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COmputationAL Challenges IN PWA

Rapid Increase in Available Data
GLUE-X Projections:



COmputationAL Challenges IN PWA

Fitting and Plotting:
Intensity for a Single Event:

Unbinned Data Fit - Minimize Log Likelihood:
−2 ln(L) = −2
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Fit Parameters

Intensity Calculated
 Only OnceLog-Intensity Sum Recalculated

 on Each Fit Iteration

More Sophisticated Amplitudes Will Have non-factorable 
Fit Parameters: Amplitudes Need Recalculation!



GPU Accelerated PWA

IU AmpTool GPU PWA



GPU Accelerated PWA

IU AmpTool
User-Oriented

•Analysis Framework Independent:

•User supplies data and defines amplitudes from 
4-vector level

•The Framework drives the fit, uses fitted 
parameters to plot data and Intensity-weighted 
Monte-Carlo.



GPU Accelerated PWA

IU AmpTool
GPU Integration

• Turn on by a simple compile-time switch

•The framework completely manages the GPU 
initialization/memory / function calls.

• All GPU-enabled amplitudes are  
automatically called, the rest are evaluated on 
CPU. (for data and MC - norm integral and 
plotting)

•Log-intensity sum is calculated on the GPU.  

•Integration with MPI allows using multiple 
machines with GPUs



WHY Bother ?

Massively parallel architecture

Large advantage in performance 
over CPU

A sound  and rapidly 
developing CUDA (Compute 
Unite Device Architecture) 
toolkit as an extension of C 
language (in future  C++, Java, 
Fortran, etc.)
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GPU Features

Rapid advancements in GPUs 
driven by the gaming 
industry: ~$57 billion by 09!
Cost-effective

~ $350 for 1 TFlops
Power-effective

< 200 Watts
Scalable

Up to 4 cards in a MB



CUDA Initiative
The market for GPGPU in  HPC is taking off!
Support for double-precision floating point numbers starting GT 
200 architecture.

Dedicated TESLA boards: 4GB of DDR3 memory, GT200 GPU with 
240 computing cores.

Workstations and turn-key clusters available from various vendors



CUDA Initiative
The market for GPGPU in  HPC is taking off!

•Some of rapidly extending CUDA features:
Fast floating point math functions

A large list of special math functions
FFT for CUDA 

BLAS for CUDA
Fast linear interpolation using textures

Support for double-precision floating point numbers starting GT 
200 architecture.

Dedicated TESLA boards: 4GB of DDR3 memory, GT200 GPU with 
240 computing cores.

Workstations and turn-key clusters available from various vendors



CUDA in HPC

Some examples from various fields:

Lattice QCD

Image Processing / Tomography / Video Editing

Molecular Dynamics / Computational Fluid Dynamics

MATLAB Accelerator Engines (Matrices/Graphics)

Computational Chemistry

Computational Finance



Caveats

Demands massively-parallel tasks for optimal performance, to 
hide memory access latencies, etc.
Requires extensive optimization at programming level: 
programmer has to worry about optimal memory access patterns/
availability, hardware limitations, adopt effective parallel 
algorithms.
Favors arithmetically intensive problems.

Weak* performance on doubles: only 1 DP core for every 8 SP

GPU architecture dictates:



CUDA ProgramMing MODEL

• Identify parallelizable parts of the code and 
port them to GPU

• In GPU cores are divided into several multi 
processors (MP). Each MP has 8 scalar 
processor (SP) cores.

• Compute threads are divided into Blocks.  All 
the blocks constitute the Grid of threads.

• All threads in blocks are executed at once - 
assigned to a single MP, scheduling is done 
automatically by the GPU driver.

• Max blocks/threads per MP:  8 / 1024 !

• Each MP has 16KB registers and 16KB shared 
memory - this limits number of concurrently 
executed Blocks per MP.

• All processes access FAST, read-only 
CONSTANT memory.

• Block structure provides Automatic Scalability, 
provided by CUDA driver.
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MEMORY ACCESS PATTERN

Global memory access has large 
latency (~100 x slower than local and 
shared).

All the processes in a warp should 
access global memory within 128B for 
a single transfer read/write.

Registers and Shared memory are a 
scares  resource. 

Shared memory access should also be 
arranged to avoid bank conflicts.

 Chapter 5. Performance Guidelines 
  

!

CUDA Programming Guide Version 2.3  87!
 

!

 
Left: random float memory access within a 64B segment, resulting in one memory transaction. 

Center: misaligned float memory access, resulting in one transaction. 

Right: misaligned float memory access, resulting in two transactions. 

Figure 5-4. Examples of Global Memory Access by Devices 
with Compute Capability 1.2 and Higher 
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CUDA for C
Is a superset of C programming language. Additional, very 
limited set of GPU primitives. GPU functions (kernels) can only 
call other GPU functions (no system calls, yet).

Supports some C++ constructs. Full support for the announced, 
next-gen cards.

The compiler - nvcc and GPU driver available for most 
common flavors of OSes - Linux/Mac/Windows. CUDA code 
is universal across the platforms.

Comes with toolkit, manual and SDK  - easy learning curve.

GDB debugger for Linux, VS integrated NEXUS debugger for 
Windows.

Rapidly Evolving!



PWA is a GOod candidate?

Partial Wave Analysis seems to be a ideal candidate for 
GPU computing!

The quantities of interest are additive for each event - 
Trivially Parallelizable!

Amplitudes calculations grow in arithmetical complexity.

Maximum likelihood fits involve a large number of 
fitting iterations - only a few numbers transferred to 
GPU per computationally intensive calculation!

Large number of events leverage GPU’s multi-core, 
multi-thread capabilities.



GPU DRivING Code

switch between single and double prec.

Allocating memory on GPU and copying data to it:

Setting and Querying the GPU:

Calling function on GPU:



CUDA AMPLITUDE

CUDA Amplitude Template in IU AmpTool:

Here goes the code
for the event number 

“iEvent” 



Feasible Test Platform?

For a Start:
 GeForce 8400 GT ~ $30

Or Even a Laptop’s NVIDIA Card.



Feasible Test Platform?

Specs:
CPU: Core i7 920 - 2.66 GHz Quad-
Core
Memory: 6 GB DDR3 1600 MHz
Overall Cost ~ $1600
Expandable - up to 3 GPUs!
OS - Fedora 10 x86_64

THE     BEAST

•CUDA GPU:
EVGA GTX 285 SSC ~ 1 TFlops !
1584 MHz core clock
240 Processing Cores

GPU MEMORY:
1024 MB, 512 bit DDR3
169.3 GB/s Memory Bandwidth
GPU to RAM: ~ 5.6 GB/s measured!



Is it working? Yes !!!
L =
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Events Amps CPU GPU GPU/CPU x  
~1.*105

~2.*105

~2.*105

~2*106

~1.*107

~1.*107

~2.*107

40 38.5s/500 29.1s/5000 13
20 21.4s/500 11.5s/5000 18.5
8 5.3s/500 2.1s/5000 25
8 53s/500 19.7/5000 27
4 29.5s/100 5.78s/1000 51
1 17.3s/100 1.85s/1000 95
2 45.8s/100 4.56s/1000 100.8

Standalone Benchmarks: 1 core, SSE VECTORIZED!



Some More Benchmarks
GPU timings include GPU-> CPU memory transfer time, C++ Compiler - > ICC 11 with Auto-Vectorization !

Amps Calc Time: sec/Iteration (with AmpFactor->Amp transform on CPU)

Events CPU - 1 Amp GPU - 1 Amp CPU - 3 Amps GPU - 3 Amps

2581
~1.*106

~8.*106

5.1*10-3 1.3*10-4 0.015 3*10-4

2 0.012 6 0.037
16 0.097 48 0.29

Log-Like Sum: sec/Iteration

Events CPU - 1 Amp GPU - 1 Amp CPU - 3 Amps GPU - 3 Amps

2581
~1.*106

~8.*106

1.1*10-4 6.8*10-5 1.8*10-4 6.8*10-5

0.049 2.5*10-4 0.074 4.6*10-4

0.37 1.5*10-3 0.59 3.2*10-3



OpenCL ? 
Oriented towards consumer market.

Still in early stages of development - lots of 

 Easy Transition CUDA -> OpenCL 

 Slow to evolve : 

What’s Ahead?
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NO, Thanks for Now!



What’s Ahead?

FERMI

Consumer Cards  Coming Early 2010!
Price~ $400-$500



GT300 Improvements:

Support for the next generation IEEE 754-2008 double precision floating point 
standard

Up to 1 terabyte of faster (GDDR5) memory

64-bit virtual address space (possibly unified CPU-GPU memory mapping)

ECC (error correcting codes) - not available on consumer cards

Multi-level cache hierarchy with L1 and L2 caches

Support for the C++ programming language

System calls and recursive functions

Concurrent kernel execution, fast context switching, 10x faster atomic 
instructions

More cores, 1:2 ratio for double-precision cores.

What’s Ahead?
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Just Announced
Tesla C2050 & C2070 GPU Computing Processors

Single GPU PCI-Express Gen-2 cards for workstation configurations

Up to 3GB and 6GB (respectively) on-board GDDR5 memory

Double precision performance in the range of 520GFlops - 630 GFlops

Price - $2,499 and $3,999

Tesla S2050 & S2070 GPU Computing Systems
Four Tesla GPUs in a 1U system product for cluster and datacenter deployments

Up to 12 GB and 24 GB (respectively) total on board GDDR5 memory!
Double precision performance in the range of 2.1 TFlops - 2.5 TFlops
Price - $12,995 and $18,995



Summary

PWA is becoming increasingly computationally 
intensive due to massive amount of new data and 
use of more sophisticated amplitudes.

GPGPU brings a computational power of a cluster 
to a desktop computer.

GPU acceleration in IU AmpTools PWA 
framework proved to be highly successful.


