
Bending Loss in Multimode Fibers with
Graded and Ungraded Core Index

D. Gloge

Parabolic grading of the core index in a multimode fiber (Selfoc) diminishes mode dispersion and inter-
face loss. This paper shows that this grading affects the mode volume and the loss in bends very little,
if the index difference of the graded core (between the core axis and the cladding) is twice that of the
homogeneous core. Curvature radii of several centimeters are tolerable. Mode coupling (or ray de-
flection) in random bends is slightly decreased by grading. Both the graded and the homogeneous mul-
timode fiber are particularly sensitive to certain critical deviations of the guide axis from straightness.
These deviations must be less than
avoided.

1. Introduction
Spatially incoherent light-from luminescent diodes,

for example-requires multimode fibers 'for efficient
transmission. Typically, these fibers consist of a glass
core. surrounded by a cladding of slightly lower refrac-
tive index. In the simplest case, the core material is
homogeneous and has a flat index profile with an index
step nA at the core-cladding interface, as shown in
Fig. 1 (a).

A multimode fiber of this kind has two disadvantages:
(1) scatter loss produced by imperfections in the core-
cladding interface and (2) delay distortion of the signal
arising from pathlength differences among the possible
propagation directions [see rays in Fig. 1(a)]. Light,
for example, which requires a propagation time T on
axis, is delayed by (1 + A) T if it propagates at the
critical angle.

An inhomogeneous core with a parabolic index profile
[Fig. 1 (b) ] alleviates these problems. Its practical
realization looks more difficult at first glance,"2 but
with ion exchange, deposition and doping techniques
becoming common practice in fiber manufacture, there
is reason to believe that, some day, the graded (para-
bolic) profile can be achieved as easily as the flat one.
The graded profile provides continuous focusing to the
light, so that the energy is concentrated along the
axis, and little of it reaches the interface. Pathlength
differences among the various propagation paths are
compensated by velocity variations across the core
region leaving very little delay distortion. In fact, the

a = [1 - (n/n)l] i (2A)1.

a fraction of a micrometer in order that catastrophic mode loss be

parabolically graded fiber, whose index decreases by
nA across the core, exhibits only a delay difference of
the order TA2 during the total propagation time T.3' 4

This means an improvement of almost two orders of
magnitude over the flat profile for typical index differ-
ences A of the order of 1%.

The major disadvantage of the parabolic index
profile has hitherto been seen in its performance in
bends. This notion stems partly from bending loss
computations and partly from ray tracing studies.5 -1 3

We show here that, for multimode transmission, this
inferiority of the graded core is not very significant.
A graded core, which has the same radius and twice the
index difference of the homogeneous core, shows an at
least equivalent performance in bends. As far as mode
coupling in bends is concerned, the graded core seems
even superior to the homogeneous one. We arrive at
this conclusion by computing the bending losses for
arbitrary mode numbers, linking these results to an
equivalent ray representation and then performing a ray
study in a randomly curved guide. Following previous
studies5 -' 3 we derive most relations for the two-
dimensional model-a curved thin film, for example.
By using some obvious correspondence, we then apply
these relations to the cylindrical guide.

11. Mode Volume and Mode-Ray Equivalence
The directions of propagation in the homogeneous

core [see Fig. 1 (a)] are limited by the critical angle for
total internal reflection, which, because of Snell's law
is

(1)

The author is with Bell Telephone Laboratories, Inc., Craw-
ford fill TLaboratory, Holmdel, New tJersey 07733,

Received 1 May 1972.

Here, as in the following, we assume that the difference
between the cladding index n, and the core index n is
small, so that the approximation (1) holds. In that
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for the flat profile and

pg = (akn/2) 0
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(6)

for the graded profile. In the case of the homogeneous
core, can be understood as the angle of propagation
for the plane waves that constitute this mode in the core.
In agreement with most of the literature, the expres-
sions (5) and (6) for the two-dimensional case count
only one of the two possible directions of polarization.

111. Curvature Loss
The following study of the radiation loss in bends is

based on the results by Miller and Marcatili6 and a
refinement by Shevchenko.7 A straightforward exten-
sion of their arguments leads to the following loss
formula for a mode of propagation constant A3, which is
not too far from cutoff:

Fig. 1. Sketch of two cladded multimode fibers (a) with a
homogeneous core and (b) with a graded core (parabolic index
profile). The broken lines show possible guided and unguided

rays. The critical ray is indicated by a solid line.

a = 2 ( ) exp- 2 y(r)d],

where

,y2(r) = 32R2/(r + R) 2
- n 2k2 ,

case, the total number of modes propagating in the
cylindrical homogeneous core of radius a is

P = 4(akn0,) = (akn)2A, (2)

where k = 2r/X is the free-space propagation con-
stant.' 4

An equivalent definition for the graded core can be
obtained by considering the on-axis angle of a ray
that just grazes the core-cladding interface [see Fig.
1 (b) ]. For a highly overmoded guide, this again is the
angle limiting the possible directions of propagation.
If the index profile is given by

n(r) = n[l - (r
2
/a

2 )], (3)

all rays follow sinusoidal paths of period 2ra/(2A)4, a
ray of amplitude a therefore forms an angle (2A) 
with the axis. The number of modes this guide
transmits has been computed in Ref. 15, using a
phase-space consideration. Since each volume element
X2 in phase space is occupied by two modes of orthog-
onal polarization, the number of modes in a cylindrical
core of radius a becomes

Pg = (akn)2(A/2) = PfI2 (4)

for the parabolic profile. 5 The mode volume of both
fibers becomes the same, if the index difference A of the
graded profile is twice that of the flat profile.

For later use we need a correspondence relation
between modes and their representative rays. We
shall consider the two-dimensional case and describe
rays by the angle at which they intersect the guide
axis (Fig. 1). To obtain a relation between the mode
number p and the angle 0, we use the same approach
as in the three-dimensional case, and obtain

p = (2akn/7r) (5)

(8)

r = R3/n,k - R, (9)

and R is the curvature radius. To interpret this
result, we must first note that, for the straight guide, the
mode field decreases as exp[- y(O)(r - a)] in the
cladding. For this reason, a loss mechanism in the
cladding at a distance r from the guide axis-a scatter
center or a lossy jacket-produces a loss for this mode
that is proportional to exp [-2y(0) (r - a)].

The curvature of the guide has two effects: First,
the stretching of the waveguide at the outside of the
bend leads to a velocity increase in the outer wing of
the mode and hence to an apparent decrease of the
propagation constant there (see Fig. 2). As a result, 3
has to be replaced by /3R/(r + R); the mode field now
decreases as7

exp[-. f y(r)dr]

__- R
exp[_ r y(r) dr]

0

r.

Fig. 2. Curved dielectric guide and its cladding field distribution
at the outside of the bend (after Shevchenko7).
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Fig. 3. Curvature loss in dB/km vs the relative mode angle for
the graded and the flat index profile. Core diameter 0.1 mm,
curvature radius R = 1 cm, wavelength X = 1 m, relative index

difference A = 1%.

Second, a loss mechanism arises at r = 0, where the
mode velocity reaches the velocity of light in the
cladding material [ (ro) = 0]. The mode energy
passing this radius is radiated off. The resulting loss
leads to the exponential term in Eq. (7).

To solve Eq. (7) we rewrite Eq. (8) in the approximate
form

y(r) = y(O) - 2r/R. (10)

Here the fact has been used that r < RA < R in the
entire range of integration. As an additional approxi-
mation, we replace j3 by nk. We then insert Eq. (10)
into Eq. (7) and solve the integral. The result is

2 ( ) exp 2 nk2 y2(0) - 2a
nk [ 3 \ n'k 2 1?/R(

The exponential function in this expression agrees with
the corresponding result of Ref. 5, which was obtained
by an entirely different method.

To evaluate Eq. (11) in the case of the flat profile, we
use the well-known relation for the propagation con-
stant

flf2 = (nk) 2 - (rp1/2a) 2 (12)

with Pf from Eq. (5). Using also Eqs. (1) and (8), we
obtain

7f
2

(0) = (nk)2(0.2 - 02). (13)

The loss of a mode, which corresponds to a ray at angle
0, is therefore

af = 2nk(0.2 - 02) exp[--3 nkR(O 2- 0- 2 ) ] (14)

As mentioned earlier, this derivation applies only to
high order modes (not too far from cutoff); the case
0 << 0, is not covered.

=3 Ic - (2a)+ (pa + 1) (15)
a

with p0 from Eq. (6). Using again Eqs. (1) and (8) and
ignoring the term T for large p,, we obtain

y2(Q) = (nk)'( 0
2
- 600 + 4 0;202). (16)

We neglect the term 0,20 2, which causes merely a correc-
tion of the order A2 in the vicinity of 0 = 0,. The re-
sulting curvature loss is

ag = 2nk(0,2 - 00) exp[_ 2 nkR (021 - ) - ]- (17)

The exponential function in this expression agrees
with that in the corresponding result of Ref. 8.

Figure 3 shows an evaluation of Eqs. (14) and (17) as
a function of 0/0, for two guides 0.1 mm thick, one with
a flat and one with a graded profile. We have used the
parameters n = 1.5, A = 1%, X = 1 ,um, and R = 1 cm.
Note that the curvature loss (in dB/km) is plotted on a
logarithmic scale. The losses in both guides increase
sharply for angles close to the critical one. This
increase is determined by a zero in the argument of the
exponential functions in Eqs. (14) and (17). The
angle at which the argument vanishes is

Of= 0(1 - 2a/R0.2) 1
(18)

900+ef \

90o-8c

a
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b

Fig. 4. Sketch of a curved dielectric guide showing the critical
ray (a) for a flat and (b) for a graded core profile.
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Although Eqs. (18) and (19) were derived for the
two-dimensional model, at least Eq. (18) holds also
for the cylindrical case.'6 Using Eqs. (1), (2), and (4)
we can calculate the fraction of modes cost in a bent
fiber:

yf = (0,2 - 6f)/,' = a/RA (24)

and

y = (2 - 0g2)/0,2 = 2a/RA.

b

Fig. 5. Ray deflection in a curvature increment c(z)dz (a) for a
graded core and (b) for a homogeneous core.

for the flat guide and

= (l - 2a/RO,') (19)

for the graded guide.
The curvature induced cutoff described by Eq. (18)

can be explained in terms of ray optics. Figure 4(a)
shows a curved guide and a ray being reflected at the
critical angle at the outer interface. Using the tri-
angle outlined in this sketch, we can calculate the
angle Of at which this ray intersects the center line;
we find

Cos0f = (1 + a1R) coso. (20)

By using the small-angle expansion of the cosine func-
tion we can transform this equation into

Of = 0,(l - 2a/R0,')I, (21)

(25)

Higher powers of a/RA were neglected in Eq. (25).
A comparison of Eqs. (24) and (25) shows that equal
performance in gentle bends can be achieved, if the
index difference in the graded profile is twice that of the
flat profile. One-half of all modes (3 dB) are lost in
the homogeneous fiber if the curvature radius equals
the core diameter divided by the relative index differ-
ence. For 2a = 0.1 mm and A = 0.01 the radius is
R= lcm.

IV. Ray Propagation in Randomly Curved Guides
After having gained some confidence in the ray

representation and its applicability to curved multi-
mode guides, let us utilize this formalism to investigate
random bends. An excellent investigation of this kind
was performed on parabolically graded cores by
Unger." He develops the ray equation for slowly
changing curvatures

c(z) = 1/R(z) (26)

and solves it for a ray that initially enters the guide on
axis. He obtains for the ray position at the end of a
guide of length L

which agrees with Eq. (18).
Figure 4(b) shows a critical ray path in a curved graded

guide. This path represents a sinusoidal oscillation
about a center line which is displaced by a/RO,' from
the guide axis.8,"' It is therefore given by the relation

r() = 2 + a - a2 sinzo/a. (22)

The angle at which this ray intersects the center of the
guide is

f= = d 0,(1 - 2a/R0,2)1, (23)

which agrees with Eq. (21) but not with Eq. (19). The
reason why the curvature correction (1 - 2a/Ro 2) 
enters the loss formula (19) with the second power is
found in the fact that the bent graded guide reduces
not only the possible ray angles but also their ampli-
tudes. It is obvious from Fig. 4(b) that the inner
part of the graded guide is not used in the bend. Since
the total mode volume is proportional to the cone of
available angles as well as the guide cross section, a
curvature of the graded guide reduces its mode volume
more severely than a bend in the homogeneous guide.

r(L) = a L sin [ (L - z)] c(z)dz. (27)

Differentiation of r with respect to L yields a similar
equation for the ray angle:

Og(L) = y cos- (L - z)] c(z)dz. (28)

An interpretation of Eq. (28) is given in Fig. 5(a).
A guide segment dz with the curvature c(z) deflects the
ray by an angle c(z)dr from its original path, which,
in Fig. 5(a), was the guide axis. If there were no
other curved segments present, the ray would pass the
remaining guide length L - z following a sine wave
whose angle changes periodically as c(z)dz cos [6,
(L - z)/a]. Equation (28) says that the effects of all
curvature increments add linearly producing a com-
pound deflection (or displacement) at the end of the
guide.

Following the same argument we can easily establish
a similar equation for the flat profile. In this case, a
deflected ray follows a zigzag path as shown in Fig. 5(b).
The angle at which it intersects the axis changes
from 6 to - twice every period 4a/0. A curvature
increment c(z)dz at z produces therefore a deflection
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Fig. 6. Plot of the function rec(x) and tri(x) as used in the text.

6o]2) = (0(L)) - 6o2 that yields a measure of the
expected ray deflection.

We assume the curvature statistics to be such that
the ensemble average (c(z)c(z - u)) is equal to the
autocorrelation function f(u) of curvatures spaced by
a distance u along the same guide"; we assume also that
f is independent of z, that is, the curvature statistics are
the same everywhere along the guide. With

(c(z)c(z - )) = f(u), (31)

e(z)dz rec[6(L - z)/a] at the end of the guide, where
rec(x) is a binary function [see Fig. 6(a)] that changes
from +1 to -1 at x = 1,5,9,... and from -1 to +1
atx = 3,7,11...

There is one important difference between the other-
wise similar formalism of the graded and the flat pro-
file. Contrary to the sinusoidal paths in a graded
guide, which all have the same period 2ra/6,, the
period 4a/0 of a zigzag path in the flat profile depends
on the angle 6 of that specific path. If the angle
changes-for example, as a result of a bend-the period
changes with it. The wave optics equivalent of this
ray period is the beat wavelength between consecutive
modes. As a result of phase velocity differences, the
mode fields lose and regain phase equality within a
characteristic guide length, the beat wavelength, which
coincides with the mean period of the two equivalent
rays. Since, in the homogeneous guide, the phase
velocity differences are mode dependent, the beat
period changes with the mode number (and with the
equivalent ray angle).

We must account for this change in period when we
describe the deflection of a ray propagating in a guide
with arbitrary curvature. Using the same argument
that led to Eq. (28) we obtain for a ray that enters the
guide at angle Oo:

rL

(L)o = O0 + 1 rec[o(z)(L - z)/a]c(z)dz, (29)

where (z) is the angle of the ray path at a point z
along the guide. In a realistic guide, the influence of
the curvature must be very small over a considerable
guide length for the curvature loss to be tolerable.
For most rays in a multimode guide, we can therefore
replace 0(z) by Oo while integrating over a certain guide
segment of length L. Very small input angles must of
course be excluded from this approach; we shall con-
sider them later.

For rays with some finite initial angle, the periodic
reversal of the rec-function almost completely elimi-
nates the effect of a long bend with constant curvature.
This is obvious from Eq. (29). Even for the case of
random curvature, Eq. (29) shows that the average ray
deflection

(0(L)) = 0a, (30)

if the average is taken over an ensemble of statistically
equivalent guides. It is the variance ([0(L) -

and Eq. (29) squared and averaged over the ensemble,
we obtain

L 
(ol(L))f = 0o' + fJL rec[0o(L - z,)/a]

X rec[Oo(L- z2)/ajf(z, - z2)dzldz2. (32)

The range of the double integration extends over the
square area indicated by Fig. 7. The intersecting lines
show zero crossings of the rec-functions. The rec-
product of Eq. (32) is + 1 in the white and -1 in the
shaded areas. In reality, this checkerboard pattern is
of course much finer, as there are hundreds of zero
crossings within every meter of guide length.

To solve Eq. (32), we introduce a new coordinate
system

V = 2(ZI + Z2) (33)

and

U = Z1 - Z2,

which is also indicated in Fig. 7. We consider guide
segments, whose length L is large compared to the
distance over which the curvature is correlated. The
autocorrelation function f(u) then vanishes everywhere
in Fig. 7 except for a narrow stripe along both sides of
the main diagonal (u = 0). If we now integrate along
u and v instead of z 1 and Z2, we may extend the integral
over u from - - to + a, since its value is limited by
f and over v from 0 to L tolerating a small error in the
lower left and the upper right corners of the square in
Fig. 7. If we consider the fact that f is an even func-
tion of u, we have

L

zit

U

Z 2 - L

Fig. 7. Range of the double integration of Eq. (32). The
rec-product in Eq. (32) is +1 in the white and -1 in the shaded
areas. Also shown is the u, v-coordinate system used in Eq. (34).
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Fig. 8. Spectrum of possible guide curvatures and probability
distribution of possible ray periods to be expected in a ray in-
jected off-axis. The functional dependence is strictly speculative

and merely meant for illustration.

(02)f = 0,' + 2 f(u)du L rec[0O(L v 2)/]

X rec0o(L - v + )/a]dv.

We can perform this integration after Fourier exi
sion of the rec-functions or just by inspection of
region of integration in Fig. 7. For the practical
that L >> a/o, either approach leads to the result

(02)f = 02 + L f(u) tri(oou/a)du,

where tri(x) is the triangular function shown in
6(b). This equation can be expressed in terms of
power spectrum

F(v) = f(u) exp(i27rvu)du

of the curvature distribution. Expanding tri(x)
Fourier series, we obtain

(0')f = +0, ++8L (1)m F[(2m + 1) 001.
ir' ,,=(2m +l1)2L 4aj

According to Eq. (37), the rms increase in angle is
determined by those components in the curvature
spectrum whose frequency coincides with that of the
zigzag ray or is a multiple of it.

The stiffness of practical fibers limits curvature com-
ponents with mm-periods to very small amplitudes and
practically excludes periods that are much smaller than
that. Truncating Eq. (37) after the first term therefore
yields a good approximation: I

(02)f = 0,2 + (8L/7r2)F(0o/4a). (38)

Since the next term of the series (37) is negative, the
above approximation is conservative.

We have considered guide segments that are long
compared to the zigzag period 4a/Go and the curvature

(34)

)an-
the
case

correlation distance but short enough so that curvature
induced changes in the angle are small compared to
Oo. To shed some light on this latter requirement,
Fig. 8 illustrates the spectral distribution of the
curvature components. It also shows, for a guide
segment of length L, the typical probability distribu-
tion of the expected ray frequencies. This distribution
centers around 6o/4a because of Eq. (30), while its
variance increases proportional to L because of Eq. (38).
The length L and the variance should be small enough
that the statistical value G(z)/4a can be replaced by the
average value o/4a. This is a good approximation as
long as F(v) is well behaved and has no extrema in the
range of significant ray probabilities.

In the case of a practical multimode fiber link, only a
reasonably small fraction of the input power can be
sacrificed in bends. This fraction will consist mostly of
light entering the fiber close to the critical angle. Our
principal interest is therefore in angles close to the
critical one and in curvature distributions that increase
this angle not too much. If the curvature distribution
of such a guide has extrema around 0,/4a this would
indicate periodic deformations of a nonstatistical
nature, which could and should be avoided. Ex-
cluding such artificial situations, we can justify using
F(Go/4a) in Eq. (38) for the entire guide length. In the
following estimate we go even a step further and
replace F(6o/4a) by F(6,/4a).

This then permits an easy comparison with the para-
bolic profile for which"

(02)g = 02 + (L/2)F(0c/27ra). (39)

The differences between Eqs. (38) and (39) are within
the accuracy of these expressions and permit no con-

Fig. clusions as to the advantages of one or the other profile.
the The results above were derived for the two-dimen-

the sional model, but the same arguments are applicable to
the cylindrical case. Although this will result in
somewhat different coefficients, the principal relations

(36) should be the same. For this reason, let us proceed in
our estimate by simply applying Eqs. (38) and (39) to

n a the cylindrical model. We calculate the input angle
Go whose rms increase leads to the critical angle. Be-
cause of Eqs. (2) and (4) the ratio ( - o')/Gc' is the

(37)

1
_/

_ t-

Rmax 12
(2 7r' 0)2

Fig. 9. Sinusoidal deviation from guide straightness used to
interpret the curvature spectrum.
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fraction of modes lost in random bends. Using Eqs.
(1), (38), and (39) we obtain

yf = (4L/7rA)F[(2A)1/4a] (40)

and

ye= (L/4A)F[(2A)i/2ira]. (41)

To gain an understanding of F at the critical ray
frequency, let us consider a few specific examples. If
the guide axis followed a sine wave of frequency vo and
amplitude , the curvature would be (27rvo) 28 sin2 7rvoz.
Let us assume that this sine-ripple extended only over
a distance s and that the guide were otherwise straight.
In this case, the curvature spectrum has a peak of
height (27rvo)4 8's'/L and width 1/s at vo. Let us assume
that there are Xq of these ripples (of length s) randomly
distributed along a guide length L and with frequencies
varying between vo - 1/s and vo + 1/s. The various
contributions to the curvature spectrum would then
simply add and result in a value of approximately
l in(27rvo)4 8's'/L at v0. Contributions from ripples
outside the above frequency range would be negligible
at zo.

Obviously, long natural ripples are very unlikely.
For the sake of a simple example, let us assume that
each ripple is just one period Iong. The ripple then
degenerates to the single sinusoidal deviation illustrated
in Fig. 9. With s = l/vo we obtain

F(to) = 874v0)2an2/L.

After inserting this into Eqs. (40) and (41) we have

yf = 47r2n(82/02) (43)

and

yg = 7r2n (t5/a2). (44)

This result admits a simple physical interpretation,
if one considers that Eqs. (43) and (44) represent the
ratio ((02) - 0o2)/0c2. We can therefore rewrite
Eqs. (43) and (44) in terms of the rms deviation of the
angle 0:

produces a 3-dB mode loss in the homogeneous guide.
If again a = 50 urn and A = 1%, 8(,7) = 5.5 um.
Thus, an irregularity of the kind illustrated in Fig. 9
with a deviation 2 = 0.5 ,m could be tolerated only
about 500 times along the guide.

So far we have excluded the case of the on-axis or
near-axis ray. We can study this problem at least
formally, if we consider guide segments short compared
to the total guide length L that produce only a small
rms increase in the angle. We then write Eq. (38) in
the form

ad@ = (4/,r2)dLF(0/4a), (48)

where now F(0/4a) changes along the guide. By
integrating Eq. (48) from the input angle 00 to the out-
put angle OL, we obtain

rOL 0do 4
Jeo F~a/4)- L.J00 F(0/4a) 72'

(49)

To solve this equation, we must know the entire
curvature distribution F(v). If, for example,

F(v) = () 2uo/[l + (2,rvuo)2]

integration of Eq. (49) yields

L = 16 (2) (OL2 - 02) 1 + 8 - ( + )

(50)

(42) For the graded profile, inserting Eq. (50) into Eq. (39)
results in a similar relation"1 :

L, = (l/UO(C2))(OL2 - 0O,)[1 + O,2(uo'/a')]. (52)

If 00 = 0 and L = ,, Eqs. (51) and (52) determine
the fiber length that an on-axis beam can travel before
it is lost. With the realistic assumption that u >>
a/0, we have approximately

L = 0.760, 4uo/(c2)a2 (53)

and

L = 0,
4

uo/(c')a2,

((02) - 002)f = 2ir(3/a)O ()1

for the flat profile and

((02) - o02) = r(a/a)oc ()2

(45)

(54)

where

(c2) = 2 f F(v)dv.(46)

for the graded profile. At least Eq. (46) is a straight-
forward result, which we could have obtained directly:
A guide irregularity of the kind shown in Fig. 9 changes
the ray angle in the graded profile'" by rG,8/a. Since
the contributions add randomly the angle increases with
(-q)4. The interesting result of our derivation is the
fact that the length or period of such an irregularity can
be quite different from the ray period and still con-
tribute considerably to the rms increase of the angle.
This follows from the wide spectrum that each indi-
vidual irregularity covers in the curvature distribution.

We can now calculate the tolerable number or size of
the irregularities. The quantity

6(,q) = a/(8)1,r (47)

(55)

The quantity ()- i can be interpreted as the rms
curvature radius and uo as the distance over which the
curvature is correlated. For equal guide and curvature
characteristics, an on-axis ray travels 1.3 times farther
in the graded guide than in the homogeneous one.
This comparison seems to indicate a disadvantage of
the flat profile. The reason for this disadvantage is
the poor guidance of near-axis rays that, because of
their long zigzag period, interact with the larger (low-
frequency) components of the curvature spectrum. We
refrain from using Eqs. (53) and (54) in a numerical
example, because we believe the assumption (50) to be
so speculative that a quantitative evaluation could be
very misleading.
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VI. Conclusions
We have studied the performance of multimode

fibers in bends and found a striking similarity between
fibers with a graded core index (Selfoc) and a homo-
geneous core. The mode volume and the loss in bends
are the same in both fibers, if the index difference of the
graded profile (between core axis and cladding) is twice
that of the flat profile. The critical radius of curvature
(3-dB loss) is then equal to the core diameter divided
by the (relative) index difference in the flat profile.
This radius amounts to 1 cm for an index difference of
1% and a core diameter of 100 ,4m.

Mode coupling in random bends leads to a steady
transfer of power from lower to higher modes and an
eventual loss. Most critical are oscillating curvature
components whose period coincides with the beat period
between two modes (or the corresponding zigzag
period of the equivalent ray). Even if these curvature
components are very short-so short, in fact, that they
degenerate to isolated hump-shaped deviations from
straightness-they cause serious mode coupling.
Five hundred of these irregularities, about 1 mm in
length and 0.5 ,4m in size, result in a loss of half of the
modes.

The author is grateful to E. A.
D. Marcuse for fruitful discussions.

J. Marcatili and
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