# Unitarization Methods in meson-meson scattering and decays 

José R. Peláez

## OUTLINE

- Introduction
- 2-body unitarization methods.
\(\left.\begin{array}{c|l}From <br>
more rigorous <br>

to rougher\end{array}\right\}\) BUT $\quad$| From |
| :--- |
| complicated (unfeasible sometimes) |
| to simpler (but very successful) |

## Examples:

IAM single channel
IAM coupled channels
Chiral unitary approach $\mathrm{O}\left(\mathrm{p}^{4}\right)$ Chiral unitary approach $O\left(p^{2}\right)$
$\pi, \mathrm{K}, \eta$ Goldstone Bosons
of the spontaneous chiral symmetry breaking $\mathrm{SU}\left(\mathrm{N}_{\mathrm{f}}\right)_{\mathrm{V}} \times \mathrm{SU}\left(\mathrm{N}_{\mathrm{f}}\right)_{\mathrm{A}} \rightarrow \mathrm{SU}\left(\mathrm{N}_{\mathrm{f}}\right)_{\mathrm{V}}$


ChPT is the most general expansion in energies of a lagrangian made only of pions, kaons and etas compatible with the QCD symmetry breaking

Leading order parameters: breaking scale $f_{0}$ and masses
At 1-loop, QCD dynamics encoded in chiral parameters: $L_{1} \ldots L_{8}$ Determined from EXPERIMENT leading $1 / N_{c}$ behavior known from QCD

ChPT is the QCD Effective Theory MODEL INDEPENDENT but limited to low energies

- Full one-loop calculation:
$\mathrm{t}_{2}(\mathrm{~s}, \mathrm{t}, \mathrm{u})$
$\mathrm{O}\left(\mathrm{p}^{2}\right)$

$\mathrm{f}_{\pi}, \mathrm{M}_{\pi}$ set the scale

$$
\mathrm{t}_{4}(\mathrm{~s}, \mathrm{t}, \mathrm{u})=\mathrm{O}\left(\mathrm{p}^{4}\right)
$$



Loops with $\mathrm{O}(\mathrm{p} 2)$ vertices. Divergent. Need REGULARIZATION,scale $\mu$, ( or cutoff or whatever).
Low Energy Constants (LECS) $\mathrm{L}_{\mathrm{i}}$
Contain Underlying dynamics, QCD in this case
Absorb all loop divergences $\rightarrow$ regularization $\rightarrow$
LECS depend on Regulator

When calculation fully RENORMALIZED
finite up to a given order in energy/momenta, regulator dependencen disappears from observables

## Elastic two-body Unitarity Constraints: One channel

## Partial wave UNITARITY

(On the real axis above threshold)


Different unitarization methods are just different approximations to $\operatorname{Re}(1 / t)$

2-body unitarization methods.
From
more rigorous
to rougher

BUT $\downarrow$| From |
| :---: |
| com |
| to sim |

Examples:

IAM single channel
IAM coupled channels
Chiral unitary approach $O\left(p^{4}\right)$
Chiral unitary approach $O\left(p^{2}\right)$

Of course, there are other variations,

Partial wave unitarity
(On the real axis above threshold)

$$
\begin{gathered}
\operatorname{Im} t=\sigma|t|^{2} \\
\operatorname{Im} \frac{1}{t}=-\sigma \\
1
\end{gathered}
$$


exactly unitary !!
1

$$
t \approx \frac{t_{2}^{2}}{t_{2}-\operatorname{Ret}_{4}-i \sigma t_{2}^{2}}
$$

ChPT $=$ series in $\mathrm{p}^{2}$ $t=t_{2}+t_{4} \ldots$】
exact perturbative unitarity
If $\mathrm{t}_{4}$ defined to satisfy
$\operatorname{Im} t_{4}=\sigma\left|t_{2}\right|^{2}$ $\qquad$
provides ...
$\operatorname{Re} t^{-1} \approx t_{2}^{-2}\left(t_{2}-\operatorname{Re} t_{4}+\ldots\right)$

Fit $\pi \pi$ and $\pi$ K ELASTIC scattering data


Preliminary Update: J. Nebrera and JRP '09

๑ We have just seen that, for physical s

$$
\operatorname{Im} \frac{1}{t}=-\sigma \quad \text { and } \quad \operatorname{Im} t_{4}=\sigma t_{2}^{2}
$$

o Define $G \equiv \frac{t_{2}{ }^{2}}{t}$,

$$
\operatorname{Im} t_{4}=\sigma t_{2}^{2}=-\operatorname{Im} G
$$

- Write dispersion relations for $G$ and $t_{4}$



## Up to NLO ChPT

Opposite to each other
$P C$ is $O\left(p^{6}\right)$ and we neglect it or use ChPT
All together...we find AGAIN

## - EXTREMELY SIMPLE

- Unitarity + Chiral Low energy expansion
- Systematic extension to higher orders
- Originally obtained from dispersion relation This allows us to go to the complex plane.

o Dynamically Generates Poles of Resonances: $\mathrm{f}_{0}(600)$ or " $\sigma^{\prime}$, $\rho(770), \kappa(800), K^{*}(892)$,

Dobado, Pelaez '96
$\mathrm{f}_{0}(600)$ pole: $440-\mathrm{i} 245 \mathrm{MeV}$



QCD LINK: Scalars in Unitarized Chiral Perturbation Theory

## IAM, one channel:

- Simultaneously resonances and low energy meson-meson scattering with parameters compatible with ChPT


## Large $\mathrm{N}_{\mathrm{c}}$ expansion

We cannot obtain the $L_{i}$ from QCD, BUT their $1 /$ Nc expansion, is known and Model Independent

| $\left(\times 10^{-3}\right)$ | ChPT <br> $\left(\mu=M_{\mathrm{o}}\right)$ | IAM fits | Large $\mathrm{N}_{\mathrm{c}}$ <br> SCALING |
| :---: | :---: | :---: | :---: |
| $2 \mathrm{~L}_{1}-\mathrm{L}_{2}$ | $-0.6 \pm 0.6$ | $0.0 \pm 0.2$ | $\mathrm{O}(1)$ |
| $\mathrm{L}_{2}$ | $1.4 \pm 0.3$ | $1.2 \pm 0.1$ | $\mathrm{O}\left(\mathrm{N}_{\mathrm{c}}\right)$ |
| $\mathrm{L}_{3}$ | $-3.5 \pm 1.1$ | $-2.79 \pm 0.14$ | $\mathrm{O}\left(\mathrm{N}_{\mathrm{c}}\right)$ |
| $\mathrm{L}_{4}$ | $-0.3 \pm 0.5$ | $-0.36 \pm 0.17$ | $\mathrm{O}(1)$ |
| $\mathrm{L}_{5}$ | $1.4 \pm 0.5$ | $1.4 \pm 0.5$ | $\mathrm{O}\left(\mathrm{N}_{\mathrm{c}}\right)$ |
| $\mathrm{L}_{6}$ | $-0.2 \pm 0.3$ | $0.07 \pm 0.08$ | $\mathrm{O}(1)$ |
| $\mathrm{L}_{7}$ | $-0.4 \pm 0.2$ | $-0.44 \pm 0.15$ | $\mathrm{O}(1)$ |
| $\mathrm{L}_{8}$ | $0.9 \pm 0.3$ | $0.8 \pm 0.2$ | $\mathrm{O}\left(\mathrm{N}_{\mathrm{c}}\right)$ |

The qqbar meson masses $\mathrm{M}=\mathrm{O}(1)$ and their decay constants $\mathrm{f}=\mathrm{O}\left(\mathrm{V}_{\mathrm{c}}\right)$
Pions, kaons and etas states:

$$
M \approx O(1), \Gamma \approx O\left(1 / N_{c}\right)
$$

Our IAM ChPT amplitudes do not have any other parameter hiding Nc dependence like cutoffs, subtractions, etc...

We can thus study the Nc scaling of the resonances

LIGHT VECTOR MESONS
qqbar states:
$M \approx O(1), \Gamma \approx O\left(1 / N_{c}\right)$
The $\rho(770)$



The IAM generates the expected $\mathbf{N}_{\mathbf{c}}$ scaling of established qq states JRP, Phys.Rev.Lett. 92:102001,2004

The $\mathrm{K}^{*}(892)$


The $\sigma(\mu=770 \mathrm{MeV})$



The $k(u=500 \mathrm{MeV})$



## Similar results follow for the $\mathrm{f}_{0}(980)$ and $\mathrm{a}_{0}(980)$

Complicated by the presence of THRESHOLDS and except in a corner of parameter space for the $a_{0}(980)$

## The sigma:

Large Nc behavior of UNITARIZED $\pi \pi \rightarrow \pi \pi$ TWO LOOP ChPT


The $\mathrm{f}_{0}(600)$ still does NOT behave DOMINANTLY as quark-antiquark
BUT, from $\mathrm{Nc}>8$ or 10 , the $\mathrm{f}_{0}(600)$ we might be seeing a quark-antiquark subdominant component whose large Nc mass is $\geq 1 \mathrm{GeV}$

- The LATTICE provides rigorous and systematic QCD results in terms of quarks and gluons with growing interest in scattering and the scalar sector.

Caveat: small, realistic, quark masses are hard to implement.

- Anthropic considerations...

ChPT provides the correct QCD dependence of quark masses as an expansion...

We can study the scalars in Unitarized ChPT for larger quark masses (chiral extrapolation) and provide a reference for lattice studies


To follow the position relative to threshold: normalize to $\mathrm{m}_{\pi}$ units

The rho: Conjugate poles reach the real axis AT THRESHOLD:

- one pole in the $1^{\text {st }}$ sheet (bound state).
- another in the $2^{\text {nd }}$ sheet in almost the same position


The sigma: 1) Conjugate poles reach the real axis BELOW threshold:
2) TWO real POLES on the $2^{\text {nd }}$ sheet: "Splitting" typical of scalars.
3) One moves towards threshold until it jumps to the 1 st sheet. The other remains on the $2^{\text {nd }}$ sheet in ASYMMETRIC position

If very asymmetric: sizable "molecular" component


There is a "non-analyticity" in the sigma $m_{\pi}$ dependence.

The rho mass grows slower than sigma

For a narrow vector particle (like the rho) the decay width is given by

We can calculate the width variation due to phase space reduction and compare with our results. The difference gives the dependence of the coupling constant on the pion mass


Width behavior explained by phase space
$\rho \rightarrow \pi \pi$ coupling almost
independent of $m_{\pi}$
(assumption in some lattice calculations)

It does not follow the phase space decrease of a Breit-Wigner:


$$
\Gamma_{\sigma}=\frac{g^{2}|\vec{p}|}{8 \pi M_{\sigma}}
$$

Very bad approximation for a wide resonance as the sigma
g dependence on $\mathrm{m}_{\pi}$

The dynamics of the sigma decay depends strongly on the pion(quark) mass (Recall that some pion-pion vertices in ChPT depend on the pion mass).


## CAUTION!!!

## We give POLE MASS in complex plane

Lattice caveats:
Improved actions,
Lattice spacing...
Finite volume...
WIDTHLESS rho

The best would be to use ChPT on the lattice....future work


AGAIN CAUTION!!!
We give POLE MASS
in complex plane + usual lattice caveats

IMPORTANT REMARK Extrapolations should take care of known scalar mass "splitting" non-analyticity

## QCD LINK: Scalars in Unitarized Chiral Perturbation Theory

## IAM, one channel:

- Simultaneously resonances and low energy meson-meson scattering with parameters compatible with ChPT
$\mathbf{N}_{\underline{c}}$ behavior of light resonances
- quark-antiquark remarkably good for vectors
- 

SCALARS predominantly NOT quark-antiquark states
SUBDOMINANT quark-antiquark component around 1.1 GeV . (Suggests mixing with heavier ordinary scalar nonet)

Quark mass dependence: lattice connection

- Good agreement for $\rho$. Coupling independence.
- Two mass branches for sigma

2-body unitarization methods.

| From <br> more rigorous <br> to rougher | BUT |
| :---: | :---: |
| From <br> complicated (unfeasible sometimes) <br> to simpler <br> (but very successful) |  |

## Examples:

## IAM single channel IAM coupled channels

Chiral unitary approach $O\left(p^{4}\right)$ Chiral unitary approach $\mathrm{O}\left(\mathrm{p}^{2}\right)$

Of course, there are other variations,

Partial wave unitarity
(On the real axis above all thresholds)

$$
\begin{gathered}
\operatorname{Im} T=T \Sigma T^{*} \\
\boldsymbol{I} \\
\operatorname{Im} T^{-1}=-\Sigma
\end{gathered}
$$

1

ChPT = series in $\mathrm{p}^{2}$ $T=T_{2}+T_{4} \cdots$ $\tau$
perturbative unitarity

$$
\operatorname{Im} T_{4}=T_{2} \Sigma T_{2}
$$

provides ....

$$
T \approx\left(\operatorname{Re} T^{-}-i \Sigma\right)^{-1} \quad \operatorname{Re} T^{-1} \approx T_{2}^{-1}\left(T_{2}-\operatorname{Re} T_{4}+\ldots\right) T_{2}
$$

exactly unitary !! -

$$
T=T_{2}\left(T_{2}-\operatorname{Re} T_{4}-i T_{2} \Sigma T_{2}\right)^{-1} T_{2}
$$

To the DATA !!
Coupled channel IAM

$$
T \approx T_{2}\left(T_{2}-T_{4}\right)^{-1} T_{2}
$$

## One-loop ChPT IAM fit to meson-meson scattering

 (+3\% syst.)

- With the full one-loop $\operatorname{SU}(3)$ unitarized ChPT, we GENERATE, the following resonances, not present in the ChPT Lagrangian, as poles in the second Riemann sheet


K


$\mathrm{a}_{0}$

without a priori assumptions on on their existence or nature
J.R.P, hep-ph/0301049. AIP Conf.Proc.660:102-115,2003 Brief review: Mod.Phys.Lett.A19:2879-2894,2004


- MINUIT fit :
- Incompatible sets of Data.

Customarily add systematic error: $1 \%, 3 \%, 5 \%$

Identical curves
but variation in parameters
© Final error: MINUIT error + Systematic error

|  | ChPT $\left(\mu=\mathrm{M}_{0}\right)$ | IAM fit $(+3 \%)$ | IAM fits |
| :---: | :---: | :---: | :---: |
| $\mathrm{L}_{1}$ | $0.4 \pm 0.3$ | $0.561 \pm 0.008$ | $0.6 \pm 0.1$ |
| $\mathrm{~L}_{2}$ | $1.35 \pm 0.3$ | $1.211 \pm 0.001$ | $1.2 \pm 0.1$ |
| $\mathrm{~L}_{3}$ | $-3.5 \pm 1.1$ | $-2.79 \pm 0.02$ | $-2.79 \pm 0.14$ |
| $\mathrm{~L}_{4}$ | $-0.3 \pm 0.5$ | $-0.36 \pm 0.02$ | $-0.36 \pm 0.17$ |
| $\mathrm{~L}_{5}$ | $1.4 \pm 0.5$ | $1.39 \pm 0.02$ | $1.4 \pm 0.5$ |
| $\mathrm{~L}_{6}$ | $-0.2 \pm 0.3$ | $0.07 \pm 0.03$ | $0.07 \pm 0.08$ |
| $\mathrm{~L}_{7}$ | $-0.4 \pm 0.2$ | $-0.444 \pm 0.03$ | $-0.44 \pm 0.15$ |
| $\mathrm{~L}_{8}$ | $0.9 \pm 0.3$ | $0.78 \pm 0.02$ | $0.8 \pm 0.2$ |

Fairly good agreement with existing LECS

Simultaneous description of low energy and resonances
Fully renormalized and with parameters compatible with ChPT.

- Strong correlations for LECS. ( Also in ChPT)
- Other acceptable solutions with different LECS

We can impose constraints on the LECS when fitting

- No existing dispersive derivation for coupled channels (yet?)
- Incorrect left cut analytic structure.

Old problem in coupled channel approach (Faddeev, Bjorken...)
Fortunately: Numerically small
Can be made correct order by order, but very complicated

- Full one-loop calculation needed. Complicated functions

However coupled channels essential for a0(980) and f0(980). But for FSI in decays the analytic structure is different and the relevant one is the right or unitarity cut

SIMPLIFY
UNITARIZATION !!

2-body unitarization methods.

| From <br> more rigorous <br> to rougher | BUT | From <br> complicated <br> to simpler | (unfeasible sometimes) |
| :---: | :---: | :---: | :---: |
| (but very successful) |  |  |  |

## Examples:

## IAM single channel IAM coupled channels

Chiral unitary approach $O\left(p^{4}\right)$ Chiral unitary approach $\mathrm{O}\left(\mathrm{p}^{2}\right)$

Of course, there are other variations,

- If we do not care about left cuts:
$\mathrm{t}_{2}(\mathrm{~s}, \mathrm{t}, \mathrm{u})$
$O\left(p^{2}\right)$

$$
\mathrm{t}_{4}(\mathrm{~s}, \mathrm{t}, \mathrm{u})=\mathrm{O}\left(\mathrm{p}^{4}\right)
$$



But now the divergences are not fully absorbed in the LECS
Supurious parameter (regulator) dependence

- If you can live with that, then... why not....
forget pure tadpoles
but keeping those in mass and f renormalization
Simply use physical masses and constants.


$$
=\mathrm{t}_{2}+\mathrm{t}_{4} \text { tree }+\mathrm{t}_{2} \mathrm{G} \mathrm{t}_{2}
$$

Shown to factorize
(up to tadpoles neglected or absorbed in mass and decay constants)



$$
\text { with } \mathrm{G}=\bigcirc=i \int \frac{d q}{(2 \pi)^{4}} \frac{1}{q^{2}-m^{2}+i \varepsilon} \frac{1}{\left(s-q^{2}\right)-M^{2}+i \varepsilon}
$$

so that $\operatorname{Im} G=\sigma \quad$ and $\operatorname{Re} t=t_{2}+t_{4}$ tree $+t_{2} \operatorname{Re} G t_{2}+.$.
Inverting... $\operatorname{Re} \frac{1}{t}=\frac{1}{t_{2}}\left(1-\frac{\operatorname{Re} t_{4}}{t_{2}}+\ldots\right)$ and recalling the exactly unitary amplitude

$$
t=\frac{1}{\operatorname{Re} 1 / t-i \sigma}=\frac{t_{2}^{2}}{t_{2}-t_{4}^{t r e e}-t_{2} G t_{2}}
$$

© Remarkable results!
All Resonances: $\sigma, \kappa, \rho, a_{0}, f_{0}, K^{*}, \Phi_{8}$
with their associated poles!!

$a_{0}$





$\Phi$ (octet)


Cons. (Again at B.Kubis request)

- No left cuts
- Spurious parameters. In principle, one per channel Variations in the literature: Cutoff, dimensional regularization scale, subtraction constants ... choose favorite
Luckily, with natural choices of regulator, it can be reduced to one parameter

Pros.

- Simple. Just tree level calculations but for G function
- Satisfies coupled channel unitarity exactly.
- Reproduces LO ChPT and the numerically largest part of NLO
- Generates both scalar and vector resonances with their widths
- Surprisingly works with LECS numerically similar to those in ChPT Because uncertainties in LECS large and what we dropped is numerically small

2-body unitarization methods.

| From <br> more rigorous <br> to rougher | BUT |
| :---: | :---: |
| From <br> complicated <br> to simpler | (bnfeasible sometimes) <br> (but very successful) |

## Examples:

> IAM single channel IAM coupled channels

Chiral unitary approach $\mathrm{O}\left(\mathrm{p}^{4}\right)$ Chiral unitary approach $O\left(p^{2}\right)$

Of course, there are other variations,

- We have dropped so many terms.... who cares one more!

 $=t_{2}+t_{2} G t_{2}$

Now without Counterterms!

Really?
$t=\frac{t_{2}}{1-G t_{2}}$
$T=\left(1-T_{2} G\right)^{-1} T_{2}$
Coupled channels

Actually, NO. There is still the "spurious" regulator in the G integral.
It can play the role of a combination of parameters, and mimic the energy dependence of the dropped terms if it si sufficiently soft

But it is not assured that you can play this game with the same natural regulator in all channels simultaneously.

Surprisingly, this enough to generate all the light scalars!!

You could generate the vectors too, but need another NON-NATURAL regulator

The same result can be obtained from a BS equation

$$
T=V+\int V \bar{G} T
$$


... if we use the $\mathrm{T}_{2}$ ChPT matrix as the kernel and we use factorization inside the integral, then
$T=T_{2}+T_{2} G T$ solving iteratively $T=T_{2}+T_{2} G T_{2}+T_{2} G T_{2} G T_{2}+\ldots$
Summing the geometric series
Effectively, one is summing this series of diagrams



$$
T=\left(1-T_{2} G\right)^{-1} T_{2}
$$

IAM: Use of full ChPT series. Fully renormalized. No spurious parameters Extensions up to two loops. LECS compatible with ChPT

- One channel: Dispersive derivation. Analytic structure correct.

Only elastic resonances. Scalars: $\sigma, \kappa$. Vectors: $\rho, K^{*}$. CONNECTION WITH QCD

- Coupled channels: NO dispersive derivation. Left cuts messy, but small. Light Scalar Nonet: $\sigma, \kappa, a_{0}, f_{0}$. Vectors: $\rho, K^{*}$, octet $\Phi$ Provides further justification/rigour for the next one

Chiral Unitary Approach: No tadpoles no crosses graphs. No left cuts Spurious regulator dependence.
Bethe-Salpeter interpretation. Also N/D derivation

- O(p4): "LECS" compatible with ChPT and natural regulator Light Scalar Nonet: $\sigma, \kappa, a_{0}, f_{0}$. Vectors: $\rho, K^{*}$, octet $\Phi$
- O(p2): No "LECS". With Natural regulator only

Used in light Scalar Nonet: $\sigma, \kappa, a_{0}, f_{0}$.
$\mathrm{O}\left(\mathrm{p}^{2}\right)+$ explicit high resonances (vectors, axials...) by hand Also N/D Methods, etc...

