ 290-420 keV
$\mathrm{a}_{2}=\mathrm{M}_{2} / \sqrt{ }\left(\mathrm{E}_{1}{ }^{2}+\mathrm{M}_{2}{ }^{2}+\mathrm{E}_{3}{ }^{2}\right)$
PDG08: -0.13(5)
CLEO: -0.079(19)
[CLEO arXiv:0910.0046]

- Same hierarchy as expected: $\left|\left|E_{1}(0)\right|>\left|M_{2}(0)\right| \gg\right| E_{3}(0) \mid$
- Ratio $\left|M_{2} / E_{1}\right|$ is considerably larger than experiment

Tensor 2^{++}- Vector 1^{--}

$$
E_{1}, M_{2}, E_{3}
$$

Completely different hierarchy! $\quad\left|\mathrm{E}_{3}(0)\right|>\left|\mathrm{M}_{2}(0)\right|,\left|\mathrm{E}_{1}(0)\right|$

Tensor 2^{++}- Vector 1^{--}

$$
E_{1}, M_{2}, E_{3}
$$

Quark models $\left(2^{3} \mathrm{P}_{2}\right)$

~ 50 - 80 keV

Reverted to expected hierarchy: $\left|E_{1}(0)\right|>\left|M_{2}(0)\right| \gg\left|E_{3}(0)\right|$

Tensor 2^{++}- Vector 1^{--}

Interpretation: single quark transition model
In general: $J_{i}=J_{f} \otimes k \quad(k>0)$

$$
E_{1}, M_{2}, E_{3}(k=1,2,3)
$$

If only a single quark is involved $\left({ }^{3} \mathrm{P}_{2} \rightarrow{ }^{3} \mathrm{~S}_{1}\right)$:

$$
\begin{aligned}
& j=3 / 2 \rightarrow j=1 / 2 \\
& k=1,2 \text { only and } E_{3}=0 \\
& \left|E_{1}(0)\right|>\left|M_{2}(0)\right| \gg\left|E_{3}(0)\right|
\end{aligned}
$$

If instead tensor is ${ }^{3} \mathrm{~F}_{2}\left({ }^{3} \mathrm{~F}_{2} \rightarrow{ }^{3} \mathrm{~S}_{1}\right)$:

$$
\begin{aligned}
& j=5 / 2 \rightarrow j=1 / 2 \\
& k=2,3 \text { only and } E_{1}=0 \\
& \left|E_{3}(0)\right|>\left|M_{2}(0)\right| \gg\left|E_{1}(0)\right|
\end{aligned}
$$

Tensor 2^{++}- Vector 1^{--}

Interpretation: single quark transition model

$$
\begin{gathered}
\text { In general: } J_{i}=J_{f} \otimes k(k>0) \\
\text { Interpretation: } \\
\chi_{c 2}-1^{3} P_{2} \\
\chi_{c 2}^{\prime}-1^{3} F_{2} \\
\chi_{c 2}^{\prime \prime}-2^{3} P_{2} \\
\text { If ins } \\
\\
\begin{array}{l}
\text { Supported by spectrum analysis } \\
\left|E_{3}(0)\right|>\left|M_{2}(0)\right| \gg\left|E_{1}(0)\right|
\end{array}
\end{gathered}
$$

Tensor 2^{++}- Vector 1^{--}

Belle [PRL 96082003 (2006)]

Vector 1-- Pseudoscalar 0+

Spectrum results [PR D77 034501 (2008) , PR D78 094504 (2008)]:

Level	Mass $/ \mathrm{MeV}$	Suggested state	Model assignment
0	$3106(2)$	J / ψ	$1^{3} S_{1}$
1	$3746(18)$	$\psi^{\prime}(3686)$	$2^{3} S_{1}$
2	$3846(12)$	$\psi_{3}\left(3^{--}\right)$	lattice artifact
3	$3864(19)$	$\psi^{\prime \prime}(3770)$	$1^{3} D_{1}$
4	$4283(77)$	$\psi\left(4040^{\prime}\right)$	$3^{3} S_{1}$
5	$4400(60)$	Y	hybrid

Vector 1^{--}- Pseudoscalar 0^{-+}

Only M_{1}

Γ / keV	Lattice	Exp.	Barnes, Godfrey, 'NR'	Swanson 'GI'	Eichten et. al.
$J / \psi \rightarrow \eta_{c} \gamma$	2.51(8)	1.85(29) (CLEO-c)	2.9	2.4	1.92
$\psi^{\prime} \rightarrow \eta_{c} \gamma$	0.4(8)	$\begin{aligned} & 0.95(16) \text { (PDG08) } \\ & 1.37(20) \text { (CLEO-c) } \end{aligned}$	4.6, 9.7	9.6	0.91

Vector 1-- - Pseudoscalar 0-+

Only M_{1}

- spin flip ($\sim 1 / m_{c}$) gives suppression
- ψ^{\prime} is $2^{3} \mathrm{~S}_{1} \rightarrow 1^{1} \mathrm{~S}_{0}$ - further suppressed

Γ / keV	Lattice	Exp.	Barnes, Godfrey, Swanson 'NR'	Eichten et. al.	
$J / \psi \rightarrow \eta_{c} \gamma$	$2.51(8)$	$1.85(29)($ CLEO-c)	2.9	2.4	1.92
$\psi^{\prime} \rightarrow \eta_{c} \gamma$	$0.4(8)$	$0.95(16)($ PDG08 $)$ $1.37(20)($ CLEO-c)	$4.6,9.7$	9.6	0.91

Vector 1- - Pseudoscalar 0+

Loops

Li \& Zhao [PL B670 55 (2008)]:
loop contributions in vector - psuedoscalar transitions

\rightarrow Large loop contrib ($\sim 10 \mathrm{keV}$) to $\psi^{\prime} \rightarrow \eta_{c} \gamma$
Interferes with $\sim 10 \mathrm{keV}$ bare amp. $\rightarrow \sim 1 \mathrm{keV}$ (in line with experiment)
But no room for large loop contrib with $0.4(8) \mathrm{keV}$ from quenched lattice
Actually loops calc has uncertainties from couplings an phases E.g. use $\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right) \sim 800 \mathrm{keV}$ for $g_{D^{*} D \gamma}$ c.f. $\mathrm{QM} \approx 30 \mathrm{keV}$
\rightarrow Not incompatible with lattice results

Vector 1-- Pseudoscalar 0+

Only M_{1}

Quark model: $1^{3} D_{1} \rightarrow 1^{1} S_{0}$ has same leading Q^{2} behaviour as $2^{3} S_{1} \rightarrow 1^{1} S_{0}$

Vector 1^{--}- Pseudoscalar 0^{-+}

Only M_{1}

Much larger than other $1^{-} \rightarrow 0^{+} M_{1}$ trans

Spectrum analysis suggests a vector hybrid (spin-singlet)

Analogous to 1^{+} hybrid to vector trans: M_{1} with no spin flip
c.f. flux tube model $30-60 \mathrm{keV}$

Scalar 0^{++}- Vector 1^{--}

Scalar 0^{++}- Vector 1^{--}

Γ / keV	Lattice	Exp. (PDG08)	Barnes, Godfrey, Swanson 'NI'	
$\chi_{c 0} \rightarrow J / \psi\left(1^{3} S_{1}\right) \gamma$	$199(6)$	$131(14)$	152	114
$\psi^{\prime}\left(2^{3} S_{1}\right) \rightarrow \chi_{c 0} \gamma$	$26(11)$	$30(2)$		Eichten et. al.
$\psi^{\prime \prime}\left(1^{3} D_{1}\right) \rightarrow \chi_{c 0} \gamma$	$265(66)$	$199(26)$	43	120,105
$\psi^{\prime \prime}\left(3^{3} S_{1}\right) \rightarrow \chi_{c 0} \gamma$			403	46,38
$Y \rightarrow \chi_{c 0} \gamma$	$\lesssim 20$		0.27	0.63

Summary and Outlook

Charmonium Summary

- Method successful: first calc. of excited meson rad. trans. on lattice
- Hybrid photocoupling is large: $\Gamma\left(\eta_{c 1} \rightarrow J / \psi \gamma\right) \sim 100 \mathrm{keV}$
- M_{1} transitions: $\psi \longrightarrow \eta_{c} \gamma$
- Non-exotic vector hybrid candidate $\Gamma\left(Y \rightarrow \eta_{c} \gamma\right)=42(18) \mathrm{keV}$
- $\mathrm{E}_{1}, \mathrm{M}_{2}, \mathrm{E}_{3}$ multipoles; $2^{3} \mathrm{P}_{2}, 1^{3} \mathrm{~F}_{2}$ states in $\chi_{c 2} \rightarrow J / \psi \gamma$
- Comparison with quark models

Outlook

- Systematically improvable
- Apply to lighter mesons (unquenched calc.)

