Hadron Spectroscopy at COMPASS

Sebastian Neubert

Physik Department E18 Technische Universität München

INT-JLab Workshop on Hadron Spectroscopy, November 12

supported by: Maier-Leibnitz-Labor der TU und LMU München, Cluster of Excellence: Origin and Structure of the Universe,

BMBF, EU

Meson Production at COMPASS

Partial Wave Analysis Formalism

- 3 2004 Data: Pion Diffraction on Lead
 - 3π Final State PWA Results
 - 3π Diffractive Production on Protons
 - 5π Final State

Meson Production at COMPASS 1

Partial Wave Analysis Formalism

- 3π Final State PWA Results
- 3π Diffractive Production on Protons
- 5π Final State

COMPASS Hadron Setup

Experiment Setup

Overview

COMPASS Hadron Setup

Experiment Setup

Overview

COMPASS Hadron Runs

- M2-beamline:
 - ▶ neg. beam: 190GeV/c π⁻(95%), K⁻(4.5%)
 - ▶ pos. beam: 190GeV/c p(71.5%), π⁺(25.5%), K⁺(3%)
- Pilotrun 2004 190 GeV π^- beam on nuclear targets (few days)
 - Charged multiplicity trigger, online filter
 - $3\pi^{\pm}$ Analysis (Diffractive dissociation on Pb target)
- Apparatus Upgrade
 - IH₂ target
 - Recoil Proton Detector (RPD), refined trigger
 - Improved electromagnetic calorimetry
 - Improved PID: RICH, CEDAR (beam PID)
 - PixelGEM very small angle trackers
 - Cold Silicon vertex tracker
- 2008 mainly 190 GeV π^- beam on IH₂ target Pilotrun with positive beam
- 2009 pion / proton beams on IH₂ and nuclear targets Short campaigns: Minimum bias trigger (low t), nuclear recoil, Primakoff trigger

Meson Production Mechanisms at COMPASS Diffractive vs. Central

Diffractive Dissociation: $\pi A \rightarrow X A$ or $\pi p \rightarrow X p$ or $p p \rightarrow X p$

Diffraction: target particle remains intact

- Reggeon t-channel exchange
- Pomeron ($I^G = 0^+$) leading trajectory: $\Rightarrow I^G = 1^-$ states dominate
- Assumptions: Factorization of meson and Pb vertex, no final state interaction
- Dissociation: beam pion is excited to some resonance X^{-} , which subsequently decays

 - $\Rightarrow e.g. \pi^- Pb \rightarrow X^- Pb \rightarrow \pi^- \pi^- \pi^+ Pb$ $\Rightarrow e.g. \pi^- Pb \rightarrow X^- Pb \rightarrow \pi^- \pi^- \pi^+ \pi^- \pi^+ Pb$

Central Production: $\pi p \rightarrow \pi_{fast} X p_{slow}$ or $p p \rightarrow p_{fast} X p_{slow}$

- Reggeon-Reggeon fusion
 - Rapidity gap between leading hadron and central system
 - $I^{G} = 0^{+}$ states produced
- Central system (glue rich!?) resonance X⁰ \Rightarrow e.g. p p \rightarrow p χ^0 p \rightarrow p_{fast} $(\pi^-\pi^-\pi^+\pi^+)$ p

Diffractive Dissociation

Pion beam + dominant Pomeron exchange:

$$l^G = 1^- \qquad \mid q \bar{q}
angle o G = (-1)^{\ell + s + l} \qquad \Rightarrow \ell + s = ext{even} \qquad \Rightarrow C = (-1)^{\ell + s} = + s$$

$$\begin{array}{c|c} \mbox{Channel} & \mbox{Accessible } I^G(J^{PC}) \\ \hline \pi^{\pm} \to \pi^{\pm}\pi^{-}\pi^{+} & 1^{-}(0^{-+})(1^{++})(2^{-+}) & \pi_1(1400), \pi_1(1600) & (1^{-+}) \\ \pi^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0} & 1^{-}(0^{-+})(1^{++})(2^{-+}) & \pi_1(1400), \pi_1(1600) & (1^{-+}) \\ \pi^{\pm} \to \pi^{\pm}\eta & 1^{-}(0^{++})... & \pi_1(1400) \\ \pi^{\pm} \to 5\pi & 1^{-}(0^{++})... & \pi_1(1600), \pi_1(2000) & (1^{-+}) \\ \pi^{\pm} \to \pi^{\pm}K^{-}K^{+} & 1^{+}(0^{+-})(2^{+-}) \\ \pi^{\pm} \to \pi^{\pm}K_{S}K_{S} \to 5\pi \\ K^{\pm} \to K^{\pm}\pi^{-}\pi^{+} \\ p \to N^* \to p\pi^{-}\pi^{+} \end{array}$$

Central Production

 $\begin{array}{c|c} \hline \text{Channel} & \text{Accessible } I^G(J^{PC}) \\ \hline pp \to p(\pi^-\pi^+)p & 0^+(0^{++})... & f_0(???) \\ pp \to p(4\pi)p & 0^+(0^{++})... & " \\ \pi p \to \pi(\pi^-\pi^+)p & 0^+(0^{++})... & " \\ \pi p \to \pi(4\pi)p & 0^+(0^{++})... & " \\ \end{array}$

COMPASS Tracking Acceptance: $\pi^-\pi^-\pi^+$ Events

Excellent Phase Space Coverage

COMPASS Spectroscopy

Momentum transfer from target: $-t = -(p_{\text{beam}} - p_{(\pi^-\pi^-\pi^+)})^2$ $\Rightarrow t' = |t| - |t|_{min}$

Diffraction pattern at low-t': Pb nucleus acts like "black disc" in optics High-t': scattering on single nucleons inside Pb nucleus

Meson Production at COMPASS

2 Partial Wave Analysis Formalism

- 2004 Data: Pion Diffraction on Lead
- 3π Final State PWA Results
- 3π Diffractive Production on Protons
- 5π Final State

Partial Wave Analysis Formalism

Isobar Model

Assumptions

- Factorization of beam and target vertex
- No final state interactions
- I^G conserved at beam vertex \Rightarrow fixed to 1⁻ by π^- beam
- Scattering on nucleons \Rightarrow helicity flip and non-flip amplitudes at target vertex \Rightarrow rank = 2
- Using reflectivity basis in Gottfried-Jackson frame
 - At high CM energies: reflectivity $\epsilon =$ naturality of \mathbb{R}

Cross section parameterization

$$\sigma(\tau, m_X) = \sum_{\epsilon = \pm 1} \sum_{r}^{N_r} \left| \sum_{i}^{\text{waves}} V_{ir}^{\epsilon} \psi_i^{\epsilon}(\tau, m_X) \right|^2$$

- Phase space coordinates au measured for each event
- Decay amplitudes ψ_i^ϵ parameterized in the isobar model
- Production amplitudes V^e_{ir} are fit parameters
- ϵ, i : quantum numbers of partial wave in reflectivity basis $(J^{PC}M^{\epsilon}[isobar]L)$

2 step procedure

- **1** Bin data in kinematical variable (e.g. m_X)
 - Mass-independent fit \Rightarrow V_i(m_X)
- 2 Extract resonance parameters from $V_i(m_X)$
 - Mass-dependent fit

Step 1: Partial Wave Decomposition Mass-Independent Fit

Cross section normalization takes into account detector acceptance Acc(τ , m_X).

Extended log-likelihood

$$\ln \mathcal{L} = \sum_{n=1}^{N} \ln \sum_{i,j}^{\text{waves}} V_i V_j^* \psi_i(\tau_n) \psi_j^*(\tau_n) - \int_{m_1}^{m_2} \int d\tau \, \sigma(\tau, m_X) \operatorname{Acc}(\tau, m_X)$$

Subtleties omitted from formula:

- Rank
- Reflectivity basis
- Positivity constraints

$$\Psi_{ij} = \int_{m_1}^{m_2} \int d au \, \sigma(au, m_X) \operatorname{Acc}(au, m_X)$$

Bin data in kinematical variable

Extract resonance parameters

Mass-dependent fit

• Mass-independent fit \Rightarrow V_i(m_x)

(e.g. m_X)

from $V_i(m_X)$

Normalization integral estimated using phase space Monte Carlo

• From step 1: mass dependence of spin density matrix

$$\rho_{ij}^{\epsilon}(m_X) = \sum_{r=1}^{N_r} V_{ir}^{\epsilon} V_{jr}^{\epsilon*}$$

- Diagonal elements ρ_{ii} : intensities
- Off-diagonal elements ρ_{ij} ; $i \neq j$: interference terms

2 step procedure

- Bin data in kinematic variable (e.g. m_X)
 - Mass-independent fit \Rightarrow V_i(m_X)
- 2 Extract resonance parameters from $V_i(m_X)$
 - Mass-dependent fit

Breit-Wigner parameterization of spin density matrix

$$\rho_{ij}^{\epsilon}(m_X) = \left[\sum_{k}^{\text{waves}} C_{ik}^{\epsilon} \operatorname{BW}_k(m_X)\right] \left[\sum_{l}^{\text{waves}} C_{jl}^{\epsilon} \operatorname{BW}_l(m_X)\right]$$

- Coherent background added to some waves
- χ^2 fit of mass dependence of spin density matrix takes into account
 - Wave intensities
 - Phase motion from interference terms

Partial Wave Analysis Formalism

- 2004 Data: Pion Diffraction on Lead 3
 - 3π Final State PWA Results
 - 3π Diffractive Production on Protons
 - 5π Final State

Description of possible Decay Amplitudes

3π Analysis: Partial Wave Set (42 Waves)

Description of possible Decay Amplitudes

_ J ^{PC} M ^ϵ	L	Isobar π	Thresh. [GeV]
0-+0+	S	f ₀ π	1.40
0-+0+	S	$(\pi\pi)_{s}\pi$	-
0-+0+	Р	$ ho\pi$	-
1-+1+	Р	$\rho\pi$	-
1++0+	S	$\rho\pi$	-
1++0+	Р	f ₂ π	1.20
1++0+	Р	$(\pi\pi)_s\pi$	0.84
1++0+	D	$\rho\pi$	1.30
$1^{++}1^{+}$	S	$\rho\pi$	-
$1^{++}1^{+}$	Р	f ₂ π	1.40
1++1+	Р	$(\pi\pi)_{s}\pi$	1.40
1++1+	D	$\rho\pi$	1.40
2-+0+	S	f ₂ π	1.20
2-+0+	Р	$\rho\pi$	0.80
2-+0+	D	f ₂ π	1.50
2-+0+	D	$(\pi\pi)_s\pi$	0.80
2-+0+	F	$\rho\pi$	1.20
$2^{-+}1^{+}$	S	f ₂ π	1.20
$2^{-+}1^{+}$	Р	$\rho\pi$	0.80
$2^{-+}1^{+}$	D	$f_2\pi$	1.50
$2^{-+}1^{+}$	D	$(\pi\pi)_s\pi$	1.20
$2^{-+}1^{+}$	F	$\rho\pi$	1.20

$J^{PC}M^{\epsilon}$	L	Isobar π	Thresh. [GeV]
2++1+	Р	$f_2\pi$	1.50
2++1+	D	$\rho\pi$	-
3++0+	S	$\rho_3 \pi$	1.50
$3^{++}0^{+}$	Р	f ₂ π	1.20
$3^{++}0^{+}$	D	$\rho\pi$	1.50
3++1+	S	$\rho_3 \pi$	1.50
3++1+	Р	f ₂ π	1.20
3 ⁺⁺ 1 ⁺	D	$\rho\pi$	1.50
4-+0+	F	$\rho\pi$	1.20
$4^{-+}1^{+}$	F	$\rho\pi$	1.20
4++1+	F	f ₂ π	1.60
4 ⁺⁺ 1 ⁺	G	$\rho\pi$	1.64
1-+0-	Р	$\rho\pi$	-
$1^{-+}1^{-}$	Р	$\rho\pi$	-
1++1-	S	$\rho\pi$	-
$2^{-+}1^{-}$	S	f ₂ π	1.20
$2^{++}0^{-}$	Р	f ₂ π	1.30
$2^{++}0^{-}$	D	$\rho\pi$	-
2++1-	Р	$f_2\pi$	1.30
FLAT			

Description of possible Decay Amplitudes

_	-	-		

J ^{PC} M ^ϵ	L	Isobar π	Thresh. [GeV]		. I ^{PC} M [€]		Isobar π	Thresh [GeV]
0-+0+	S	$f_0 \pi$	1.40	:		-	150501 //	1.50
0-+0+	s \	Vaveset	Features					1.50
0-+0+	P							1.50
1-+1+	P	41 Wa	ves + flat backo	round				1.00
1++0+	S		a.	jiouna				1.50
1''0'	P	Isobar	s:					1.50
1++0+	P	▶ σ	(600), ρ(770), f ₀ (980), <i>f</i> ₂ (127	0), ρ ₃			1.20
1++1+		e Positiv	a reflectivity do	minates				1.50
1++1+	B		c relicentity do	minates				1.20
1++1+	F	7 negative reflectivity waves included				1.20		
1++1+	D	Supers	set of BNL E85	2 "high way	e" wave s	et		1.60
2-+0+	S		ore $M = 1$ waves					1.64
2-+0+	F		$^{-+}$ E waves includ	ad				-
2-+0+	D	- 2		eu				-
2-+0+	D	$(\pi\pi)_s\pi$	0.80		1++1-	S	$\rho\pi$	-
2-+0+	F	ρπ	1.20		2-+1-	S	f ₂ π	1.20
$2^{-+}1^{+}$	S	f ₂ π	1.20		$2^{++}0^{-}$	Р	$f_2 \pi$	1.30
$2^{-+}1^{+}$	Р	$\rho\pi$	0.80		$2^{++}0^{-}$	D	$\rho\pi$	-
$2^{-+}1^{+}$	D	f ₂ π	1.50		2++1-	Р	f ₂ π	1.30
$2^{-+}1^{+}$	D	$(\pi\pi)_{s}\pi$	1.20		FLAT			
$2^{-+}1^{+}$	F	$\rho\pi$	1.20			1		1

ТШΠ

Extraction of Resonance	Parameters from	Intensities and	Interference
-------------------------	-----------------	-----------------	--------------

J ^{PC} M ^ϵ	L	Isobar π	Thresh. [GeV]
0-+0+	S	f ₀ π	1.40
0-+0+	S	$(\pi\pi)_{s}\pi$	-
0-+0+	Р	$\rho\pi$	-
1-+1+	Р	$ ho\pi$	-
1++0+	S	$ ho\pi$	-
1++0+	Р	f ₂ π	1.20
1++0+	Р	$(\pi\pi)_{s}\pi$	0.84
1++0+	D	$\rho\pi$	1.30
$1^{++}1^{+}$	S	$\rho\pi$	-
$1^{++}1^{+}$	Р	f ₂ π	1.40
$1^{++}1^{+}$	Р	$(\pi\pi)_{s}\pi$	1.40
1++1+	D	$\rho\pi$	1.40
2-+0+	S	f 2π	1.20
2-+0+	Р	$\rho\pi$	0.80
2-+0+	D	f ₂ π	1.50
2-+0+	D	$(\pi\pi)_{s}\pi$	0.80
2-+0+	F	$\rho\pi$	1.20
2-+1+	S	f ₂ π	1.20
2-+1+	Р	$\rho\pi$	0.80
2-+1+	D	$f_2\pi$	1.50
2-+1+	D	$(\pi\pi)_s\pi$	1.20
2 ⁻⁺ 1 ⁺	F	$\rho\pi$	1.20

J ^{PC} M ^ϵ	L	Isobar π	Thresh. [GeV]
2++1+	Р	$f_2\pi$	1.50
2++1+	D	$\bar{\rho}\pi$	-
3++0+	S	$\rho_3 \pi$	1.50
3++0+	Р	f ₂ π	1.20
3 ⁺⁺ 0 ⁺	D	$\rho\pi$	1.50
3++1+	S	$\rho_3 \pi$	1.50
3 ⁺⁺ 1 ⁺	Р	f ₂ π	1.20
3 ⁺⁺ 1 ⁺	D	$\rho\pi$	1.50
4-+0+	F	$\rho\pi$	1.20
4 ⁻⁺ 1 ⁺	F	$\rho\pi$	1.20
4++1+	F	f ₂ π	1.60
4 ⁺⁺ 1 ⁺	G	$ ho\pi$	1.64
1-+0-	Р	$\rho\pi$	-
1-+1-	Р	$\rho\pi$	-
1++1-	S	$\rho\pi$	-
2-+1-	S	f ₂ π	1.20
2++0-	Р	f ₂ π	1.30
2++0-	D	ρπ	-
2++1-	Р	$f_2\pi$	1.30
FLAT			

ТШ

- BW for $a_1(1260)$ + background: $M = (1.255 \pm 0.006 {+0.007 \atop -0.017}) \text{ GeV/c}^2$ $\Gamma = (0.367 \pm 0.009 {+0.028 \atop -0.025}) \text{ GeV/c}^2$
- BW for $\pi_2(1670)$: $M = (1.658 \pm 0.003 {}^{+0.024}_{-0.008}) \,\text{GeV/c}^2$ $\Gamma = (0.271 \pm 0.009 {}^{+0.022}_{-0.024}) \,\text{GeV/c}^2$

- Two Breit-Wigners needed to describe $2^{++}1^+\rho\pi D$ phase motion: BW1 for $a_2(1320)$ + BW2 for $a_2(1700)$
- $M = (1.321 \pm 0.001 \stackrel{+0.000}{_{-0.007}}) \text{ GeV}, \quad \Gamma = (0.110 \pm 0.002 \stackrel{+0.002}{_{-0.015}}) \text{ GeV}$
- $a_2(1700)$ parameters fixed to PDG values: M = 1.732 GeV, $\Gamma = 0.194 \text{ GeV}$

 $\bullet\,$ Significant 1^{-+} amplitude consistent with resonance at $\sim 1.7\,{\rm GeV/c^2}$

• BW for
$$\pi_1(1600)$$
 + background:

$$M = (1.660 \pm 0.010 \ ^{+0.000}_{-0.064}) \, {
m GeV/c^2}$$

$$\Gamma = (0.269 \pm 0.021 \ ^{+0.042}_{-0.064}) \, {\rm GeV/c^2}$$

Statistical Significance

Mass dependence of loglikelihood-difference with and without exotic $1^{-+}1^+\rho\pi$ wave

FM

Summary of Extracted States from $\pi^-Pb \rightarrow X^-Pb \rightarrow \pi^-\pi^-\pi^+Pb$

- Generate MC events distributed according to model with 16 most important waves (including various 2⁻⁺ modes) without 1⁻⁺
- Pass events through detector simulation and selection cuts
- Fit MC data with full waveset

- Mass-independent fits using rank 1,2,3
- 2 Mass-independent fit using mass bins shifted by half bin width
- Mass-independent fit using D-functions with relativistic corrections instead of Zemach tensors
- **4** Mass-independent fit with extended wave set: 46 waves with four additional M = 2 waves
- 9 Mass-dependent fit taking into account 3π invariant mass resolution
- Mass-dependent fit with dynamical instead of constant width for a₄(2040)
- **Wass-dependent fit with 7 waves with additional** $\pi_2(1880)$ Breit-Wigner in $2^{-+}0^+[f_2\pi]D$ wave
- **(9)** Mass-independent fit with lowered mass threshold $(1.2 \text{ GeV}/c^2)$ for the $2^{++}1^+[f_2\pi]P$ wave mass-dependent fit with 8 waves with additional $2^{++}1^+[f_2\pi]P$ wave $a_2(1700)$ parameters released
- (9) Mass-dependent fit with 7 waves with additional $\pi_1(1400)$ constant width Breit-Wigner (parameters fixed to PDG values) in the $1^{-+}1^+[\rho\pi]P$ wave

- In the used framework the extracted signal shows all the expected features of a resonant state.
- \bullet Produced in positive naturality, decaying through $\rho\pi$
- It is consistent with a $\pi_1(1600)$ resonance. How tempting!

However:

- Isobar model breaks unitarity could this generate the signal?
- Isobar parameterizations
- Non-diffractive production processes: Where does the Deck effect go?
- Anything else?

Work in Progress: MC Study of Deck-Effect

Leakage of Deck amplitude into $1^{-+}1^+ \rho \pi$ P-wave:

- $\bullet~$ Recoil Proton Detector used in trigger \rightarrow t-cut
- $\bullet\,$ Data sample: \sim 21% of total 2008 data
- Expect \sim 170 000 events in π_1 bump
- Analysis ongoing

2008 Data: 3π Dalitz Plots

a₂(1320) region

 $\pi_2(1670)$ region

Going to 5 Charged Pions: $m_X = 2 \,\mathrm{GeV/c^2}$ and beyond

Physics Potential of the Exclusive 5 Charged Pion Final State

Motivation — Diffractive Dissociation:

- Access to mass-range $> 2 \,\mathrm{GeV/c^2}$
- Light meson frontier: many disputed states in this region $(0^{-+})(1^{++})(2^{-+})...$
- Interesting accessible quantum numbers:
 - ► 1⁻(0⁻⁺)π(1800) Hybrid candidate
 - ▶ 1⁻(1⁻⁺) spin exotic
- Interesting decay modes $b_1\pi$, $f_1\pi$, $\rho'\pi$

Central Production on p-target:

 $\pi_{fast}^{-}(4\pi)_{central}^{0}$

- Investigate 4π system.
- $I^G = 0^+$ states \rightarrow Scalar glueball?
- But: Interference with diffractive production
- First pp data taken this year

$\pi_1(1^{-+})$ branching ratios

Flux-Tube model predictions:

(Page, Swanson, Szczepaniak, Phys. Rev. D59, 034016(1999))

m_{π_1}	$b_1\pi$	$f_1\pi$	$\eta'\pi$	$ ho$ (1450) π
$1.6 \mathrm{GeV/c^2}$	24:	5:	2	
$2.0{ m GeV/c^2}$	43:	10:	27:	12

Meson states with $I^G = 1^-$ listed in the PDB. Green = established, blue = need confirmation, red = "further states". The histogram is stacked. The 2004 Run: 5π Data Sample – Pb target

TUTT

 5π Data Sample – Pb target Mass Spectrum

 5π Data Sample – Pb target Mass Spectrum

Sebastian Neubert (TUM E18)

July 09 33 / 50

 5π Acceptance from Monte Carlo Simulation

Total acceptance in mass bins

4π Subsystem – the f_1 and Friends

Isobar Candidates

Isobar candidates:

Sebastian Neubert (TUM E18)

4π Central Production

Event signature

- Fast outgoing π^-
- Slow recoil proton \Rightarrow detected in RPD
- Rapidity gaps

Selection of centrally produced 4π using cut $x_{F}^{\pi_{\text{tast}}} > 0.7$

Separability from diffractive processes

- x_F cut enriches f₁(1285)
- Central production and diffraction difficult to separate at 190 GeV/c beam energy
- Probably unified analysis technique required

- COMPASS 2004 pilot run using a 190 GeV π^- beam
 - Meson production in diffractive dissociation on lead target
 - $3\pi \sim 4\,000\,000$ events recorded within a few days of data taking
 - $5\pi \sim 370\,000$ events
 - Excellent acceptance for diffractive charged pion events (~ 55-60% for 3π)
- Partial wave analysis on \sim 400 000 $\pi^-\pi^-\pi^+$ events with 0.1 < t' < 1.0 GeV²/ c^2
 - Dominant $a_1(1260)$, $a_2(1320)$ and $\pi_2(1670)$ states resolved
 - Excellent agreement with PDG
 - ► Also small, well-known resonances $\pi(1800)$ and $a_4(2040)$ can be fitted
- Spin-exotic 1⁻⁺ state observed in $\rho\pi$ decay channel both in intensity and phase motion
 - \Rightarrow consistent with $\pi_1(1600)$ resonance
 - Publication about to be submitted [arXiv:0910.5842]

Outlook

- Analysis of $5\pi^{\pm}$ final state in progress
 - Clear f_1 signal in 4π subsystem
 - PWA software: http://sourceforge.net/projects/rootpwa/ based on BNL program (J. Cummings and D. Weygand, arxiv:physics/0309052)

COMPASS Hadron Run 2008

- Change-over to liquid hydrogen target
- Spectrometer upgrade (Recoil Detector, PID, ECAL, tracking ...)

COMPASS Hadron Run 2009 topics:

- Central Production
- Diffractive Dissociation
- Repeat measurements on Pb with upgraded spectrometer:
 - ★ Collect more statistics
 - $\bigstar \quad \text{Measure proton recoil from Pb} \to \text{thin target}$

• High statistics data samples:

- Diffractive: \sim 10 \times E852
- Central: \sim 10 \times WA102
- Analysis in progress

Exciting Results are on the Horizon...

YEAR: 1969 MISSION: APOLLO 11 TARGET: LUNA View from the Apollo 11 spacecraft showing the Earth rising above the Moon's horizon.

Sebastian Neubert (TUM E18)

COMPASS Spectroscopy

July 09 40 / 50

Backup Slides: Spin Totals

Backup Slides: M = 0 and M = 1 Spin Totals

Sebastian Neubert (TUM E18)

Results from PWA of 2004 Pilot Run

 $0^{-+} 0^{+} [f_0 \pi] S - 2^{-+} 0^{+} [f_2 \pi] S$

 $0^{-+} 0^{+} [f_0(980)\pi]S$

Results from PWA of 2004 Pilot Run

 $4^{++} 1^{+} [\rho \pi] G - 1^{++} 0^{+} [\rho \pi] S$

Sebastian Neubert (TUM E18)

July 09 44 / 50

Results from PWA of 2004 Pilot Run

State	(GeV)	$COMPASS \pm stat \pm syst$	PDG
<i>a</i> ₁ (1260)	М	$1.256 \pm 0.006 + 0.007 - 0.017$	1.230 ± 0.040
	Г	$0.366 \pm 0.009 + 0.028$ - 0.025	0.250 to 0.600
a ₂ (1320)	М	$1.321 \pm 0.001 + 0.000 - 0.007$	1.3183 ± 0.0006
	Г	$0.110 \pm 0.002 + 0.002 - 0.015$	0.107 ± 0.005
$\pi_1(1600)$	М	1.660 ± 0.010 + 0.000 - 0.064	$1.653^{+0.018}_{-0.015}$
	Г	$0.269 \pm 0.021 + 0.042$ - 0.064	$0.225\substack{+0.045\\-0.028}$
$\pi_2(1670)$	М	$1.659 \pm 0.003 + 0.024 - 0.008$	1.6724 ± 0.0032
	Г	$0.271 \pm 0.009 + 0.022 - 0.024$	0.259 ± 0.009
$\pi(1800)$	М	$1.785 \pm 0.009 + 0.012$ - 0.006	1.812 ± 0.014
	Г	$0.208 \pm 0.022 + 0.021 - 0.037$	0.207 ± 0.013
a ₄ (2040)	М	$1.884 \pm 0.013 + 0.050 - 0.002$	2.001 ± 0.010
	Г	$0.295 \pm 0.024 + 0.046$ - 0.019	0.313 ± 0.031

ΠЛ

Sebastian Neubert (TUM E18)

Phys. Rev. D65, 072001, 2002

Backup Slides: 5π Acceptance from Monte Carlo Simulation Angular Acceptance – $\pi^- R_{P_{-}}^0$ Gottfried-Jackson Angle

Single pion decay angle in X^- rest frame (Gottfried-Jackson frame).

Backup Slides: 3 and 2π Subsystems

