Glueballs, Hybrids, Quarkonia: A Global View

V. Credé

Florida State University, Tallahassee, Florida

INT-JLab Workshop 2009

Seattle, Washington

11/09/2009

∃ → < ∃</p>

< 🗇 🕨

Outline

Introduction and Motivation The Quark Model of Hadrons Just a few words about baryons ... Meson Spectroscopy Experimental Methods in Meson Spectroscopy 2 Glue-Rich Environments Two-Photon Fusion at e⁺e⁻ Colliders • B-Decays, $\pi^- p$ -Scattering, Photoproduction 3 Glueballs and Hybrids: A Global View Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons Interpretation and Summary

・ 同 ト ・ ヨ ト ・ ヨ ト

The Quark Model of Hadrons Meson Spectroscopy

Outline

Introduction and Motivation The Quark Model of Hadrons Just a few words about baryons ... Meson Spectroscopy Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders B-Decays, $\pi^- p$ -Scattering, Photoproduction Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

< □ > < 同 > < 三 > <

The Quark Model of Hadrons Meson Spectroscopy

The Quark Model of Hadrons

- Mesons (q \overline{q}) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$
- Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

Ordinary matter ...

ヘロト ヘ帰 ト ヘヨト ヘヨト

The Quark Model of Hadrons Meson Spectroscopy

The Quark Model of Hadrons

- Mesons (q \overline{q}) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$
- Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

l + m > 1 for n = 1

ヘロト ヘ戸ト ヘヨト ヘヨト

However, QCD also predicts so-called exotic states

→ simplest possibility: $q \otimes \overline{q} \otimes q = 15 \oplus 6 \oplus 3 \oplus 3$ "SU(3) Color"

Does not work: color singlets needed! \rightarrow multiple of (qqq) and (q \overline{q}) necessary

- Glueballs: $g \otimes g = 8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 1$
- Hybrids: $q \otimes \overline{q} \otimes g = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 8 \oplus 1$ $\rightarrow |(q\overline{q})^{l}((q)^{3})^{m}(g)^{n}|,$

The Quark Model of Hadrons Meson Spectroscopy

- What are the relevant degrees of freedom?
- What are the corresponding effective interactions responsible for hadronic phenomena?

- ∢ ⊒ →

The Quark Model of Hadrons Meson Spectroscopy

One of the Main Goals of the N* Program ...

Search for missing or yet unobserved resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen

- \Rightarrow according to PDG
 - (Phys. Rev. D66 (2002) 010001)
- \Rightarrow little known (many open questions left)
- 2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

 If the missing resonances did not couple to Nπ, they would not have been discovered!!

・ロ と く 厚 と く 思 と く 思 と

The Quark Model of Hadrons Meson Spectroscopy

One of the Main Goals of the N* Program ...

Search for missing or yet unobserved resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen \Rightarrow according to PDG

(Phys. Lett. B 667, 1 (2008))

- ⇒ little known (many open questions left)
- 2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

 If the missing resonances did not couple to Nπ, they would not have been discovered!!

・ロ と く 厚 と く 思 と く 思 と

The Quark Model of Hadrons Meson Spectroscopy

Nucleon Resonances: Status of 2001

- S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

The Quark Model of Hadrons Meson Spectroscopy

Total Photoproduction Cross Sections

The Quark Model of Hadrons Meson Spectroscopy

Ingredients

• Measurements off neutron and proton to resolve isospin contributions

- Re-scattering effects: Large number of measurements (and also final states) needed to define the full scattering amplitude
- Double-polarization measurements

Chiang & Tabakin, Phys. Rev. C55, 2054 (1997)

In order to determine the full scattering amplitude without ambiguities, one has to carry out eight carefully selected measurements: <u>four</u> double-spin observables along with the <u>four</u> single-spin observables.

くロト (得) (目) (日)

The Quark Model of Hadrons Meson Spectroscopy

Polarization Program toward Complete Experiments

E.g. beam asymmetry in $\gamma {\it p} \rightarrow {\it p} \, \pi^+ \pi^-$

Victor Mokeev's talk

g8b

Frost

E.g. helicity difference in $\gamma p \rightarrow n \pi^+$

V. Credé

• ير مارك معلمي مع Glueballs, Hybrids, Quarkonia: A Global View

The Quark Model of Hadrons Meson Spectroscopy

Ordinary Mesons

 $J^{PC} \equiv {}^{2S+1}L_J$

- Parity $P = (-1)^{L+1}$
- Charge conjugation (defined for neutral mesons)
 C = (-1)^{L+S}

• G parity
$$G = C(-1)$$

$$\frac{L = 0, S = 1}{\rho, \omega, \phi (J^{PC} = 1^{--})}$$

$$\frac{L = 0, S = 0}{e.q. \pi (J^{PC} = 0^{-+})}$$

→ Ξ → < Ξ →</p>

The Quark Model of Hadrons Meson Spectroscopy

Ordinary and Exotic Mesons

 $J^{PC} \equiv {}^{2S+1}L_J$

- Parity $P = (-1)^{L+1}$
- Charge conjugation (defined for neutral mesons)
 C = (-1)^{L+S}

• G parity
$$G = C(-1)$$

$$\frac{L = 0, \ S = 1:}{\rho, \ \omega, \ \phi \ (J^{PC} = 1^{--})}$$
$$\frac{L = 0, \ S = 0:}{\rho, \ \omega, \ \pi \ (J^{PC} = 0^{-+})}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Forbidden States (Exotics): $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, \cdots$

Meson Spectroscopy

Mesons and their Quantum Numbers

		JPC	$^{2S+1}L_J$	<i>l</i> = 1	$I = 0 (n\bar{n})$	$I = 0 (s\bar{s})$	Strange
<i>L</i> = 0	S = 0	0-+	¹ S ₀	π	η	η'	К
	S = 1	1	³ S ₁	ρ	ω	ϕ	K*
<i>L</i> = 1	S = 0	1+-	${}^{1}P_{1}$	b ₁	h ₁	h'_1	K ₁
	S = 1	0++	${}^{3}P_{0}$	a_0	f ₀	f'_0	K^*_0
	S = 1	1++	³ P ₁	<i>a</i> 1	<i>f</i> ₁	f ' 1	K ₁
	S = 1	2++	³ P ₂	a_2	<i>f</i> ₂	f_2'	K_2^*

Notation

J^{PC} s are measured quantities

 $^{2S+1}L_{J}$ s are internal quantum numbers in a non-relativistic quark model

・ロト ・ 同ト ・ ヨト ・ ヨト

Meson Spectroscopy

Mesons and their Quantum Numbers

		J ^{PC}	$^{2S+1}L_J$	<i>l</i> = 1	$I = 0 (n\bar{n})$	$I = 0 (s\bar{s})$	Strange
<i>L</i> = 0	S = 0	0-+	¹ S ₀	π	η	η'	К
	S = 1	1	³ S ₁	ρ	ω	ϕ	K*
<i>L</i> = 1	S = 0	1+-	${}^{1}P_{1}$	b ₁	h_1	h'_1	K ₁
	S = 1	0++	${}^{3}P_{0}$	a 0	<i>f</i> ₀	f '_0	K ₀ *
	S = 1	1++	³ P ₁	<i>a</i> 1	<i>f</i> ₁	f ' 1	K ₁
	S = 1	2++	³ P ₂	a 2	f ₂	f '_2	K_2^*

Notation

J^{PC} s are measured quantities

 $^{2S+1}L_{J}$ s are internal quantum numbers in a non-relativistic quark model

・ロト ・ 同ト ・ ヨト ・ ヨト

The Quark Model of Hadrons Meson Spectroscopy

The Nonet of Scalar Mesons with $J^{PC} = 0^{++}$

Properties of Quarks					
Classification	d	и	s		
Charge	-1/3	2/3	-1/3		
Isospin /	1/2	1/2	0		
<i>I</i> ₃	-1/2	1/2	0		

э.

The Quark Model of Hadrons Meson Spectroscopy

From large energies to large distances ...

Can we understand bound systems of hadrons within the QCD framework?

No!

Solution: QCD-inspired models

- Bag models
- Flux-tube models
- Instanton interactions
- QCD sum rules
- Lattice QCD

→ E → < E →</p>

Introduction and Motivation

Experimental Methods in Meson Spectroscopy Glueballs and Hybrids: A Global View Interpretation and Summary The Quark Model of Hadron Meson Spectroscopy

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders B-Decays, π^-p -Scattering, Photoproduction

Outline

- Introduction and Motivation
 - The Quark Model of Hadrons
 - Just a few words about baryons ...
 - Meson Spectroscopy
- 2

Experimental Methods in Meson Spectroscopy

- Glue-Rich Environments
- Two-Photon Fusion at e⁺e⁻ Colliders
- *B*-Decays, $\pi^- p$ -Scattering, Photoproduction
- 3 Glueballs and Hybrids: A Global View
 - Glueballs and the Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- Interpretation and Summary

イロト イ押ト イヨト イヨト

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Glue-Rich Environments

Different Production Mechanisms

- I/ ψ may convert into two gluons and a photon.
- In central production, two hadrons scatter diffractively; no valence quarks are exchanged.
- In pp̄ annihilation, quark-antiquark pairs annihilate into gluons forming glueballs.

(< ∃) < ∃)</p>

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Antiproton-Nucleon Annihilation

Formation of Protonium (annihilation likely in production with recoiling meson):

$$\bar{\rho} + H_2 \rightarrow \boxed{\rho \bar{\rho}} + H + e^-$$
 (¹S₀, ³S₁, ¹P₁, ³P₀, ³P₁, ³P₂)

★ Ξ > ★ Ξ >

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Antiproton-Nucleon Annihilation

イロト イポト イヨト イヨト

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Most Suggestive: Radiative J/ψ Decays

Radiative decays of $c\bar{c}$ states can best be studied *in formation* at e^+e^- colliders via a virtual photon in the process:

$$e^+e^- \rightarrow \gamma^* \rightarrow c\bar{c}$$

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

The OZI Rule and Flavor-Tagging Approach

The decay of J/ψ into mesons with open charm (left) is forbidden due to energy conservation.

The two right diagrams requires annihilation of $c\bar{c}$ into gluons:

- Recoiling against ω , mesons with $n\bar{n}$ quark structure are expected.
- If a φ is observed, we expect mesons with hidden strangeness ss̄.
 → OZI rule, e.g. ratio φη'/ωη' ~ ratio of ss̄/nn̄ in η' w.f.

イロト イポト イヨト イヨ

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

The OZI Rule and Flavor-Tagging Approach

Most recent J/ψ data come from BES (older results from Crystal-Ball)

Current (near future) Facility: BES-III

→ B. Zou, P. Guo

Data on radiative decays from KLOE

→ E → < E →</p>

→ B. DiMicco

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Production Experiments: Central Production

In central production, it was suggested that glueballs would be produced copiously in the process:

hadron_{beam} $\boldsymbol{\rho} \rightarrow \text{hadron}_f \boldsymbol{X} \boldsymbol{\rho}_s$,

where the final-state hadrons carry large fractions of the initial-state hadron momenta.

At sufficiently high energies:

- Process expected to be dominated by double-Pomeron exchange
- Pomeron: carries no (color) charge, positive parity/charge conjugation
 - → Double-Pomeron exchange should favor production of isoscalar particles with positive G-parity in a glue-rich environment (no valence quark are exchanged)

イロト 不得 トイヨト イヨト 二日

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Production Experiments: Central Production

In central production, it was suggested that glueballs would be produced copiously in the process:

hadron_{beam} $\boldsymbol{\rho} \rightarrow \text{hadron}_f \boldsymbol{X} \boldsymbol{\rho}_s$,

where the final-state hadrons carry large fractions of the initial-state hadron momenta.

Close-Kirk Glueball Filter:

- Observation: significant enhancement of glueball candidates over the production of conventional qq mesons at small transverse momenta
- No dynamical explanation, yet
 - Just a momentum filter? (It may suppress angular momentum and enhance scalar mesons.)

イロト 不得 トイヨト 不良 トー

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Production Experiments: Central Production

In central production, it was suggested that glueballs would be produced copiously in the process:

hadron_{beam} $\boldsymbol{\rho} \rightarrow \text{hadron}_f \boldsymbol{X} \boldsymbol{\rho}_s$,

Most data from CERN experiments: WA102, ...

Current (near future) Facility: COMPASS

イロン イロン イヨン イヨン

→ S. Neubert Hadron Spectroscopy at COMPASS

Glue-Rich Environments **Two-Photon Fusion at** e^+e^- **Colliders** *B*-Decays, π^-p -Scattering, Photoproduction

Indirect Glueball Signals (CERN, CLEO, ...

- Glueball production should be strongly suppressed in $\gamma\gamma$ fusion:
 - → There is no valence charge to couple to photons.
- The collision of two photons can best be studied in *inelastic Bhabha* scattering at e^+e^- colliders via the reaction:

$$e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-X$$

Physicists are creative ...

Stickiness (in J/ψ decays)

 $\mathbf{S} = \mathbf{C} \left(\frac{\mathbf{M}(\mathbf{h})}{\mathbf{k}_{\gamma}} \right)^{2l+1} \frac{\Gamma(\psi \to \gamma \mathbf{h})}{\Gamma(\mathbf{h} \to \gamma \gamma)}$

Gluiness

$$\mathbf{G} = \frac{9\mathbf{e}_{\mathsf{Q}}^{4}}{2} \left(\frac{\alpha}{\alpha_{\mathsf{s}}}\right)^{2} \frac{\Gamma_{R \to gg}}{\Gamma_{R \to \gamma\gamma}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Glue-Rich Environments Two-Photon Fusion at e^+e^- Colliders *B*-Decays, π^-p -Scattering, Photoproduction

Other Important Approaches for Meson Spectroscopy

- Pion- and kaon-induced reactions: LASS, VES, E852, ... π^- (K^-) + proton \rightarrow neutron + meson
- Light-meson spectroscopy at heavy-flavor experiments: Belle, BaBar, ...

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Outline

The Quark Model of Hadrons Just a few words about baryons ... Meson Spectroscopy Two-Photon Fusion at e^+e^- Colliders B-Decays, $\pi^- p$ -Scattering, Photoproduction 3 Glueballs and Hybrids: A Global View Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

ヘロト ヘアト ヘビト・

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The I = 0, $J^{PC} = 0^{-+}$ (Pseudoscalar) Mesons

Name	Mass [MeV/ c^2]	Width [MeV/c ²]	Decays
η (548) $*$	547.51 ± 0.18	$1.30\pm.07~\text{keV}$	$\gamma\gamma$, 3 π
η^{\prime} (958) $*$	957.78 ± 0.14	$\textbf{0.203} \pm \textbf{0.016}$	$\eta\pi\pi$, $\rho\gamma$, $\omega\gamma$, $\gamma\gamma$
η (1295) $*$	$\textbf{1294} \pm \textbf{4}$	55 ± 5	$ηππ$, $a_0π$, $γγ$, $ησ$, $K\bar{K}π$
η (1405) $*$	1409.8 ± 2.5	51.1 ± 3.4	$Kar{K}\pi$, $\eta\pi\pi$, $a_0\pi$, $f_0\eta$, 4π
η (1475) $*$	1476 ± 4	87 ± 9	$ar{K}ar{K}\pi,ar{K}ar{K}^*+cc,ar{a}_0\pi,\gamma\gamma$
η (1760)	$\textbf{1760} \pm \textbf{11}$	60 ± 16	$\omega\omega$, 4 π
η (2225)	$\textbf{2220}\pm\textbf{18}$	$150^{+300}_{-60}\pm60$	ĸĸĸĸ

Five pseudoscalar states $< 1500 \text{ MeV}/c^2$ listed in the PDG summary table

→ Too many for two nonets!!

ヘロト ヘ帰 ト ヘヨト ヘヨト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The Search for the Lightest Pseudoscalar Glueball

In 1990, Mark III reported two pseudoscalar states in the 1400 MeV/ c^2 region in radiative J/ψ decays (with $J/\psi \rightarrow a_0(980)\pi$ and $J/\psi \rightarrow K^*K$).

Both states confirmed by Crystal Barrel and Obelix at LEAR

• But: CB did NOT observe the $\eta(1295)$

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The Search for the Lightest Pseudoscalar Glueball

In 2001, L3 observed $\eta(1475) \rightarrow K\bar{K}\pi$ in two-photon collisions.

• No observation by L3 of the second state, the $\eta(1405) \rightarrow$ Glueball?

ヘロト ヘ帰 ト ヘヨト ヘヨト

The Search for the Lightest Pseudoscalar Glueball

In 2001, L3 observed $\eta(1475) \rightarrow K\bar{K}\pi$ in two-photon collisions.

- No observation by L3 of the second state, the $\eta(1405) \rightarrow$ Glueball?
- In 2005, CLEO published (high-statistics) negative results on both states.

イロト イポト イヨト イヨト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The Flavor Filter in the Decay $J/\psi \rightarrow \gamma [\gamma V]$

BES-II studied $J/\psi \rightarrow \gamma \gamma V(\rho, \phi)$

- Clear observation of peak at $M \approx 1424 \text{ MeV}/c^2$ in $X(1424) \rightarrow \gamma \rho$ (left)
- No observation of $X(1424) \rightarrow \gamma \phi$ (right)!
 - → Glueball should decay to both final states.

V. Credé

Glueballs, Hybrids, Quarkonia: A Global View

Glueballs, Hybrids, Quarkonia: A Global View

The Search for the Lightest Pseudoscalar Glueball

Common conclusion:

- The X(1424) observed by BES is not the $\eta(1430)!$
- Mark III cannot distinguish between pseudoscalar states and f₁(1420)
 → No extra state, no Glueball!

V. Credé

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

What about the $\eta(1295)$?

Often interpreted as first radial excitation of the η meson.

- Ideal mixing: degenerate in mass with $\pi(1300)$
- Problem: only observed in pion-induced reactions!

V. Credé

Glueballs, Hybrids, Quarkonia: A Global View

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The 2⁺⁺ Tensor Glueball

Evidence essentially non-existent!

Two quark configurations yield 2⁺⁺:

〕
$$L = 1, S = 1, J = 2: {}^{3}P_{2}$$
 →

2 L = 3, S = 1, J = 2: ${}^{3}F_{2}$

- For both nonets, radial excitations are expected.
- Situation premature: none of the states can be assigned definitely to any of the above nonets.

Name	Mass [MeV/ c^2]
f ₂ (1270) *	1275.4 ± 1.1
f ₂ (1430)	1430
$f_{2}'(1525) *$	1525 ± 5
f ₂ (1565)	1546 ± 12
<i>f</i> ₂ (1640)	1638 ± 6
<i>f</i> ₂ (1810)	1815 ± 12
<i>f</i> ₂ (1910)	1915 ± 7
f ₂ (1950) *	1944 ± 12
f ₂ (2010) *	2011^{+60}_{-80}
f ₂ (2150)	2156 ± 11
f ₂ (2300) *	$\textbf{2297} \pm \textbf{28}$
f ₂ (2340) *	$\textbf{2339} \pm \textbf{60}$

≣ ► < ≣ →

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The $f_J(2220)$ or $\xi(2230)$ observed by BES

Name	Mass [MeV/ c^2]
f ₂ (1270) *	1275.4 ± 1.1
<i>f</i> ₂ (1430)	1430
f ₂ '(1525) *	1525 ± 5
f ₂ (1565)	1546 ± 12
<i>f</i> ₂ (1640)	1638 ± 6
<i>f</i> ₂ (1810)	1815 ± 12
<i>f</i> ₂ (1910)	1915 ± 7
f ₂ (1950) *	1944 ± 12
f ₂ (2010) *	2011^{+60}_{-80}
f ₂ (2150)	2156 ± 11
f ₂ (2300) *	$\textbf{2297} \pm \textbf{28}$
f ₂ (2340) *	2339 ± 60

ъ

V. Credé

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The I = 0, $J^{PC} = 0^{++}$ (Scalar) Mesons

Name	Mass [MeV/ c^2]	Width [MeV/c ²]	Decays
$f_0(600) *$	400 - 1200	600 - 1000	$\pi\pi, \gamma\gamma$
f ₀ (980) *	980 ± 10	40 - 100	$ππ$, $K\bar{K}$, $\gamma\gamma$
f ₀ (1370) *	1200 - 1500	200 - 500	$ππ$, $ρρ$, $σσ$, $π(1300)π$, $a_1π$, $ηη$, $K\bar{K}$
f ₀ (1500) *	1507 ± 5	109 ± 7	$\pi\pi, \sigma\sigma, \rho\rho, \pi$ (1300) $\pi, a_1\pi, \eta\eta, \eta\eta'$
			$oldsymbol{\kappa}ar{oldsymbol{\kappa}}$, $\gamma\gamma$
f ₀ (1710) *	$\textbf{1718} \pm \textbf{6}$	137 ± 8	$\pi\pi$, $Kar{K}$, $\eta\eta$, $\omega\omega$, $\gamma\gamma$
f ₀ (1790)			
f ₀ (2020)	1992 ± 16	442 ± 60	$ ho\pi\pi, \pi\pi, ho ho, \omega\omega, \eta\eta$
f ₀ (2100)	$\textbf{2103} \pm \textbf{7}$	206 ± 15	$\eta\pi\pi,\pi\pi,\pi\pi\pi\pi,\eta\eta,\eta\eta^{\prime}$
f ₀ (2200)	$\textbf{2189} \pm \textbf{13}$	238 ± 50	$ππ$, $K\bar{K}$, $ηη$

イロト 不得 トイヨト 不良 トー

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Crystal Barrel

- a $p\bar{p} \rightarrow \pi^0 \eta \eta$
- b $p\bar{p} \rightarrow \pi^0 \pi^0 \eta$
- c $\rho \bar{\rho} \rightarrow \pi^0 \pi^0 \pi^0$
- d $p\bar{p} \rightarrow \pi^0 K_L K_L$

Good description with

- Two isoscalar states:
 f₀(1370) / f₀(1500)
- In addition:

イロト イポト イヨト イヨト

Both have dominant 4π decay modes.

→ nn̄ structure

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The $f_0(1710)$ Scalar Meson in Crystal Barrel

First discovered by Crystal-Ball in radiative J/ψ decays into $\eta\eta$

- Spin (J = 0 or 2) remained controversial for a long time
- No satisfactory Crystal Barrel signal around 1700 MeV/ c^2 for a scalar or a tensor state in $\pi^0 \pi^0 \pi^0$ or $\pi^0 \eta \eta$

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The $f_0(1710)$ Scalar Meson

First discovered by Crystal-Ball in radiative J/ψ decays into $\eta\eta$

- Spin (J = 0 or 2) remained controversial for a long time
- No satisfactory Crystal Barrel signal around 1700 MeV/ c^2 for a scalar or a tensor state in $\pi^0 \pi^0 \pi^0$ or $\pi^0 \eta \eta$
- Consistent with a dominant ss assignment
 - → Confirmed by WA102 reporting a much stronger $K\bar{K}$ coupling of $f_0(1710)$ than $\pi\pi$ coupling

くロト (得) (目) (日)

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Scalar Mesons in Central Production

$M(K^+K^-)$

$M(\eta\eta)$

$\mathsf{M}(\eta\eta\,{}'/\eta\,{}'\eta\,{}')$

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Scalar Mesons in Central Production

Scalar	$\pi\pi/m{K}ar{m{K}}$	$ ho ho / 2[\pi \pi]_S$	$ ho ho/4\pi$	$\sigma\sigma/4\pi$
<i>f</i> ₀ (1370)	$\textbf{2.17} \pm \textbf{0.90}$		\sim 0.9	\sim 0
f ₀ (1500)	$\textbf{3.13} \pm \textbf{0.68}$	2.6 ± 0.4^{1}	$\textbf{0.74} \pm \textbf{0.03}$	$\textbf{0.26} \pm \textbf{0.03}$
		3.3 ± 0.5^{2}		
<i>f</i> ₀ (1710)	$\textbf{0.20}\pm\textbf{0.03}$			

СВ	Ratio	f ₀ (1370)	f ₀ (1500)
	$\mathcal{B}(K\bar{K}) / \mathcal{B}(\pi\pi)$	(0.37 ± 0.16) to (0.98 ± 0.42)	$\textbf{0.186} \pm \textbf{0.066}$
	$\mathcal{B}(ho ho)/\mathcal{B}(4\pi)$	0.260 ± 0.070	$\textbf{0.130} \pm \textbf{0.080}$
	$\mathcal{B}(\sigma\sigma) / \mathcal{B}(4\pi)$	0.510 ± 0.090	$\textbf{0.260} \pm \textbf{0.070}$
	$\mathcal{B}(\rho\rho) / \mathcal{B}(2[\pi\pi]_{S})$		$\textbf{0.500} \pm \textbf{0.340}$
	$\mathcal{B}(4\pi) / \mathcal{B}_{ m tot}$	0.800 ± 0.050	$\textbf{0.760} \pm \textbf{0.080}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

BES spoils the Glueball Picture ...

Flavor Tagging

 $\omega K^+ K^- \rightarrow$ Peak around 1700 MeV/ c^2 (OZI rule: $n\bar{n}$ structure)

$$\phi K^+ K^- \rightarrow$$
 No peak around 1700 MeV/ c^2

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

BES spoils the Glueball Picture ...

Flavor Tagging

- $\omega K^+ K^- \rightarrow$ Peak around 1700 MeV/ c^2 (OZI rule: $n\bar{n}$ structure)
- $\phi \pi^+ \pi^ \rightarrow$ Enhancement at 1790 MeV/ c^2
- $\phi K^+ K^- \rightarrow$ No peak around 1700 MeV/ c^2

Solution: Two distinct scalar states

- The known $f_0(1710)$ decaying to $K\bar{K}$
- New broad $f_0(1790)$ coupling strongly to $\pi\pi$
 - Not confirmed by other experiments!

イロト イ押ト イヨト イヨト

Mystery why ss̄ recoils against ω

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Belle makes it even worse ...

Belle measured scalar mesons in $B^+ \to K^+ \pi^+ \pi^-$ and $B^+ \to K^+ K^+ K^-$ (Results essentially confirmed by BaBar)

- No peak at 1500 MeV/ c^2 for the $f_0(1500)$ (left),
- But a clear peak around 1500 MeV/c² decaying to K⁺K[−]
 → Structure of f₀(1500) remains unclear (or two states)!

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Results on Scalar Mesons from $\gamma\gamma$ Fusion

Results were reported by the LEP collaborations at CERN:

- Three clear peaks in the $K_S^0 K_S^0$ mass by L3 (dominated by tensors)
- No peak for the $f_0(1500)$
 - → Consistent with known small $s\bar{s}$ component! What about $\pi\pi$ spectrum?

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Results on Scalar Mesons from $\gamma\gamma$ Fusion

Results were reported by the LEP collaborations at CERN:

- Three clear peaks in the $K_S^0 K_S^0$ mass by L3 (dominated by tensors)
- No peak for the $f_0(1500)$
 - → Consistent with known small $s\bar{s}$ component! What about $\pi\pi$ spectrum?

V. Credé Glueballs, Hybrids, Quarkonia: A Global View

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

What is the nature of the $f_0(980)$ and $a_0(980)$?

(There is the possibility of an exotic nonet below 1 GeV/ c^2 .)

イロト イポト イヨト イヨト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

What is the nature of the $f_0(980)$ and $a_0(980)$?

(There is the possibility of an exotic nonet below 1 GeV/ c^2 .)

2 Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or it does not exist ... (Klempt, Ochs, etc.)

Reaction	expected		observed
$J/\psi ightarrow \omega f_0$	пn	$f_0(1710) ightarrow Kar{K}$	ริร
$J/\psi ightarrow \phi f_0$	ริร	$f_0(1790) ightarrow \pi\pi$	пn
$J/\psi ightarrow \gamma f_0$	Glueball	$f_0(1750) ightarrow \sigma \sigma$	īnn
$J/\psi ightarrow \gamma f_0$	Glueball	$f_0(1810) ightarrow \phi \omega$	SU(3) 8

Klempt, Nucl. Phys. B (Proc. Suppl.) 186 (2009), 355

イロト イポト イヨト イヨト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

What is the nature of the $f_0(980)$ and $a_0(980)$?

(There is the possibility of an exotic nonet below 1 GeV/ c^2 .)

- Solution Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or maybe, it does not exist ...
- Is the $f_0(1500)$ the scalar glueball? Data on $J/\psi \rightarrow \gamma f_0(1500)$ is still statistically limited → BES-III

ヘロト ヘ帰 ト ヘヨト ヘヨト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

What is the nature of the $f_0(980)$ and $a_0(980)$?

(There is the possibility of an exotic nonet below 1 GeV/ c^2 .)

- Solution Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or maybe, it does not exist ...
- ③ Is the $f_0(1500)$ the scalar glueball? Data on $J/\psi \rightarrow \gamma f_0(1500)$ is still statistically limited → BES-III
- Are the two states, $f_0(1710)$ and $f_0(1790)$ distinct states?
- What about the heavy-mass scalars?

5 ...

ヘロト ヘ帰 ト ヘヨト ヘヨト

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The Spectrum of Scalar Mesons

Mesonic flavor wave function of a_0^+ (980):

$$|a_0(980)^+\rangle = lpha |uar{d}
angle + eta |uar{d}sar{s}
angle + \gamma |K^+ar{K}^0
angle + \cdots$$

E. Klempt and A. Zaitsev, Phys. Rept. 454:1-202, 2007

V. Credé

Glueballs, Hybrids, Quarkonia: A Global View

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The $J^{PC} = 1^{-+}$ Exotic Wave

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave. \Rightarrow The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions; \rightarrow Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception

In summary:

- $\pi_1(1400) \rightarrow \eta \pi \neq \pi'_1(1400) \rightarrow \rho \pi$ (CB & Obelix, not published)
 - → Tetraquark? (too low in mass for hybrid, decuplet state)

 $\pi_1(1400) \rightarrow \eta \pi$

- E852, Phys. Rev. D 60 (1999) 092001.
- VES, Phys. Atom. Nuc. D 68 (2005) 3.
- Crystal Barrel, Phys. Lett. B 423 (1998) 175.
- E852 (IU), Phys. Rev. Lett. 91 (2003) 092002.

・ロト ・ 理 ト ・ ヨ ト ・

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The $J^{PC} = 1^{-+}$ Exotic Wave

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave. \rightarrow The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions; \rightarrow Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception

In summary:

- $\pi_1(1400) \rightarrow \eta \pi \neq \pi'_1(1400) \rightarrow \rho \pi$ (CB & Obelix, not published) → Tetraquark?
- **2** $\pi_1(1600)[\rightarrow \eta' \pi, \rightarrow f_1(1285)\pi]$

Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons

The $J^{PC} = 1^{-+}$ Exotic Wave

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave. \rightarrow The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions; \rightarrow Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception

In summary:

- (1400) → $\eta \pi \neq \pi'_1(1400) \rightarrow \rho \pi$ (CB & Obelix, not published) → Tetraquark? (too low in mass for hybrid, decuplet state)
- ② $\pi_1(1600)[\rightarrow \eta'\pi, \rightarrow f_1(1285)\pi] \neq \pi'_1(1600)[\rightarrow \rho\pi, \rightarrow b_1(1235)\pi]$

 $\rightarrow \eta' \pi^{-}$: dominant 1⁻⁺ partial wave (E852, VES)

- $\rightarrow \rho^0 \pi^-$: small relative structure with leakage from other waves Evidence: E852, Compass (arXiv:0910.5842v1 [hep-ex])
- $\rightarrow b_1(1235)\pi$: structure in 1⁻⁺ partial wave (E852, VES)
- $\rightarrow f_1(1285)\pi$: structure in 1⁻⁺ partial wave (E852, VES)

Outline

The Quark Model of Hadrons Just a few words about baryons ... Meson Spectroscopy Two-Photon Fusion at e^+e^- Colliders B-Decays, $\pi^- p$ -Scattering, Photoproduction Glueballs and the Quest for the Scalar Glueball Exotic Hybrid Mesons Interpretation and Summary

< ロ > < 同 > < 回 > .

Summary and Interpretation

Good chance that $\pi_1(1600)[\rightarrow \eta' \pi, \rightarrow f_1(1285)\pi]$ is lowest mass hybrid

- Mass agrees fairly well with predictions for a ~ 1900 MeV state.
- 2 $\pi_1(1400) \rightarrow \eta \pi$ is not a hybrid meson
 - Flux-Tube Model: Hybrid $\rightarrow q\bar{q} \left(L = 1 \right) + q\bar{q} \left(L = 0 \right)$
 - → Decay mode $\eta\pi$ should be suppressed; mass too low
 - Exotic wave may originate from diffractive meson-meson scattering
 - → *P*-wave in $\eta_8 \pi$ belongs to SU(3) decuplet: Tetraquark?

3 $\pi_1(2000) 1^{-+}, \pi(1800) 0^{-+}, \pi_2/\eta_2(1870) 2^{-+}, Y(4260) 1^{--}$

イロト 不得 とくほ とくほ とう

Summary and Interpretation

Good chance that $\pi_1(1600)[\rightarrow \eta' \pi, \ \rightarrow f_1(1285)\pi]$ is lowest mass hybrid

- Mass agrees fairly well with predictions for a \sim 1900 MeV state.
- 2 $\pi_1(1400) \rightarrow \eta \pi$ is not a hybrid meson
 - Flux-Tube Model: Hybrid $\rightarrow q\bar{q} \left(L = 1 \right) + q\bar{q} \left(L = 0 \right)$
 - \clubsuit Decay mode $\eta\pi$ should be suppressed; mass too low
 - Exotic wave may originate from diffractive meson-meson scattering
 - → *P*-wave in $\eta_8 \pi$ belongs to SU(3) decuplet: Tetraquark?

a $\pi_1(2000) 1^{-+}, \pi(1800) 0^{-+}, \pi_2/\eta_2(1870) 2^{-+}, Y(4260) 1^{--}$

Gluonic excitations likely found in scalar sector, but no clear state:

$$\left(\begin{array}{c} \mid f_0(1370) \rangle \\ \mid f_0(1500) \rangle \\ \mid f_0(1710) \end{array}\right) \quad = \quad \left(\begin{array}{cc} M_{1n} & M_{1s} & M_{1g} \\ M_{2n} & M_{2s} & M_{2g} \\ M_{3n} & M_{3s} & M_{3g} \end{array}\right) \cdot \left(\begin{array}{c} \mid n\bar{n} \rangle \\ \mid s\bar{s} \rangle \\ \mid G \rangle \end{array}\right)$$

V.C. and C. Meyer, Prog. Part. Nucl. Phys. 63 (2009), pp. 74-116

・ロ と く 厚 と く 思 と く 思 と