Specifications for the bias voltage control
software API for the tagger microscope

Hovanes Egiyan, Richard Jones

August 13, 2012

Abstract

We specify the interface required to integrate the voltage control
of the GlueX tagger microscope detector into the experimental control
system of Hall D.

1 Introduction

The tagger microscope ?]ctor consists of five columns of 100 rows of scin-
tillators that will be readout using silicon photodetectors (SiPMs). The bias
voltage ach of the SiPMs needs to be individually adjusted with a preci-
sion of 0.1 Volts. The control points for the voltage ly to the SiPMs are
divided into groups of 30 channels with a total of 167 groups. Each group
is controlled using a custom designed board that can set and report values
of the different parameters for each SiPM channel. The remote communi-
cation with the board can be done through the Ethernet port using custom
protocol using Ethernet Transp yer. Each control board is identified b
an address set using a jumper 777, and each channel is identified using 777
(needs UConn input).

The programming of the firmware on the control boards has been done
by the University of Connecticut group, and in order to be able to inte-
grate the bias voltage control and monitoring into the EPICS-based controls
framework of Hall D an interface layer needs to be developed to be used
by the EPICS IOCs running on a regular Lin sed computer. Within
the EPICS framework different parameters of the voltage channel will hav
their corresponding EPICS variables. The variables that write to the control

1

jonesrt
Sticky Note
replace with "read out"
comment: "readout" is a noun, you need a verb form here.

jonesrt
Sticky Note
0.01 V
comment: 0.1V is not sufficient precision for optimal gain matching. Certainly 0.01V is more than enough precision. In our current design the DAC is 14-bit, so the voltage step is about 6mV for full-scale of 100V.

jonesrt
Sticky Note
17 groups, not 167

jonesrt
Sticky Note
yes this is correct -- remove "???"

jonesrt
Sticky Note
by a geographical address header word in the response packets sent by the device to the host.

jonesrt
Sticky Note
each

jonesrt
Sticky Note
change to "represent states on the control board"

jonesrt
Highlight

boards will be processed (and thus communicate with the board) whenever

the desired value is changed by the user, while the variables that read their
values from the boards will need to be updated at about 1 Hz frequency,@
or whenever the readings are changed. This document specifies the require-
ments for such a library assuming that the time for sending a single requests

to a control board and receiving a response from it over a local network is
under one millisecond during the operations with the full configuration.

2 List of parameters

Table 1 lists the parameters that will be controlled and monitored by EPICS
for every voltage channel. A brief description for each parameter is given in
the second column. The column “Access by EPICS” indicates whether the
parameter is expected to be read, written, or both by EPICS. The status
parameter should indicate the state the channel is in, such as On, Off, Ramp-
up, Ramp-down, Tripped, Over-temperature, etc. The enable parameter can
be written by EPICS to turn on and off the channel, and it also can be read
by EPICS to determine what the most recent EPICS request for enabling
or disabling that channel was. Note that it provides us with different infor-
mation from what is reported in status parameter which reports the actual
state of the voltage channel.

3 List of functions

In order to access and modify the parameters in Table 1 we need to develop
a library of functions that will be used by a program running on a remote
host and communicating with the control boards over a local network. This
program will serve the EPICS variables corresponding to different parame-
ters using ChannelAccess protocol. The most commonly used programming
languages for developing an EPICS ChannelAccess servers are C and C++,
therefore the set of functions needs to be easily usable by C and C++ codes.

The methods that are required in the API can be divided into two types.
The first type of the functions will be accessing and modifying the parameters
listed in Table 1 that are related to a particular bias voltage channel. These
functions are given in Table 2. The second type of functions would change
or report the status of the communication between the server and individual

jonesrt
Sticky Note
comment: the DAC chip itself has a write-only interface, so what one reads back from the control board is only the last set of demand values that were written to the chip. While it might be useful to read them back once at start-up, I wonder what the use would be of reading them back every second, since writes to the DAC chip only happen when changes are requested.

[from Igor's wiki page:]
Note that the DAC chip has a write-only interface: state of particular channels cannot be queried. The returned voltages are those stored by the FPGA for programming. The values reported are the nominal programmed values simply confirming that the correct values were received. However, the returned values do reflect the corrections made by the FPGA in the values that would have exceeded the voltage limits.

‘ Short Name ‘ Brief Explanation ‘ Units ‘ Access by EPICS ‘

v_sp Voltage setpoint \Y Read/Write
v_rb Voltage readback \Y Read

v_max Maximum allowed voltage | V Read/Write
1Tb Current readback 1A Read/Write
i_trip Trip current 1A Read/Write
t_trip Time before tripping S Read/Write
temp_rb Temperature reading vC Read

ramp_up Ramp-up rate V/s | Read/Write
ramp_dn Ramp-down rate V/s | Read/Write
status Channel status N/A | Read

enable Enable/Disable channel N/A | Read/Write

Table 1: List of the parameters than need to be controlled/monitored by
EPICS for each microscope voltage channel.

boards (or ports). The list of functions operating on an individual control
board are listed in Table 3. All the details of the communication protocol
will be hidden from EPICS support allowing EPICS to open communication
ports for each control board, to determine the list of channels available on
each port, and to send requests for individual channel and receive responses
using function calls. EPICS will call these functions asynchronously, that
is the requests for each board will be queued, and when it is time for the
request to be processed a callback function is processed in a separate thread.
In general, the calls to the communication ports for the control boards will
be made from multiple threads at the EPICS support level, therefore the
API should have its own mutual exclusion scheme such that there are no
collisions between the calls from multiple threads and that the dead-time of
the communication ports due to locking of the shared resources on the server
side is not prohibitively high. At the EPICS support level there will not be
an attempt to prevent accesses to the communication ports from multiple
threads.

jonesrt
Rectangle

jonesrt
Sticky Note
comment: there is no mechanism for reading back currents in our present design, nor is there a trip mechanism in case of sustained over-current conditions. Are these required for low-voltage supplies? I would consider these to be features of HV supplies.

Either we need to redesign the control boards to add hardware for current sensing and trip logic, or remove these from the spec.

jonesrt
Sticky Note
implication: functions in tables 2,3 must be re-entrant / thread-safe.

Definition

‘ Brief Explanation

double GetVoltageSetpoint()

Get Voltage setpoint as the return
value.

int SetVoltageSetpoint(double v)

Set voltage setpoint to the value v.

double GetVoltage()

Get the measured voltage as the return
value.

double GetMazVoltage()

Get the maximum value for the set-
point as the return value.

double SetMazxVoltage(double v)

Set the maximum value for the setpoint
to the value v.

double GetCurrent()

Get the measured current as the return
value.

double GetTripCurrent()

Get the trip current as the return value.

int SetTrip Current(double i)

Set the trip current to the value 1.

double GetTripTimeDelay()

Get the trip delay time as the return
value.

int SetTrip TimeDelay(double t)

Set the trip delay time to the value ¢

double GetTemperature()

Return temperature as the return
value.

double GetRampupRate()

Get the ramp-up rate as the return
value.

int SetRampupRate(double r)

Set the ramp-up rate to the value 7.

int GetRampdownRate()

Get the ramp-down rate as the return
value.

int SetRampdownRate(double r)

Set the ramp-down rate to the value r.

long GetStatus()

Get the encoded status word for the
channel as the return value.

int Enable()

Enable voltage output for the channel.

int Disable()

Disable voltage output for the channel.

bool IsEnabled()

Returns true if channel is enabled, false
otherwise.

Table 2: List of the methods related to a particular voltage channel needed
for developing the EPICS support. The parameters specifying the channel
are omitted here assuming the these are class methods. If C-interface is
developed, the arguments for identifying the voltage channel will need to be
added to the argument lists.

jonesrt
Rectangle

jonesrt
Sticky Note
these would be null operations, under our present design.

Definition ‘ Brief Explanation ‘

void* Open(const char® addr) | Open a communication port for the
board with addr and return the
pointer.

int Close() Close the communication port for the
board.

int Reset() Close the communication port for the
board.

int IsConnected() Check the communication status and
return it.

vector GetChannelList() Return the list of channel identifiers on
that board.

Table 3: List of the methods related to a particular control board needed
for developing the EPICS support. The parameters specifying the board
are omitted here assuming the these are class methods. If C-interface is
developed, the arguments for identifying the control board will need to be
added to the argument lists.

4 Summary

In this document we specified the requirements for the API that needs to be
developed to integrate the bias voltage control into the Hall D experimental
control system. This paper defines a list of parameters that should be im-
plemented in the firmware as well as a set of functions that are needed for
EPICS device support (see Table 2 and Table 3)‘. The software library will
need to be compiled and run on a Linux-based system, so it would be nice to
require only external libraries that are part of the major Linux distributions.@

jonesrt
Rectangle

jonesrt
Sticky Note
additional functions are needed here:
1) read back control board temperature (different from per-channel amp board temperature)
2) read/write the amplifier gain setting (high/low)
3) read back system health (ok/not ok)
4) return error message in case the system health returns "not ok"

There are 8 different "system health" readback voltages involved in verifying the state of the control logic and the DAC calibration on the bias control board. The control library will hide this complexity by reporting human-readable messages in case something on the control board is outside the expected operating range. Something akin to "trip logic" could be programmed at the host software library layer that would turn off bias voltages in the case of system health not-ok. This trip would be at the level of an entire control board, not individual channels.

jonesrt
Sticky Note
If it is all the same to you, I would prefer to implement this library in c++. As an appendix to this document, could you please publish a c++ header file containing the classes to be implemented, their public methods, and typical usage patterns in EPICS code?

jonesrt
Highlight

jonesrt
Sticky Note
change from "it would be nice" to simply state that the only external libraries to be used are those that are included in standard linux distributions.

