
General Purpose GPU
Computing in Partial

Wave Analysis

JLAB at 12 GeV - INT

Hrayr Matevosyan - NTC, Indiana University

November 18/2009

COmputationAL Challenges IN PWA

Rapid Increase in Available Data

J/! !’

COmputationAL Challenges IN PWA

Rapid Increase in Available Data
GLUE-X Projections:

COmputationAL Challenges IN PWA

Fitting and Plotting:
Intensity for a Single Event:

Unbinned Data Fit - Minimize Log Likelihood:
−2 ln(L) = −2

�

Data

ln(I(Ωi)) + 2
�

MC

I(Ωi)

I(Ω) =
�

α

������

�

β

Vα,βAα,β(Ω)

������

2
Fit Parameters

Intensity Calculated
 Only OnceLog-Intensity Sum Recalculated

 on Each Fit Iteration

More Sophisticated Amplitudes Will Have non-factorable
Fit Parameters: Amplitudes Need Recalculation!

GPU Accelerated PWA

IU AmpTool GPU PWA

GPU Accelerated PWA

IU AmpTool
User-Oriented

•Analysis Framework Independent:

•User supplies data and defines amplitudes from
4-vector level

•The Framework drives the fit, uses fitted
parameters to plot data and Intensity-weighted
Monte-Carlo.

GPU Accelerated PWA

IU AmpTool
GPU Integration

• Turn on by a simple compile-time switch

•The framework completely manages the GPU
initialization/memory / function calls.

• All GPU-enabled amplitudes are
automatically called, the rest are evaluated on
CPU. (for data and MC - norm integral and
plotting)

•Log-intensity sum is calculated on the GPU.

•Integration with MPI allows using multiple
machines with GPUs

WHY Bother ?

Massively parallel architecture

Large advantage in performance
over CPU

A sound and rapidly
developing CUDA (Compute
Unite Device Architecture)
toolkit as an extension of C
language (in future C++, Java,
Fortran, etc.)

WHY Bother ?

Massively parallel architecture

Large advantage in performance
over CPU

A sound and rapidly
developing CUDA (Compute
Unite Device Architecture)
toolkit as an extension of C
language (in future C++, Java,
Fortran, etc.)

WHY Bother ?

Massively parallel architecture

Large advantage in performance
over CPU

A sound and rapidly
developing CUDA (Compute
Unite Device Architecture)
toolkit as an extension of C
language (in future C++, Java,
Fortran, etc.)

WHY Bother ?

Massively parallel architecture

Large advantage in performance
over CPU

A sound and rapidly
developing CUDA (Compute
Unite Device Architecture)
toolkit as an extension of C
language (in future C++, Java,
Fortran, etc.)

GPU Features

Rapid advancements in GPUs
driven by the gaming
industry: ~$57 billion by 09!
Cost-effective

~ $350 for 1 TFlops
Power-effective

< 200 Watts
Scalable

Up to 4 cards in a MB

CUDA Initiative
The market for GPGPU in HPC is taking off!
Support for double-precision floating point numbers starting GT
200 architecture.

Dedicated TESLA boards: 4GB of DDR3 memory, GT200 GPU with
240 computing cores.

Workstations and turn-key clusters available from various vendors

CUDA Initiative
The market for GPGPU in HPC is taking off!

•Some of rapidly extending CUDA features:
Fast floating point math functions

A large list of special math functions
FFT for CUDA

BLAS for CUDA
Fast linear interpolation using textures

Support for double-precision floating point numbers starting GT
200 architecture.

Dedicated TESLA boards: 4GB of DDR3 memory, GT200 GPU with
240 computing cores.

Workstations and turn-key clusters available from various vendors

CUDA in HPC

Some examples from various fields:

Lattice QCD

Image Processing / Tomography / Video Editing

Molecular Dynamics / Computational Fluid Dynamics

MATLAB Accelerator Engines (Matrices/Graphics)

Computational Chemistry

Computational Finance

Caveats

Demands massively-parallel tasks for optimal performance, to
hide memory access latencies, etc.
Requires extensive optimization at programming level:
programmer has to worry about optimal memory access patterns/
availability, hardware limitations, adopt effective parallel
algorithms.
Favors arithmetically intensive problems.

Weak* performance on doubles: only 1 DP core for every 8 SP

GPU architecture dictates:

CUDA ProgramMing MODEL

• Identify parallelizable parts of the code and
port them to GPU

• In GPU cores are divided into several multi
processors (MP). Each MP has 8 scalar
processor (SP) cores.

• Compute threads are divided into Blocks. All
the blocks constitute the Grid of threads.

• All threads in blocks are executed at once -
assigned to a single MP, scheduling is done
automatically by the GPU driver.

• Max blocks/threads per MP: 8 / 1024 !

• Each MP has 16KB registers and 16KB shared
memory - this limits number of concurrently
executed Blocks per MP.

• All processes access FAST, read-only
CONSTANT memory.

• Block structure provides Automatic Scalability,
provided by CUDA driver.

CUDA ProgramMing MODEL

• Identify parallelizable parts of the code and
port them to GPU

• In GPU cores are divided into several multi
processors (MP). Each MP has 8 scalar
processor (SP) cores.

• Compute threads are divided into Blocks. All
the blocks constitute the Grid of threads.

• All threads in blocks are executed at once -
assigned to a single MP, scheduling is done
automatically by the GPU driver.

• Max blocks/threads per MP: 8 / 1024 !

• Each MP has 16KB registers and 16KB shared
memory - this limits number of concurrently
executed Blocks per MP.

• All processes access FAST, read-only
CONSTANT memory.

• Block structure provides Automatic Scalability,
provided by CUDA driver.

CUDA ProgramMing MODEL

• Identify parallelizable parts of the code and
port them to GPU

• In GPU cores are divided into several multi
processors (MP). Each MP has 8 scalar
processor (SP) cores.

• Compute threads are divided into Blocks. All
the blocks constitute the Grid of threads.

• All threads in blocks are executed at once -
assigned to a single MP, scheduling is done
automatically by the GPU driver.

• Max blocks/threads per MP: 8 / 1024 !

• Each MP has 16KB registers and 16KB shared
memory - this limits number of concurrently
executed Blocks per MP.

• All processes access FAST, read-only
CONSTANT memory.

• Block structure provides Automatic Scalability,
provided by CUDA driver.

CUDA ProgramMing MODEL

• Identify parallelizable parts of the code and
port them to GPU

• In GPU cores are divided into several multi
processors (MP). Each MP has 8 scalar
processor (SP) cores.

• Compute threads are divided into Blocks. All
the blocks constitute the Grid of threads.

• All threads in blocks are executed at once -
assigned to a single MP, scheduling is done
automatically by the GPU driver.

• Max blocks/threads per MP: 8 / 1024 !

• Each MP has 16KB registers and 16KB shared
memory - this limits number of concurrently
executed Blocks per MP.

• All processes access FAST, read-only
CONSTANT memory.

• Block structure provides Automatic Scalability,
provided by CUDA driver.

CUDA ProgramMing MODEL

• Identify parallelizable parts of the code and
port them to GPU

• In GPU cores are divided into several multi
processors (MP). Each MP has 8 scalar
processor (SP) cores.

• Compute threads are divided into Blocks. All
the blocks constitute the Grid of threads.

• All threads in blocks are executed at once -
assigned to a single MP, scheduling is done
automatically by the GPU driver.

• Max blocks/threads per MP: 8 / 1024 !

• Each MP has 16KB registers and 16KB shared
memory - this limits number of concurrently
executed Blocks per MP.

• All processes access FAST, read-only
CONSTANT memory.

• Block structure provides Automatic Scalability,
provided by CUDA driver.

MEMORY ACCESS PATTERN

Global memory access has large
latency (~100 x slower than local and
shared).

All the processes in a warp should
access global memory within 128B for
a single transfer read/write.

Registers and Shared memory are a
scares resource.

Shared memory access should also be
arranged to avoid bank conflicts.

 Chapter 5. Performance Guidelines

!

CUDA Programming Guide Version 2.3 87!

!

Left: random float memory access within a 64B segment, resulting in one memory transaction.

Center: misaligned float memory access, resulting in one transaction.

Right: misaligned float memory access, resulting in two transactions.

Figure 5-4. Examples of Global Memory Access by Devices
with Compute Capability 1.2 and Higher

Thread
15

Thread
14

Thread
13

Thread
12

Thread
11

Thread
10

Thread
9

Thread
8

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
1

Thread
0

Address
120

Address
124

Address
128

Address
132

Address
136

Address
140

Address
144

Address
148

Address
152

Address
156

Address
160

Address
164

Address
168

Address
172

Address
176

Address
180

Address
184

Address
188

Address
192

Address
196

Address
200

Address
204

Address
208

Address

212

6
4

B
 seg

m
en

t

Thread
15

Thread
14

Thread
13

Thread
12

Thread
11

Thread
10

Thread
9

Thread
8

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
1

Thread
0

Address
96

Address
100

Address
104

Address
108

Address
112

Address
116

Address
120

Address
124

Address
128

Address
132

Address
136

Address
140

Address
144

Address
148

Address
152

Address
156

Address
160

Address
164

Address
168

Address
172

Address
176

Address
180

Address
184

Address

188

6
4

B
 seg

m
en

t

Thread
15

Thread
14

Thread
13

Thread
12

Thread
11

Thread
10

Thread
9

Thread
8

Thread
7

Thread
6

Thread
5

Thread
4

Thread
3

Thread
2

Thread
1

Thread
0

Address
120

Address
124

Address
128

Address
132

Address
136

Address
140

Address
144

Address
148

Address
152

Address
156

Address
160

Address
164

Address
168

Address
172

Address
176

Address
180

Address
184

Address
188

Address
192

Address
196

…

Address
204

Address
252

Address

256

1
2

8
B

 seg
m

en
t

3
2

B
 seg

m
en

t

CUDA for C
Is a superset of C programming language. Additional, very
limited set of GPU primitives. GPU functions (kernels) can only
call other GPU functions (no system calls, yet).

Supports some C++ constructs. Full support for the announced,
next-gen cards.

The compiler - nvcc and GPU driver available for most
common flavors of OSes - Linux/Mac/Windows. CUDA code
is universal across the platforms.

Comes with toolkit, manual and SDK - easy learning curve.

GDB debugger for Linux, VS integrated NEXUS debugger for
Windows.

Rapidly Evolving!

PWA is a GOod candidate?

Partial Wave Analysis seems to be a ideal candidate for
GPU computing!

The quantities of interest are additive for each event -
Trivially Parallelizable!

Amplitudes calculations grow in arithmetical complexity.

Maximum likelihood fits involve a large number of
fitting iterations - only a few numbers transferred to
GPU per computationally intensive calculation!

Large number of events leverage GPU’s multi-core,
multi-thread capabilities.

GPU DRivING Code

switch between single and double prec.

Allocating memory on GPU and copying data to it:

Setting and Querying the GPU:

Calling function on GPU:

CUDA AMPLITUDE

CUDA Amplitude Template in IU AmpTool:

Here goes the code
for the event number

“iEvent”

Feasible Test Platform?

For a Start:
 GeForce 8400 GT ~ $30

Or Even a Laptop’s NVIDIA Card.

Feasible Test Platform?

Specs:
CPU: Core i7 920 - 2.66 GHz Quad-
Core
Memory: 6 GB DDR3 1600 MHz
Overall Cost ~ $1600
Expandable - up to 3 GPUs!
OS - Fedora 10 x86_64

THE BEAST

•CUDA GPU:
EVGA GTX 285 SSC ~ 1 TFlops !
1584 MHz core clock
240 Processing Cores

GPU MEMORY:
1024 MB, 512 bit DDR3
169.3 GB/s Memory Bandwidth
GPU to RAM: ~ 5.6 GB/s measured!

Is it working? Yes !!!
L =

�

n∈NEvents

log

i≤NAmps�

i=1,j≤i

ViV
∗
j Ai(n)A∗

j (n)

Events Amps CPU GPU GPU/CPU x
~1.*105

~2.*105

~2.*105

~2*106

~1.*107

~1.*107

~2.*107

40 38.5s/500 29.1s/5000 13
20 21.4s/500 11.5s/5000 18.5
8 5.3s/500 2.1s/5000 25
8 53s/500 19.7/5000 27
4 29.5s/100 5.78s/1000 51
1 17.3s/100 1.85s/1000 95
2 45.8s/100 4.56s/1000 100.8

Standalone Benchmarks: 1 core, SSE VECTORIZED!

Some More Benchmarks
GPU timings include GPU-> CPU memory transfer time, C++ Compiler - > ICC 11 with Auto-Vectorization !

Amps Calc Time: sec/Iteration (with AmpFactor->Amp transform on CPU)

Events CPU - 1 Amp GPU - 1 Amp CPU - 3 Amps GPU - 3 Amps

2581
~1.*106

~8.*106

5.1*10-3 1.3*10-4 0.015 3*10-4

2 0.012 6 0.037
16 0.097 48 0.29

Log-Like Sum: sec/Iteration

Events CPU - 1 Amp GPU - 1 Amp CPU - 3 Amps GPU - 3 Amps

2581
~1.*106

~8.*106

1.1*10-4 6.8*10-5 1.8*10-4 6.8*10-5

0.049 2.5*10-4 0.074 4.6*10-4

0.37 1.5*10-3 0.59 3.2*10-3

OpenCL ?
Oriented towards consumer market.

Still in early stages of development - lots of

 Easy Transition CUDA -> OpenCL

 Slow to evolve :

What’s Ahead?

OpenCL ?
Oriented towards consumer market.

Still in early stages of development - lots of

 Easy Transition CUDA -> OpenCL

 Slow to evolve :

What’s Ahead?

NO, Thanks for Now!

What’s Ahead?

FERMI

Consumer Cards Coming Early 2010!
Price~ $400-$500

GT300 Improvements:

Support for the next generation IEEE 754-2008 double precision floating point
standard

Up to 1 terabyte of faster (GDDR5) memory

64-bit virtual address space (possibly unified CPU-GPU memory mapping)

ECC (error correcting codes) - not available on consumer cards

Multi-level cache hierarchy with L1 and L2 caches

Support for the C++ programming language

System calls and recursive functions

Concurrent kernel execution, fast context switching, 10x faster atomic
instructions

More cores, 1:2 ratio for double-precision cores.

What’s Ahead?

GT300 Improvements:

Support for the next generation IEEE 754-2008 double precision floating point
standard

Up to 1 terabyte of faster (GDDR5) memory

64-bit virtual address space (possibly unified CPU-GPU memory mapping)

ECC (error correcting codes) - not available on consumer cards

Multi-level cache hierarchy with L1 and L2 caches

Support for the C++ programming language

System calls and recursive functions

Concurrent kernel execution, fast context switching, 10x faster atomic
instructions

More cores, 1:2 ratio for double-precision cores.

What’s Ahead?

Just Announced
Tesla C2050 & C2070 GPU Computing Processors

Single GPU PCI-Express Gen-2 cards for workstation configurations

Up to 3GB and 6GB (respectively) on-board GDDR5 memory

Double precision performance in the range of 520GFlops - 630 GFlops

Price - $2,499 and $3,999

Tesla S2050 & S2070 GPU Computing Systems
Four Tesla GPUs in a 1U system product for cluster and datacenter deployments

Up to 12 GB and 24 GB (respectively) total on board GDDR5 memory!
Double precision performance in the range of 2.1 TFlops - 2.5 TFlops
Price - $12,995 and $18,995

Summary

PWA is becoming increasingly computationally
intensive due to massive amount of new data and
use of more sophisticated amplitudes.

GPGPU brings a computational power of a cluster
to a desktop computer.

GPU acceleration in IU AmpTools PWA
framework proved to be highly successful.

