Exotic and excited-state radiative transitions in charmonium from lattice QCD

Christopher Thomas, Jefferson Lab

Hadron Spectroscopy Workshop, INT, November 2009

In collaboration with: Jo Dudek, Robert Edwards, David Richards and the *Hadron Spectrum Collaboration*

Outline

- Introduction and motivation
- Method
- Result highlights and interpretations
- Conclusions

Charmonium radiative transitions

BABAR, Belle, BES, CLEO-c

Meson – Photon coupling

Broader Picture

Develop Lattice QCD Techniques

Test in the charmonium system

Apply to lighter mesons...

Photoproduction at GlueX

Exotic 1⁻⁺?

For progress on the light meson spectrum see Jo Dudek's talk from Tuesday

Spectroscopy on the lattice

Calculate energies and matrix elements (Z) from correlation functions of meson interpolating fields

$$O = \bar{\psi}(x) \Gamma_i \overleftrightarrow{D}_j \overleftrightarrow{D}_k \dots \psi(x)$$

Variational Method

Consider a large basis of operators \rightarrow matrix of correlators $C_{ii}(t)$

Generalised eigenvector problem:

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Eigenvalues \rightarrow energies

$$\lambda^{(n)}(t) \rightarrow e^{-E_n(t-t_0)}$$
 (t>>t_o)

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$\Omega^{(n)} \sim \sum_i v_i^{(n)} O_i$$

Z⁽ⁿ⁾ related to eigenvectors

Photocouplings on the Lattice

Calculate from 3-point correlators:

$$C_{ij}(t_f, t, t_i) = <0|O_i(t_f) \ \overline{\psi}(t)\gamma^{\mu}\psi(t) \ O_j(t_i)|0>$$

$$\sim \sum_{n} \sum_{m} < 0 |O_{i}(0)|n > < n |\bar{\psi}\gamma^{\mu}\psi|m > < m |O_{j}(0)|0 > \\ \times e^{-E_{n}(t_{f} - t)} e^{-E_{m}(t - t_{i})} / (2E_{n}2E_{m})$$

Known from 2-point analysis

What we want: parameterize in terms of multipoles (~ form factors) and known factors

Multipoles

Experimentally measure multipoles at Q² = 0

Discrete momenta on the lattice

Charmonium radiative transitions

• Caveats:

- Quenched (no quark loops; no light quarks at all)
- One lattice spacing (a_t⁻¹ = 6.05 GeV)
- One volume ($L_s \approx 1.2$ fm)
- Only connected diagrams

Only a selection; results and details in Dudek, Edwards & CT, PR **D79** 094504 (2009)

Also: Dudek et al PR D77 034501 (2008); Dudek & Rrapaj PR D78 094504 (2008)

Exotic 1⁻⁺ – Vector 1⁻⁻

Spectrum analysis: 1⁻⁺ η_{c1} state found at 4300(50) MeV

Exotic quantum numbers – can't be fermion-antifermion pair

Can't be a molecular/multi-quark state in quenched lattice calc.

→ Strongly suggests a hybrid

What about radiative transitions?

Exotic 1⁻⁺ – Vector 1⁻⁻

- Usually $M_1 \rightarrow spin flip$ (e.g. ${}^{3}S_1 \rightarrow {}^{1}S_0$) $\rightarrow 1/m_c$ suppression
- Spin-triplet hybrid \rightarrow extra gluonic degrees of freedom

 \rightarrow M₁ transition without spin flip \rightarrow not suppressed

Exotic 1⁻⁺ – Vector 1⁻⁻

- Usually $M_1 \rightarrow spin flip$ (e.g. ${}^{3}S_1 \rightarrow {}^{1}S_0$) $\rightarrow 1/m_c$ suppression
- Spin-triplet hybrid → extra gluonic degrees of freedom

 \rightarrow M₁ transition without spin flip \rightarrow not suppressed

- Lattice: discrete set of allowed momenta
- Can't calculate at $Q^2 = 0$ and so extrapolate:

$$F_k(Q^2) = F_k(0) \left(1 + \lambda Q^2\right) e^{-\frac{Q^2}{16\beta^2}}$$

• Same hierarchy as expected:

 $|E_1(0)| > |M_2(0)| >> |E_3(0)|$

• Ratio $|M_2/E_1|$ is considerably larger than experiment

Completely different hierarchy!

 $|E_3(0)| > |M_2(0)|$, $|E_1(0)|$

Reverted to expected hierarchy: $|E_1(0)| > |M_2(0)| >> |E_3(0)|$

Interpretation: single quark transition model

In general: $J_i = J_f \otimes k$ (k > 0) E₁, M₂, E₃ (k = 1,2,3)

If only a single quark is involved $({}^{3}P_{2} \rightarrow {}^{3}S_{1})$: $j = 3/2 \rightarrow j = 1/2$ k = 1,2 only and $E_{3} = 0$ $|E_{1}(0)| > |M_{2}(0)| >> |E_{3}(0)|$

If instead tensor is ${}^{3}F_{2} ({}^{3}F_{2} \rightarrow {}^{3}S_{1})$: $j = 5/2 \rightarrow j = 1/2$ k = 2,3 only and $E_{1} = 0$ $|E_{3}(0)| > |M_{2}(0)| >> |E_{1}(0)|$

Interpretation: single quark transition model

Spectrum results [PR **D77** 034501 (2008), PR **D78** 094504 (2008)]:

Level	Mass $/ MeV$	Suggested state	Model assignment
0	3106(2)	J/ψ	$1^{3}S_{1}$
1	3746(18)	ψ^{\prime} (3686)	$2^{3}S_{1}$
2	3846(12)	$\psi_{3}(3^{})$	lattice artifact
3	3864(19)	$\psi^{\prime\prime}$ (3770)	$1 {}^{3}D_{1}$
4	4283(77)	ψ ('4040')	$3^{3}S_{1}$
5	4400(60)	Y	hybrid

Γ / keV	Lattice	Exp.	Barnes, Goo 'NR'	frey, Swanson 'GI'	Eichten et. al.		
$J/\psi ightarrow \eta_c \gamma$	2.51(8)	1.85(29) (CLEO-c)	2.9	2.4	1.92		
$\psi' ightarrow \eta_c \gamma$	0.4(8)	0.95(16) (PDG08) 1.37(20) (CLEO-c)	4.6, 9.7	9.6	0.91		
[CLEO PRL 102 011801 (2009)]							

Γ / keV	Lattice	Exp.	Barnes, Goo 'NR'	dfrey, Swanson 'GI'	Eichten et. al.		
$J/\psi ightarrow \eta_c \gamma$	2.51(8)	1.85(29) (CLEO-c)	2.9	2.4	1.92		
$\psi' ightarrow \eta_c \gamma$	0.4(8)	0.95(16) (PDG08) 1.37(20) (CLEO-c)	4.6, 9.7	9.6	0.91		
[CLEO PRL 102 011801 (2009)]							

Loops

Li & Zhao [PL **B670** 55 (2008)]: loop contributions in vector – psuedoscalar transitions

ightarrow Large loop contrib (~10 keV) to $~\psi^{\prime}
ightarrow \eta_{c} \gamma$.

Interferes with ~10 keV bare amp. \rightarrow ~1 keV (in line with experiment)

But no room for large loop contrib with 0.4(8) keV from quenched lattice

Actually loops calc has uncertainties from couplings an phases E.g. use $\Gamma(D^{*0} \rightarrow D^0 \gamma) \sim 800 \text{ keV}$ for $g_{D^*D\gamma}$ c.f. QM $\approx 30 \text{ keV}$

 \rightarrow **Not** incompatible with lattice results

Quark model: $1^{3}D_{1} \rightarrow 1^{1}S_{0}$ has same leading Q² behaviour as $2^{3}S_{1} \rightarrow 1^{1}S_{0}$

Only M₁

 $Y_{hyb?} \rightarrow \eta_c \gamma$ 0.4 $\Gamma(Y \rightarrow \eta_c \gamma) = 42(18) \text{ keV}$ $p_{\psi} = 000$ 0.3 $\hat{V}(Q^2)$ 0.2 0.1 0 $4 O^2/GeV$ 2 0 3 1

Much larger than other $1^{--} \rightarrow 0^{-+} M_1$ trans

Only M₁

Spectrum analysis suggests a vector hybrid (spin-singlet)

Analogous to 1⁻⁺ hybrid to vector trans: M₁ with no spin flip

c.f. flux tube model 30 – 60 keV

Summary and Outlook

Charmonium Summary

- Method successful: first calc. of excited meson rad. trans. on lattice
- Hybrid photocoupling is large: $\Gamma(\eta_{c1}
 ightarrow J/\psi\gamma) \sim 100 \; {
 m keV}$
- M $_1$ transitions: $\psi
 ightarrow \eta_c \gamma$
- Non-exotic vector hybrid candidate $\Gamma(Y \rightarrow \eta_c \gamma) = 42(18)$ keV
- + E₁, M₂, E₃ multipoles; 2³P₂, 1³F₂ states in $\chi_{c2}
 ightarrow J/\psi\gamma$
- Comparison with quark models

Outlook

- Systematically improvable
- Apply to lighter mesons (unquenched calc.)