\relax \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}optimization of microscope design}{2}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Design specifications for the Hall D tagger microscope. These goals enable near-optimum performance of the tagger for GlueX physics, within the constraints of a coherent bremsstrahlung source designed for 40\% polarization at 9\nobreakspace {}GeV produced using 12 GeV electrons.}}{2}} \newlabel{specs}{{1}{2}} \citation{musienko2009} \citation{yi2010} \citation{somov2010} \citation{yi2010} \citation{retiere2009} \citation{seifert2009} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}overview of readout design}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}lifetime from radiation damage}{3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Simulation Model}{3}} \newlabel{eq:q1}{{1}{4}} \newlabel{eq:tau1}{{2}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}signal light yield}{4}} \newlabel{eq:phdist}{{3}{4}} \newlabel{eq:landau}{{4}{4}} \citation{vandam2009} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Parameter values in the model pulse height density function Fig.\nobreakspace {}3\hbox {}. Values are dimensionless. }}{5}} \newlabel{phdistpars}{{2}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}amplifier response}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}pixel recovery}{5}} \citation{musienko2009,retiere2009,britvitch2006,para2007} \citation{britvitch2006} \citation{musienko2009} \citation{britvitch2006} \citation{musienko2009} \citation{S10362} \citation{S10362} \citation{britvitch2006} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Energy deposition spectrum (left panel) and modeled photoelectron yield in a SiPM (right panel) for a 3\nobreakspace {}GeV post-bremsstrahlung electron in the Hall D tagger Geant simulation. In the left panel, the yellow shaded area corresponds to post-bremsstrahlung electron tracks, the blue peak near zero comes from gamma ray conversions in the plastic, and the black histogram is the complete spectrum, including the mostly low-energy hits from random room background. The spectrum in the right panel includes only the post-bremsstrahlung electron component, excluding the few percent below the Landau edge in the left plot that come from tracks entering or exiting the fiber from the side, that do not travel the full length inside the fiber. Cerenkov photons produced in the clear light guides fall outside the capture cone of the fiber, and are not included in the statistical model. }}{6}} \newlabel{fig:dE}{{1}{6}} \citation{musienko2009} \citation{para2007} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Detailed analytical model for a pulse from the UConn SiPM preamplifier circuit. The data points are computed from the Fourier transform coefficients of the circuit model, and the curve is a piece-wise analytic interpolation of the points. The second panel shows an expanded view of the tail of the pulse plotted in the first panel. The charge integral of the pulse is zero. The amplitude of the pulse is normalized to a maximum value of unity. }}{7}} \newlabel{fig:impres}{{2}{7}} \citation{retiere2009} \citation{retiere2009} \citation{S10931} \citation{musienko2009} \citation{yi2010} \citation{yi2010} \citation{somov2010} \citation{somov2010} \citation{musienko2009} \citation{yi2010} \newlabel{eq:g_1(t)}{{5}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}after-pulsing}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}cross talk}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.6}dark current}{8}} \newlabel{eq:darkrate}{{6}{8}} \@writefile{toc}{\contentsline {section}{\numberline {3}Simulation Results}{9}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Parameters used by the simulation model to produce the results of this study. The CPTA device under study is the SSPM-0606BG4-PCB marketed by Photonique. The Hamamatsu device is the S10631-025P. Many of these parameters are not device-dependent and so are the same in both simulations.}}{10}} \newlabel{modelpars}{{3}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}results for the CPTA 2\nobreakspace {}mm device}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Sample trace taken from the simulation of the Hamamatsu MPPC at a signal rate of 4\nobreakspace {}MHz and a dark rate of 10\nobreakspace {}GHz. The y axis is output voltage expressed in units where a single pixel has a maximum amplitude of 1, as shown in Fig.\nobreakspace {}1\hbox {}. The second panel is a zoomed view of the first, showing the largest pulse in greater detail. }}{11}} \newlabel{fig:traces}{{3}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Amplitude spectrum (left panel) and detection efficiency as a function of amplitude (right panel) for the CPTA device simulation at a signal rate of 100\nobreakspace {}kHz and a dark rate of 10\nobreakspace {}MHz. The solid line in the left panel is the generated spectrum, and the dashed line is the spectrum of the detected pulses. The spectrum-weighted efficiency in this simulation is 99.8\%. }}{11}} \newlabel{fig:ampSSPM0}{{4}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Time walk correction (left panel) and time resolution (right panel) as a function of pulse amplitude, for the CPTA device simulation at a signal rate of 100\nobreakspace {}kHz and a dark rate of 10\nobreakspace {}MHz. The spectrum-weighted RMS time resolution from this simulation is 122\nobreakspace {}ps. }}{12}} \newlabel{fig:tresSSPM0}{{5}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Pulse height amplitude spectrum for the CPTA simulation at a signal rate of 1\nobreakspace {}MHz (left panel) and 4\nobreakspace {}MHz (right panel). The solid lines are the generated amplitude spectra and the dashed lines are the detected pulse heights. The spectrum-weighted detection efficiencies are 98.5\% and 92.5\%, respectively. }}{13}} \newlabel{fig:ampSSPM}{{6}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces RMS time resolution for the CPTA device at a signal rate of 4\nobreakspace {}MHz and dark rate of 10\nobreakspace {}MHz (left panel) and 1\nobreakspace {}GHz (right panel). The corresponding spectrum-averaged resolutions are 176\nobreakspace {}ps and 228\nobreakspace {}ps, respectively. The discriminator detection efficiencies at 50\nobreakspace {}pe threshold are 92.5\% and 55.3\%, respectively. }}{13}} \newlabel{fig:tresSSPM}{{7}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Amplitude spectrum (left panel) and detection efficiency as a function of amplitude (right panel) for the Hamamatsu device simulation at a signal rate of 4\nobreakspace {}MHz and a dark rate of 10\nobreakspace {}MHz. The solid line in the left panel is the generated spectrum, and the dashed line is the spectrum of the detected pulses. The spectrum-weighted efficiency in this simulation is 94.8\%. }}{14}} \newlabel{fig:ampMPPC4}{{8}{14}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}results for the Hamamatsu 3\nobreakspace {}mm device}{14}} \citation{somov2010} \citation{somov2010} \citation{musienko2009} \citation{yi2010} \citation{musienko2009} \citation{yi2010} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Time walk correction (left panel) and time resolution (right panel) as a function of pulse amplitude, for the MPPC device simulation at a signal rate of 4\nobreakspace {}MHz and a dark rate of 10\nobreakspace {}MHz. The spectrum-weighted RMS time resolution from this simulation is 181\nobreakspace {}ps. }}{15}} \newlabel{fig:tresMPPC4}{{9}{15}} \@writefile{toc}{\contentsline {section}{\numberline {4}Conclusions}{15}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Amplitude spectra for the MPPC device operating at a signal rate of 4\nobreakspace {}MHz with a whole-device dark rate of 10\nobreakspace {}GHz (left panel) and 100\nobreakspace {}GHz (right panel). The solid line is the generated spectrum, and the dashed line is the spectrum of the detected pulses. }}{16}} \newlabel{fig:ampMPPC4ab}{{10}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces RMS time resolution as a function of pulse amplitude for the MPPC device operating at a signal rate of 4\nobreakspace {}MHz with a whole-device dark rate of 10\nobreakspace {}GHz (left panel) and 100\nobreakspace {}GHz (right panel). The discriminator threshold was left fixed at 50 pe. }}{16}} \newlabel{fig:tresMPPC4ab}{{11}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Detection efficiency as a function of generated amplitude for the MPPC device operating at a signal rate of 4\nobreakspace {}MHz and a dark rate of 10\nobreakspace {}GHz (left panel) and 100\nobreakspace {}GHz (right panel). The discriminator threshold was left fixed at 50 pe. }}{17}} \newlabel{fig:effMPPC4ab}{{12}{17}} \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Time resolution and detection efficiency for different levels of dark rate. Dark rates stated are whole-device counts per second.}}{17}} \newlabel{tres_eff}{{4}{17}} \citation{somov2010} \citation{musienko2009} \bibcite{yi2010}{1} \bibcite{somov2010}{2} \bibcite{musienko2009}{3} \bibcite{britvitch2006}{4} \bibcite{retiere2009}{5} \bibcite{para2007}{6} \bibcite{S10362}{7} \bibcite{S10931}{8} \bibcite{vandam2009}{9} \bibcite{seifert2009}{10} \bibcite{vandam2010}{11}