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In this paper the high-energy expansion for scattering from extended targets that the authors prev
applied to beamstrahlung radiation and pair production is applied to the problem of radiation in a medium
multiple scattering. The suppression of the emission of long-wavelength photons, the Landau-Pomera
Migdal effect, is treated and explained in physical terms. This treatment of single-photon emission ex
previous classical treatments of the problem to the quantum domain and corrects certain approximation
in these earlier works. The effects of finite target thickness is treated. A quantum treatment of mu
scattering is also given to aid in the physical interpretation of the suppression effect and to completely
our model of multiple scattering.@S0556-2821~96!01211-8#

PACS number~s!: 41.60.2m, 13.40.2f, 11.80.Fv
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I. INTRODUCTION AND MOTIVATION

Perhaps the most ubiquitous process in high-energy ph
ics is the bremsstrahlung of photons by a charged particle
the field of an atom first described by Bethe and Heitler@1#.
Following the experimental confirmation in 1993 of th
Landau-Pomeranchuk-Migdal~LPM! effect @2–5#, there is
renewed interest in extensions of this process as well as
strong interaction analogue, gluon radiation at very high e
ergies in heavy nuclei. In this paper we describe the appli
tion of eikonal techniques developed for the beamstrahlu
process@6# that lead to a simpler, more straightforward, an
physically transparent quantum-mechanical derivation of
LPM suppression of soft-photon radiation from high-ener
electrons in dense matter. This exposition fills in some of
important steps omitted in our recent preprint@7# and extends
the treatment in two ways. We analyze more fully our mod
of the random-scattering medium, and we also analyze
effects of finite-target thickness for comparison with the r
cent data.

This effect was first described by Landau and Pomer
chuk @8#, who treated the classical radiation of a high-ener
particle in the fluctuating and random field inside an in
nitely thick medium. The minimum longitudinal-momentum
transfer,qi , by a high-energy electron of momentump and
massm, radiating a photon of momentumk[(12x)p, is
given byq i

min5m2(12x)/2xp. The uncertainty principle is
used to define the formation lengthl f5~1/q i

min!, which at
high energies (p@m) and soft-photon emission~12x!!1
can become large relative to the scattering mean free pat
the electron. When this occurs, coherence is lost, leading
suppression of the radiation.

In their classical derivation, which is appropriate to th
kinematic limit, k!p, Landau and Pomeranchuk were th
first to show that the familiar Bethe-Heitler radiated photo
spectrum,dN;dk/k, is modified by the multiple scattering
of the electron as it traverses the rapidly varying elect
fields of the medium. When the mean free path of the el
tron, aL, is comparable to or less than the formation leng
l f , they found that the spectrum is suppressed, ultimat
achieving the form
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dN;dk/~pALk!. ~1.1!

Subsequently, Migdal@9# presented a quantum-mechanica
derivation of this effect, treating multiple scattering via the
Vlasov equation and including the effects of electron spi
and energy loss. His derivation contains a number of a
proximations that are formally difficult, not very transparen
on physical grounds, and numerically not well controlled
These works have been extended by several authors@10#.

The approach presented here is a simple application of t
eikonal formalism previously developed for high-energy
beamstrahlung processes and has the advantage of gre
generality and physical transparency. Aside from providing
simple and intuitive framework for more accurate studies o
the LPM effect, including finite target thickness, our motiva
tion is to provide a formalism that may be adapted to othe
problems such as radiation by electrons transiting rando
magnetic domains and non-Abelian gluon radiation b
quarks transiting heavy nuclei and undergoing multiple in
elastic collisions@11,12#.

As described earlier, the essential physics used in LP
leading to the behavior in~1.1! is the random scattering of
the electron while transiting matter. The radiation lengthL is
energy independent at high energy, being given for screen
Coulomb fields by

1

L
54nar e

2Z2ln~183/Z1/3!, ~1.2!

wherer e5a/m52.8 fm andn is the number density of tar-
get particles. The mean free path is defined asaL. In travers-
ing a path lengthz, the longitudinal momentum transfer due
to multiple scattering of the electron increases to

qz5SE2
m21~dpW'!2

2p D2S k1xE2
m21~dpW'!2

2xp D
5

k

2xp2
@m21~dpW'!2#, ~1.3!

where the classically calculated, mean-square, transve
momentum transfer is given by
6265 © 1996 The American Physical Society
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~dpW'!2;U E
0

~1/2!z
dz8EW'~z8!U2. ~1.4!

EW'(z8) is the random~from one electron to the next! atomic
electric field that scatters the electron over its path length
~1/2)z, the average for both the incident and scattered ele
tron; higher-order effects, such as scattering of the photon
the medium, are neglected@13#. The standard formula for
multiple scattering by statistically independent atoms is@14#

~dpW'!25
Es
2

L S 12 zD , Es
25

4pm2

a
;~21 MeV!2.

~1.5!

Identifying qms;1/z by the uncertainty principle, we obtain
from ~1.3!

z; l f S 11
Es
2

2m2L
zD 21

, ~1.6!

so that in the Bethe-Heitler limit of no multiple scattering
zBH;l f}1/k, whereas for strong multiple scattering,zLPM
;Al f}1/Ak.

This simple argument, confirming~1.1!, indicates that the
1/p corrections are necessary in the eikonal treatment.
emphasized in@6# the zeroth-order eikonal approximation
treats straight-line propagation through the medium in t
limit of zero transfer of longitudinal momentum,qz→0. In
contrast, here the multiple-scattering corrections to a fin
qz;1/p are of interest, as shown in~1.3!. Let us now turn to
some details of the formulation and calculation.

II. EIKONAL TREATMENT

We review here the eikonal formulation for high-energ
scattering by the static fields of a medium at rest; for mo
details, see@6#. For simplicity @15# we consider the Klein-
Gordon equation for a scalar particle of massm in a static
external field, which can be written

@~E2V!21¹W 22m2#f~rW !50, ~2.1!

and write the scattering potential in cylindrical coordinates

V~r !5V~z,bW'!, bW'
25x21y2. ~2.2!

We look for solutions satisfying the requisite initial and fina
~outgoing and incoming! boundary conditions. The solution
will be written in the form

f~rW !5exp@ iF~rW !#, ~2.3!

where the phase functionF satisfies the equation

~E2V!22m25@¹W F~rW !#22 i¹W 2F~rW !. ~2.4!

For the incident wave, the leading term inFi will be piz
for the incident particle momentum along thez axis. The
phase function to order (1/pi) for initial ~outgoing! scattering
boundary conditions is written
of
c-
by

,
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F i5piz2x0~z,bW'!2
1

pi
@x1~z,bW'!1 ix2~z,bW'!#.

~2.5!

Substitution into~2.4! then yields

x0~z,bW'!5E
2`

z

dz8V~z8,bW'!, ~2.6!

which is recognized as the usual eikonal form. The leadin
~1/p! corrections are~for p'

i not zero!

x1~z,bW'!5
1

2 E
2`

z

dz8†@¹W 'x0~z8,bW'!#2

22pW'
i
•¹W 'x0~z8,bW'8 !‡,

x2~z,bW'!5
1

2 E
2`

z

dz8@¹W 2x0~z8,bW'!#. ~2.7!

For the final state with incoming-wave boundary cond
tions, the leading term inFf must contain the final electron
momentum written aspW f5(zWpf1bWp'

f ). The phase function
to order (1/pf) will be written as

F f5pW f
•rW1t0~z,bW'!1

1

pf
@t1~z,bW'!1 i t2~z,bW'!#,

~2.8!

and then substitution into~2.4! yields the solution

t0~z,bW'!5E
z

`

dz8V~z8,bW'!, ~2.9!

which is again in the familiar eikonal form, and the leadin
corrections in this case are

t1~z,bW'!5
1

2 E
z

`

dz8†@¹W 't0~z8,bW'!#212pW'
f
•¹W 't0~z8,bW'!‡

t2~z,bW'!5
1

2 E
z

`

dz8@¹W 2t0~z8,bW'!#. ~2.10!

The total phase appearing in the bremsstrahlung mat
element also includes the phase@16# of the photon wave
function A(rW). Defining the momentum transfer to the me
dium asqW 5pW f1kW2pW i , the total phase can be written in the
form

F tot5F i2F f2kW•rW

52qW •rW2x0
tot~bW'!2

1

p
@x1

tot~z,bW'!1 ix2
tot~z,bW'!#,

~2.11!

where from now onp[pi , and total phase functions have
been introduced as the appropriate sum of ax and at. There-
fore the zeroth-order term is independent ofz

x0
tot~bW'!5E

2`

`

dz8V~z8,bW'!, ~2.12!



he
c-

-

ve
p a
to
icle

53 6267LANDAU-POMERANCHUK-MIGDAL EFFECT FOR FINITE TARGETS
while the first-order terms still retain somez dependence:

x1
tot~z,bW'!5x1~z,bW'!1

1

x
t1~z,bW'!,

x2
tot~z,bW'!5x2~z,bW'!1

1

x
t2~z,bW'!, ~2.13!

where, as defined earlier,x5pf /pi . The termx1
tot is crucial in

a proper description of both multiple scattering and the LP
process. It represents a leading correction to thez depen-
dence of the total phase, since as we saw in~1.3!, qz is also
of order 1/p. However, there is no need to retain the 1p
corrections to the amplitude at high energies. Therefore
termx2

tot, which describes the amplitude change of the wa
functions, can be neglected as unimportant in this appli
tion.

III. MODEL OF THE RANDOM MEDIUM

To define a model for the medium, we use the fact that
eikonal phase, as shown in Eqs.~2.6!–~2.13!, involves
longitudinal-line integrals through the target. As the electr
traverses the target, it will be subject to accelerations due
the electric fields of the individual nearby atoms that
passes.

The simplest model of a random medium incorporates
physical assumption that the sum of transverse fields al
any segment of the particle‘s trajectory that includes ma
atoms—i.e., when the segment is long compared with
interatomic spacing—is independent ofbW' , the particle‘s im-
pact parameter in the medium. Therefore, in this model
1/p terms in the eikonal phase that record the transve
momenta transferred to the particle depend only on the p
lengthz:

x1~z,bW'!5x1~z! and t1~z,bW'!5t1~z!. ~3.1!

Consistent with this assumption, we set

V~z,bW'!52bW'•EW'~z!. ~3.2!

The transverse field varies with depthz from atom to atom.
The quantityEW'(z)dz is the differential transverse momen
tum acquired in traversing fromz to z1dz. Its fluctuating
nature, from one incident particle to the next, is expressed
the statistical, or ensemble, average given by

^EW'~z2!•EW'~z1!&5
^pW'

2 &
L

d~z22z1!, ~3.3!

in the absence of correlations between fields at differ
depths. In Eq.~3.3! ^pW'

2& is the average transverse mome
tum accumulated via multiple scattering in traversing a
diation lengthL. This relation, independent ofb, allows one
to compute all the statistical averages that will be needed
the following discussion. This is a quantum version of t
classical model introduced by Landau and Pomeranchuk@8#
in their original paper.

A simple physical description can be given of this mod
of the scattering along the trajectory of the projectile by a
proximating the screened Coulomb potentials by a Gauss
M
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potential. In this case, thed function in Eq.~3.3! is replaced
by C(z22z1)5(aA2p)21exp$2(z22z1)

2/2a2%, wherea is
the range of the potential. For all but the lightest nuclei t
screening radiusa is much smaller than the interatomic spa
ing, andC(z22z1)→d(z22z1).

For notational clarity we define the integrals

AW'
i ~z!52¹W 'x0~z,bW'!5E

2`

z

dz8EW'~z8!,

AW'
f ~z!52¹W 't0~z,bW'!5E

z

`

dz8EW'~z8!, ~3.4!

AW'5E
2`

`

dz8EW'~z8!, AW'~z2 ,z1!5E
z1

z2
dz8EW'~z8!.

The quantityAW'(z2 ,z1) evidently represents the total trans
verse momentum accumulated in going from the pointz1 to
the pointz2 in the target.

The zeroth-order phases can be written as

x0~z,bW'!52bW'•AW'
i ~z!, t0~z,bW'!52bW'•AW'

f ~z!,
~3.5!

x0
tot~bW'!52bW'•AW' ,

wherex0
tot~bW'! depends only onbW' . On the other hand, the

real first-order correction terms depend only uponz in this
model:

x1~z!5
1

2 E
2`

z

dz8@AW'
i ~z8!•AW'

i ~z8!#,

t1~z!5
1

2 E
z

`

dz8@AW'
f ~z8!•AW'

f ~z8!22pW'
f
•AW'

f ~z8!#, ~3.6!

x1
tot~z!5x1~z!1

1

x
t1~z!.

IV. MULTIPLE SCATTERING

In this section we consider the propagation of a wa
packet through the scattering medium in order to develo
geometric picture that confirms the interpretation we gave
AW' as the net transverse momentum acquired by the part
in traversing the medium.

We assume an incident plane-wave packet of the form

f0~r ,t !5E d3p

~2p!3
^pW ,pW i&exp$ i @pW ,rW2E~p!t#%, ~4.1!

where^pW ,pW i& is a normalized Gaussian packet of widthw:

^pW ,pW i&5N exp@2w2~pW 2pW i !2#, ~4.2!

with N the normalization constant. ExpandingE(p) to linear
terms in (pW 2pW i), the incident packet becomes

f0~r ,t !5exp$ i @pW i•rW2Eit#%exp@2~rW2vW i t !2/~4w2!#,
~4.3!
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where vW i5(v i ,0') is the incident packet velocity and
Ei5E(pi). Thus the packet probability distribution is

uf0~r ,t !u25exp@2~rW2vW i t !2/~2w2!#. ~4.4!

We consider a particle traversing a medium extendi
from z50 to l in which the scatterers are randomly place
and calculate the eikonal phase of its wave functionf(r ,t)
as defined in Eqs.~2.5! and ~3.1!. For ~z,0!, there are no
interactions and the phase ispW i•rW. Inside the medium
(0<z< l ), the phase changes as a function ofz as the par-
ticle trajectory encounters additional scatterers. On the
side on the medium, (z. l ), beyond the range of any poten
tial, the phase integrals saturate and remain constant:

x0~ l ,bW'!5E
0

l

dz8V~z8,bW'!

and

AW'~ l !52¹W 'x0~ l ,bW'!, ~4.5!

x1
z~z!5~z2 l !

1

2
AW'~ l !•AW'~ l !1x1

z~ l !,

~4.6!
xW 1

'~z!5~z2 l !AW'~ l !1xW 1
'~ l !,

where the two terms in Eq.~2.7! are

x1
z~ l !5

1

2 E
0

l

dz8AW'
i ~z8!•AW'

i ~z8!, xW 1
'~ l !5E

0

l

dz8AW'
i ~z8!.

~4.7!

Expanding the phase function to first order around t
central value of the packet momentum,pW i5(pi ,0'), one gets

F2F i5~pW 2pW i !•RW ~z,bW'!,

where

Rz~z!5z1
1

2~pi !2 F ~z2 l !AW'
2 ~ l !1E

0

l

dz8AW'
i ~z8!•AW'

i ~z8!G ,
RW'~z,bW'!5bW'2

1

pi F ~z2 l !AW'~ l !1E
0

l

dz8AW'
i ~z8!G .

~4.8!

Therefore, the probability distribution of the wave pack
after emerging from the medium is

uf~r ,t !u25exp@2@R~z,bW'!2vW i t#2/~2w2!#. ~4.9!

Introducing (Z,BW') as the coordinates of the center of th
packet andTl as the time the packet emerges from the m
dium, one finds from~4.8! that

v iTl5 l1
1

2~pi !2 E0
l

dz8AW'
i z~8!•AW'

i ~z8! ~4.10!

and
ng
d,

far
-

he

et

e
e-

~Z2 l !5
v i

†11@1/2~pi !2#AW'
2 ~ l !‡

~ t2Tl !.

After passing through the medium, the packet moves linea
with time with a reducedz component of velocity, and it is
therefore compelling to identify the angle of deviation of th
particleu, as

cos~u!5
1

†11@1/2~pi !2#AW'
2 ~ l !‡

, ~4.11!

or u2;[AW'( l )/p
i ] 2. This is in agreement with the interpreta-

tion of AW' as the net transverse momentum acquired by t
particle in traversing the medium, and is consistent wit
~3.3!.

The transverse position of the center of the packet al
tracks the longitudinal position,

BW'5
1

pi S ~Z2 l !AW'~ l !1E
0

l

dz8AW'
i ~z8! D . ~4.12!

The center of the packet moves at an anglet with respect to
the incident direction, where to order 1/pi ,
sin~u!;uAW'( l )u/p

i .
Using Eq. ~3.3! to perform the ensemble averages ove

the packet probability distribution for multiple scattering
through the random medium, we find to the inherent acc
racy of our eikonal wave function and as expected from E
~4.11!:

~pi !2^u2&5^AW'
2 ~ l !&5E

0

l

dzE
0

l

dz8^EW'~z!•EW'~z8!&

or

^u2&5
^pW'

2 &

~pi !2
l

L
. ~4.13!

The average transit time also shows quadratic growth w
the thickness

v i^Tl&511
1

2~pi !2 E0
l

dz8^AW'
i ~z8,bW'!•AW'

i ~z8,bW'!&

5 l F11
^pW'

2 &
4~pi !2

l

LG . ~4.14!

As the statistically averaged packet exits from the target it
centered about the same value ofbW' as was the incident
packet. However, the square of the packet widthw2 is in-
creased. The mean-square width of the packet when
emerges from the medium at the pointz5 l is therefore

w21^B2&5w21^u2&
l 3

3L
. ~4.15!

For large times, one finds that the root-mean-square width
the transmitted packet increases asz, which in turn grows
linearly in t.
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V. BREMSSTRAHLUNG IN A FIXED FIELD

We turn now to a derivation of single-photon emission b
a spinless electron traversing the target medium. At a la
appropriate point, the extension to the case of Dirac electr
will be made. The simplified model of the medium intro
duced in Sec. III, Eq.~3.2!, will be assumed.

The general form of the matrix element of interest is
y
ter
ons
-

M5^f f
~2 !uAW •JW2A0J0uf i

~1 !&, ~5.1!

where JW[ ie(¹W 2¹Q ) is the electron current, andf f
(2) and

f i
(1) are, respectively, the final~incoming! and initial ~out-

going! scattering eigenstates of the electron in the static fie
of the target. The calculation will be carried out in the targe
rest frame.

For scalar electrons, the matrix element takes the form
d

M5 ieE dzE d2b'exp@2 ikW•rW#$eW* •@f f
~2 !*¹W f i

~1 !2f i
~1 !¹W f f

~2 !* #2 i e0* @Ei1Ef22V~z,b!#f f
~2 !*f i

~1 !%, ~5.2!

wherekW is the momentum,eW the polarization vector of the photon, and from gauge invariance,e05eW•kW /k0 wherek05Ei2Ef .
Gauge invariance is easily proven by replacingem by km , replacingkW by a derivative acting on the photon wave function, an
integrating by parts. The result is zero if the wave functions satisfy the Klein-Gordon equation. Using the eikonal forms~2.3!
and ~2.11!, the matrix element can be written as

M52eE dzE d2b'eW* •PW ~z,bW'!exp@ iF tot~z,bW'!#, ~5.3!
t

where the factorPW (z,bW') involves the sum of the initial and
final local momentum at the point (z,bW')

PW ~z,bW'!5¹W ~F i1F f !2
kW

k0
@Ei1Ef22V~z,bW'!#.

~5.4!

Using the earlier expressions given for the phase functio
the convection current is

¹z~F i1F f !5~11x!p,
~5.5!

¹'~F i1F f !5pW'
f 1AW'

i ~z!2AW'
f ~z!.

Combining the previous formulas, we find

Pz~z,bW'!50,

PW'~z,bW'!52
2

~12x!
@kW'2~12x!AW'

i ~z!#1@qW'2AW'#,

~5.6!
ns,

F tot~z,bW'!52qW •rW1bW'•AW'2
1

p
x1
tot~z!,

where only terms of relevant leading order in 1/p were re-
tained.

Thez component of the difference vectorqW (5pW f1kW2pW i)
is

2qz5
m21~pW'

f !2

2xp
1

~kW'!2

2~12x!p
2
m2

2p

5
@m2~12x!21x~kW'!21~12x!~pW'

f !2#

2x~12x!p
. ~5.7!

Now the matrix element can be simplified by noting tha
the currentPW (z,bW') is actually independent ofb in the
model of Eq.~3.2! for the external field, and hence
M52e~2p!2d~qW'2AW'!E dzeW* •PW ~z,0!exp@ iF tot~z,0!#. ~5.8!

DefiningA to be the frontal area of the target, the square of the matrix element summed over polarization is

(
pol

uM u254paA~2p!2d~qW'2AW'!I

with

I5E
2`

`

dz2E
2`

`

dz1S0~z2 ,z1!exp$ i @F tot~z2,0!2F tot~z1,0!#%,

I52E
2`

`

dz2E
2`

z2
dz1S0~z2 ,z1!cos@DF tot~z2 ,z1!#,

S0~z2 ,z1!5S0~z1 ,z2!5(
pol

eW* •PW ~z2,0!eW•PW ~z1,0!. ~5.9!
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The phase difference is written as

DF tot~z2 ,z1!5E
z1

z2
dz

dF tot~z,0!

dz
, ~5.10!

where

dF tot~z,0!

dz
52qz2

1

p

dx1
tot~z!

dz
.

EliminatingAW '
f in this expression in favor ofAW '

i andAW'(5qW') by ~5.8!, and using the explicit expression~5.7! for qz , this
quantity simplifies to

dF tot~z,0!

dz
5

1

2x~12x!p
$m2~12x!21@kW'2~12x!~AW'

i ~z!!#2%, ~5.11!

where the transverse momentum dependence of the photon is measured relative to the modulated path of the elec
moves through the medium.

SinceeW is orthogonal tokW , the polarization sum is straightforward:

S0~z2 ,z1!5PW'~z2,0!•PW'~z1,0!2 k̂•PW'~z2,0!k̂•PW'~z1,0!

5PW'~z2,0!•PW'~z1,0!

5
4

~12x!2
$kW'2~12x!@AW'

i ~z2!#%•$kW'2~12x!@AW'
i ~z1!#%, ~5.12!

where the relationqW'5AW' has been used and terms of order~1/p2! have been dropped.
Here we also introduce the explicit corrections to the polarization sum for Dirac electrons. Following the details as

by Schroeder@17#, we substituteS(z2 ,z1) for S0(z2 ,z1), where

S0~z2 ,z1!→S~z2 ,z1!5
11x2

2x
S0~z2 ,z1!1

1

4

2m2~12x!2

x
, ~5.13!

where the two terms correspond, respectively, to no-helicity flip and to helicity flip by the radiating electron. We also intr
the notationr (x)5(11x2)/2x for later use.

The probability that an electron incident upon the target will emit a photon of energyk5(12x)p is

dP~x!

dx
5
1

A

ds

dx
5

1

16pAp2x~12x!
E d2k'

~2p!2
E d2q'

~2p!2 (
pol

uM u2

5
a

2p2x~12x!
E d2k'

~2p!2
E

2`

`

dz2E
2`

z2
dz1S~z2 ,z1!cosS E

z1

z2
dz

dF tot~z,0!

dz D . ~5.14!

Note that if there is no scattering in the target, thenS(z2 ,z1) does not depend upon thez’s anddF tot(z,0)/dz5const. Thus the
integrals over thez’s are zero; they yieldd functions that cannot be satisfied. It proves convenient to regulate~5.14! by
subtracting this zero from the integrand. Later we will want to interchange the orders of integration to simplify the num
evaluation. This will require care due to the infinite limits. By introducing suitable convergence factors we will show tha
integrals smoothly approach their finite values as the convergence factors go to one. Thus thez integrals will be regulated by
replacingdz by dzC(z) where the cutoff functionC(z) is chosen to restrict integration to the physical region and to
smoothly to one after all integrations have been performed. The simplest choice is

C~z!5exp~2 ēuzu! ~5.15!

with

dC~z!

dz
52C~z!ē @u~z!2u~2z!#[2C~z!ēe~z!.
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With the understanding thatē will be taken to zero at the end of the calculation, the emission probability can now be w
as

p~12x!2

2a

dP~x!

dx
5E d2k'

~2p!2
E

2`

`

dz2C~z2!E
2`

z2
dz1C~z1!DB~z2 ,z1!,

DB~z2 ,z1!5@B~z2 ,z1 ,kW'!2B0~z2 ,z1 ,kW'!#, ~5.16!

where

B~z2 ,z1 ,kW'!5r ~x!S ]

]z2
2

]

]z1
D sin@DF tot~z2 ,z1!#2~12x!2

2m21r ~x!AW'
2 ~z2 ,z1!

2x~12x!p
cos@DF tot~z2 ,z1!#. ~5.17!

B0(z2 ,z1 ,kW') is the same expression in the limit of no interaction,AW'(z)50. An integration by parts onz1 andz2 now leads
to

B~z2 ,z1 ,kW'!5 ēr ~x!@e~z2!2e~z1!#sin@DF tot~z2 ,z1!#2~12x!2
2m21r ~x!AW'

2 ~z2 ,z1!

2x~12x!p
cos@DF tot~z2 ,z1!#. ~5.18!
Our problem now is to evaluate~5.16! with ~5.18! in the
physical situations of interest. First, however, we must co
firm that the subtracted term, withB replaced byB0 in
~5.17!, still vanishes and that we have not introduced a fa
contribution to the radiation probability by the choice of th
convergence factor~5.15!.

To examine this point, perform the integrals overz1 and
z2 in the zero-field limit for the term involving

B0~z2 ,z1 ,kW'!5 ēr ~x!@e~z2!2e~z1!#sin@DF0~z2 ,z1!#

2
2m2~12x!2

2x~12x!p
cos@DF0~z2 ,z1!#, ~5.19!

where

DF0~z2 ,z1!5
z22z1

2x~12x!p
$m2~12x!21@kW'#2%.
n-

lse
e

The last form follows from~5.15! and ~5.17!. The result is

p~12x!2

2a

dP0~x!

dx
[E d2k'

~2p!2 S ē I 12
2m2~12x!2

2x~12x!p
I 2D

with

I 15
4wē

~ ē 21w2!2
, I 25

2ē 2

~ ē 21w2!2
, ~5.20!

and

w5
m2~12x!21kW'

2

2x~12x!p
.

We obtain
p~12x!2

2a

dP0~x!

dx
[E d2k'

~2p!2
4ē 2

~ ē 21w2!2 F r ~x!w2
m2~12x!2

2x~12x!pG . ~5.21!

The integration overkW' is well convergent and therefore the probability of emission vanishes asē goes to zero, as it must.
The regulated probability of radiation can now be written in the form

p~12x!2

2a

dP~x!

dx
5E d2k'

~2p!2
E

2`

`

dz2C~z2!E
2`

z2
dz1C~z1!DB~z2 ,z1 ,kW'!, ~5.22!

where the integrand has become

DB~z2 ,z1 ,kW'!5 ēr ~x!@e~z2!2e~z1!#$sin@DF tot~z2 ,z1!#2sin@DF0~z2 ,z1!#%2
2m2~12x!2

2x~12x!p
$cos@DF tot~z2 ,z1!#

2cos@DF0~z2 ,z1!#%2
~12x!2r ~x!AW'

2 ~z2 ,z1!

2x~12x!p
cos@DF tot~z2 ,z1!#. ~5.23!

Equation~5.22! can be simplified further by defining
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m2h~z2 ,z1 ,l !5
1

z22z1
E
z1

z2
dz@AW'~z,z1!#

22S 1

z22z1
E
z1

z2
dzAW'~z,z1! D 2,

and

m2l~z2 ,z1 ,l !5AW'
2 ~z2 ,z1!. ~5.24!

Now we interchange the order of the integrals to do*d2kW' first, and then shift the integration variable fromkW' to KW ' where

KW '5kW'2~12x!SAW'
i ~z1!1

1

z22z1
E
z1

z2
dzAW'~z,z1! D . ~5.25!

The resulting expression is a function only of the magnitudeKW '
2 and we find for Eq.~5.22!

p~12x!2

2a

dP~x!

dx
5E

2`

`

dz2E
2`

z2
dz1C~z2!C~z1!DB~z2 ,z1!, ~5.26!

where

DB~z2 ,z1!5E d2K'

~2p!2 H ēr ~x!@e~z2!2e~z1!#$sin@D~z2 ,z1 ,KW '!#2sin@d~z2 ,z1 ,KW '!#%2
2m2~12x!2

2x~12x!p

3†cos@D~z2 ,z1 ,KW '!#2cos@d~z2 ,z1 ,KW '!#‡2
r ~x!m2~12x!2l~z2 ,z1!

2x~12x!p
cos@D~z2 ,z1 ,KW '!#J , ~5.27!

and

D~z2 ,z1 ,KW '!5
z22z1

2x~12x!p
@m2~12x!2@11h~z2 ,z1 ,l !#1KW '

2 #,

~5.28!

d~z2 ,z1 ,KW '!5
z22z1

2x~12x!p
@m2~12x!21KW '

2 #.

Using the~regulated! integrals

E
0

`

dy cos~y!50, E
0

`

dyy cos~y!521,

~5.29!

E
0

`

dy sin~y!51, E
0

`

dyy sin~y!50,

which were also regulated by settingdy5dyC(y) and then taking the limit asē goes to zero, the integral overy5KW '
2 can be

performed. The result for the probability of emission is

p~12x!

ax

dP~x!

dx
5
m2~12x!

xp E
2`

`

dz2E
2`

z2
dz1

C~z2!C~z1!

~z22z1!
F S 11

1

2
r ~x!l~z2 ,z1 ,l ! D sin~c!2sin~b!

1 ē
xpr~x!

m2~12x!
@e~z2!2e~z1!#@cos~c!2cos~b!#G , ~5.30!

where

c5b@11h~z2 ,z1 ,l !#,
~5.31!

b5
m2~12x!~z22z1!

2xp
.

Note that there is no singularity as (z22z1) goes to zero. In all the examples that we shall discuss, the last term in
integrand vanishes smoothly in the limit asē goes to zero; this term can be safely dropped.

For later use, note that to first order in the square of the net impulse,AW '
2 , the probability of emission becomes
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p~12x!

ax S dP~x!

dx D
1

5
m2~12x!

2xp E
2`

`

dz2E
2`

z2
dz1

C~z2!C~z1!

~z22z1!
$r ~x!l~z2 ,z1 ,l !sin~b!12h~z2 ,z1 ,l !b cos~b!%.

~5.32!
This result holds for any fixed-field distribution in the targe
within our approximations. For a single~impulse! scattering,
the probability of emission can be evaluated and compared
the Bethe-Heitler and to known classical formulas. Furthe
more, if the fields in the target are averaged over, as is n
essary in the multiple-scattering case, simplifications are a
possible. These simplifications allow a direct comparison
the LPM result for very thick targets as well as an extensi
to the finite target-thickness case. These various limits a
discussed in the next sections.

VI. THIN TARGET: SINGLE SCATTERING

As a first application we apply the lowest-order result, E
~5.32!, to scattering by a thin target consisting of a sing
electric field slab, described by the potential function

V~z,b!52bW'•QW 'd~z!

and

x0
tot~b!52bW'•QW ' , ~6.1!

whereQW ' is the total transverse momentum imparted by th
field slab and clearlyl50. The phase integrals,~3.4!, then
become

AW'
i ~z!5QW 'u~z!, AW'

f ~z!5QW 'u~2z!,
~6.2!

AW'~z2 ,z1!5QW '@u~z2!2u~z1!#5QW 'u~z2!u~2z1!.
t

to
r-
ec-
lso
to
on
re

q.
le

e

The first-order correction terms of interest depend uponz
only, and Eq.~3.6! can be written simply for this case

x1~z!5
1

2
zu~z!@QW '

2 #,

t1~z!52
1

2
z@QW '

222pW'
f
•QW '#,

~6.3!

x1
tot~z!5x1~z!1

1

x
t1~z!.

Two integrals that we will need are

E
z1

z2
dzAW'~z,z1!5QW 'z2u~z2!u~2z1!,

~6.4!

E
z1

z2
dz@AW'~z,z1!#

25QW '
2z2u~z2!u~2z1!.

Thus we find

l~z2 ,z1,0!5
QW '
2

m2 u~z2!u~2z1!,

~6.5!

h~z2 ,z1,0!5l~z2 ,z1!
2z1z2

~z22z1!
2 .

Using ~5.32!, the probability of emission to lowest order in
the impulseQW ' and in the limite→0, can be written as
p~12x!

ax

dP~x!

dx
5
m2~12x!

2xp E
2`

`

dz2E
2`

z2
dz1C~z2!C~z1!

l~z2 ,z1,0!

z22z1
S r ~x!sin~b!2

2z2z1b

~z22z1!
2 cos~b! D . ~6.6!
l

Now change variables tobi5zi / l f with b5b22b1 . Recall
that the formation length is given by

l f5
2xp

m2~12x!
. ~6.7!

Interchange the orders of integration, use the explicit form
for h(z2 ,z22z,0) andl(z2 ,z22z,0), and the probability of
emission becomes

p~12x!

ax

dP~x!

dx
5
QW '
2

m2 E
0

`

db
C~b!

b2
I ~b!,

where
s

I ~b!5E
0

b

db2@r ~x!b sin~b!22b2~b22b!cos~b!#

5b2S r ~x!sin~b!1
1

3
b cos~b! D . ~6.8!

The result of the finalb integral is@see Eq.~5.29!#

~12x!
dP~x!

dx
5
dI~v!

dv
5

a

p

QW '
2

m2 xS r ~x!2
1

3D
5
2

3

a

p

QW '
2

m2 S x1
3

4
~12x!2D , ~6.9!

whereI ~v! is the radiated energy per unit-frequency interva
at v5p(12x). If the appropriate value for the momentum
transfer is used, this agrees with Bethe and Heitler.
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In the x→1 limit this result can of course be simply ob
tained by a classical calculation. It is instructive to do th
following the analysis of Landau and Pomeranchuk. Co
sider this thin-target example of a charged particle under
ing an instantaneous transverse impulse. Evaluate form
~1! and then the approximate formula~2! as given in their
work @8#. As demonstrated in the Appendix, the result of th
latter calculation is one-half that of the former. This is im
portant for understanding the difference between their res
and those we find from the eikonal method in both the Beth
Heitler and in the LPM limits as shown in the following
sections. The term omitted by LP gives rise to Cherenk
radiation under the appropriate conditions, i.e., when the
electric constant is greater then (E/p)2.
-
is
n-
go-
ula

e
-
ults
e-

ov
di-

VII. FINITE-TARGET THICKNESS AND FIELD
AVERAGING

Our next task is to manipulate Eq.~5.30! into a more
convenient form in the case of a target of finite thicknes
First note that the last term in the integrand leads to a fin
integral; it can be safely dropped in the limit of vanishingē.
In the remaining terms it is convenient to change variables
in the previous section fromz to b5z/ l f , where the inverse
formation length was defined earlier. The radiation lengthL
and the formation lengthl f will play important roles in our
result as will the scaled-target thicknessbl5 l / l f . The result
for the probability of emission given in~5.30! can now be
written as
p~12x!

ax

dP~x!

dx
5E

2`

`

db2E
2`

b2
db1

C~b2!C~b1!

b H S 11
r ~x!l~b2 ,b1 ,bl !

2~12x!2 D sin~c!2sin~b!J , ~7.1!
t

een

g
ion

be
where

c5bF11
h~b2 ,b1 ,bl !

~12x!2 G and b5b22b1 . ~7.2!

The target is assumed to extend from 0,z, l , or in terms
of the scaled variables 0,b,bl . The fact that the particles
see no fluctuating field outside these limits requires that
integrals over theb’s in Eq. ~7.1! be divided as follows:

E
2`

`

db2E
2`

b2
db15E

2`

0

db2E
2`

b2
db11E

0

bl
db2E

2`

0

db1

1E
0

bl
db2E

0

b2
db11E

bl

`

db2E
2`

0

db1

1E
bl

`

db2E
0

bl
db11E

bl

`

db2E
bl

b2
db1 .

~7.3!

In an obvious notation, these integration regions will be d
noted by
he

e-

E
2`

`

db2E
2`

b2
db15~22 !1~02 !1~00!1~12 !1~10!

1~11 !. ~7.4!

The notation emphasizes the possible coherence betw
emission regions in the matrix element.

A. Statistical averages

The main formulas that we will need all arise from notin
that the transverse electric field is zero outside the reg
0,z, l so that we may write

AW'~z2 ,z1!5E
z1

z2
dz8u~z8!u~ l2z8!EW'~z8!,

E
z1

z2
dzAW'~z,z1!5E

z1

z2
dz8u~z8!u~ l2z8!EW'~z8!~z22z8!.

~7.5!

The statistical averages for the six integration regions can
computed directly from the above. Using Eq.~3.3! one finds
in all integration regions that
K E
z1

z2
dzAW'

2 ~z,z1!L 5K AW'~z2 ,z1!•E
z1

z2
dzAW'~z,z1!L 5

^pW'
2 &
L E

z1

z2
dz8u~z8!u~ l2z8!~z22z8!,

~7.6!

K S E
z1

z2
dzAW'~z,z1! D 2L 5

^pW'
2 &
L E

z1

z2
dz8u~z8!u~ l2z8!~z22z8!2,

and
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^h~z2 ,z1 ,l !&5aE
z1

z2
dz8u~z8!u~ l2z8!

~z22z8!~z82z1!

~z22z1!
2 ,

where

a5
^pW'

2 &
m2L

.

In terms of scaled variables the other statistical average
we need is
that

^l~z2 ,z1 ,l !&5aE
z1

z2
dz8u~z8!u~ l2z8!, ~7.7!

or

^l~b2 ,b1 ,bl !&5al fE
b1

b2
db8u~b8!u~bl2b8!.

After some algebra, the explicit results in the various re
gions in terms of the scaled variables are
Region ^h(b2 ,b1 ,bl)&6/(al f) ^l(b2 ,b1 ,bl)&/1(al f)

~22! 0 0
~02! b2

2

b2
@3b22b2#

b2

~12! bl
b2

@3~b21b1!bl22bl
226b1b2#

bl

~00! b b
~10! ~bl2b1!

2

b2
@3b22~bl2b1!#

(bl2b1)

~11! 0 0
The interested reader can check that these formulas j
smoothly at all common boundaries of the integration r
gions. Furthermore, the symmetry between~1! and~2!, that
is (b2↔bl2b1), is also evident.

VIII. EMISSION PROBABILITY:
BETHE-HEITLER REGIME

The probability of emission to lowest order, given in
~5.32!, is written as

p~12x!

ax S dP~x!

dx D
1

5al f S r ~x!I l1
1

3
I hD ,

where

I l5E
2`

`

db2E
2`

b2
db1C~b2!C~b1!

l~b2 ,b1 ,bl !

al f

sin~b!

b
~8.1!

and

I h5E
2`

`

db2E
2`

b2
db1C~b2!C~b1!

6h~b2 ,b1 ,bl !

al f
cos~b!.

All regions except~22! and ~11! contribute toI l , and
from symmetryI l(10)5I l(02). Changing variables from
db1 to db, interchanging orders of integration, and perform
ing theb2 integral yields
oin
e-

-

I l~02 !5
1

2 E
0

bl
dbC~b!b sin~b!

1
1

2
bl
2E

bl

`

dbC~b!
sin~b!

b
,

I l~12 !5blE
bl

`

dbC~b!@b2bl #
sin~b!

b
, ~8.2!

I l~00!5E
0

bl
dbC~b!@bl2b#sin~b!,

and

I l~ tot!5blE
0

`

dbC~b!sin~b!5bl .

The same regions contribute toI h and again,
I h(10)5I h(02), so that

I h~02 !5
1

2 E
0

bl
dbC~b!b2 cos~b!

1
1

2
bl
3E

bl

`

db
C~b!

b2
@2b2bl #cos~b!,

I h~12 !5blE
bl

`

dbC~b!@b322bl
2b1bl

3#
cos~b!

b2
,

~8.3!

I h~00!5E
0

bl
dbC~b!b@bl2b#cos~b!,

and
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I h~ tot!5blE
0

`

dbC~b!b cos~b!52bl .

The complete emission probability to linear order ina is
therefore

p~12x!

ax S dP~x!

dx D
1

5al fblF r ~x!2
1

3G . ~8.4!

Sincel fbl5 l , the final result is

~12x!S dP~x!

dx D
1

5
2

3

a

p

^pW'
2 &

m2

l

L Fx1
3

4
~12x!2G .

~8.5!

Note that~8.5! agrees with the thin-target result given earlie
Eq. ~6.9!, if one makes the obvious identificatio

QW '
25^pW '

2 & l /L.
Our model of multiple scattering is normalized by choo

ing ^pW'
2& so that the emission probability agrees with th

value quoted by Rossi@14# for incoherent multiple Coulomb
scattering to leading order in a screened field:

~12x!S dP~x!

dx D
1

5
4

3

l

L Fx1
3

4
~12x!2G ,
r,
n

s-
e

where

^pW'
2 &5

2pm2

a
. ~8.6!

In our model of multiple scattering, the average^pW'
2& ac-

quired in each scattering event is smaller by a factor of
than the value given by Rossi for scattering in a screen
Coulomb field. In their classical study of this same multiple
scattering model, Landau and Pomeranchuk were led to u
the Rossi value by an error in their approximations that w
discussed at the end of Sec. VI and is demonstrated explic
in the Appendix. If their error is corrected, it is necessary t
use Eq.~8.6! for this random-scattering model.

IX. EMISSION PROBABILITY: LPM REGIME

Recall that the probability of emission to all orders, give
in ~5.30!, which includes the LPM effect, can be written in
the form

p~12x!

ax

dP~x!

dx
5I ~ tot!5E

2`

`

db2E
2`

b2
db1I ~b2 ,b1 ,bl !,

~9.1!

where
I ~b2 ,b1 ,bl !52
C~b2!C~b1!

b H F11
1

2
r ~x!l~b2 ,b1 ,bl !Gsin~c!2sin~b!J ,

~9.2!
c5b@11h~b2 ,b1 ,bl !#,

and, of course,bi5zi / l f andb5b22b1 . The integralI ~tot! must be divided into all the subregions as defined in Eq.~7.3!.
The regions~22! and~11! do not contribute sincel andh vanish. The first nonzero region is@recall that from symmetry,

I (02)5I (10)#

I ~02 !5E
0

bl
db2E

2`

0

db1I ~02;b2 ,b1 ,bl !5F E
0

bl
dbE

0

b

db21E
bl

`

dbE
0

bl
db2G I ~02;b2 ,b22b,bl !, ~9.3!

where the~02! in the integrand indicates thatl andh, are evaluated appropriately. The central region yields

I ~00!5E
0

bl
db2E

0

b2
db1I ~00;b2 ,b22b,bl !5E

0

bl
dbE

b

bl
db2I ~00;b2 ,b22b,bl !5E

0

bl
db~bl2b!I ~00;b2 ,b22b,bl !,

~9.4!

since in this region neitherl nor h depend uponb2. The external region contributes:

I ~12 !5E
bl

`

db2E
2`

0

db1I ~12;b2 ,b1 ,bl !5E
bl

`

dbE
bl

b

db2I ~12;b2 ,b22b,bl !. ~9.5!

A. Thick target

Let us now look at the~00! contribution to this amplitude, Eq.~9.4! and take the limit of largel . Using the results given in
the quasitable in Sec. VII for̂l& and ^h&, we find

I ~00!5E
0

bl
db

2C~b!

b
~bl2b!H S 11

1

2
r ~x!al fbD sinS b1

1

6
al fb

2D2sin~b!J , ~9.6!
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whereC(b) can be set to one. In the limit of largel this
result agrees with the form given by LP, however the form
tion lengthl f is given correctly by Eq.~6.7! and the electron
spin is properly accounted for by the factorr (x). If
~1/6!al fbl; l /(aL) is small compared to one, that is, if th
target thickness is small compared to the mean free path,
LPM coherence vanishes since the phase behavior is es
tially linear; this is the Bethe-Heitler regime. A direct expa
sion to ordera of the above formula agrees with the resu
quoted in the previous section. Asal fbl becomes very large,
which is the extreme LPM limit, only one term in~9.2! sur-
vives and it is of the order square root ofa, that is,

p~12x!

ax

dP~x!

dx
;al fE

0

bl
db~bl2b!sinS b1

1

6
al fb

2D r ~x!,

~9.7!

or

~12x!

l

dP~x!

dx
;
axbl
l
A3al f

4p
r ~x!

5A3ax~12x!m2

4pL
r ~x!.

Note that the emission probability is proportional tor (x),
indicating that the radiating electron does not flip helicit
The classical LP result in the limit of~1/6!al fbl@1 is
a-

e
the
sen-
n-
lt

y.

~12x!

l

dPLP~x!

dx
5
&

3
A3a~ l2x!m2

4pL
, ~9.8!

which is smaller than our result, Eq.~9.7!, by a factor of
0.471 forx near one. The calculation by Migdal, the LPM
effect, yields the result

~12x!

l

dPLPM~x!

dx
52A 2

3p
A3ax~12x!m2

4pL
r ~x!,

~9.9!

when his approximate formulas are normalized to the corr
result in the Bethe-Heitler limit. Equation~9.9! is roughly
8% smaller than Eq.~9.7!.

B. Finite target

All the regions of integration must be evaluated explicit
for the case of a target of finite thickness. The full express
is written in a form suitable for numerical integration:

I ~ tot!5I ~02 !1I ~10!1I ~00!1I ~12 !, ~9.10!

where
s

I ~02 !5I ~10!5F E
0

bl
dbE

0

b

db21E
bl

`

dbE
0

bl
db2G 2C~b!

b H S 11
1

2
r ~x!al fb2D sinS b1

1

6
al f

b2
2

b
~3b22b2! D 2sin@b#J ,

~9.11!

I ~12 !5E
bl

`

dbE
bl

b

db2
2C~b!

b H S 11
1

2
r ~x!al fbl D sinS b1

1

6
al f

bl
b
P~b,b2! D2sin@b#J ,

where

P~b,b2!5bl~3b22bl !16~b22bl !~b2b2!, ~9.12!

and I ~00! is given in Eq.~9.6!.
In the BH and the soft-photon limit,x→1, it has already been shown that

I ~BH!5
2

3
al fbl5

2

3
al. ~9.13!

Therefore it is natural to introduce a form factorF and two scaling variables that track the LPM effect by defining

I ~ tot!5I ~BH!F~N,T,x!, ~9.14!

where thex dependence arises only from the spin factorr (x), N5(1/6)al f is essentially the number of formation length
contained in a mean free path, andT is the thickness of the target in units of the mean free path, i.e.,

T5Nbl5
p

3

l

aL
with N5

1

6
al f5

p

3

l f
aL

. ~9.15!

The form factorF will be divided into separate contributing regions as was the integralI . Inserting the scaling variables into
Eqs.~9.12! and ~9.6! and recalling the relationbl5T/N then leads to
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F~02 !5F~10!5F E
0

bl
dbE

0

b

db21E
bl

`

dbE
0

bl
db2G C~b!

2Tb H @113r ~x!Nb2#sinS b1N
b2
2

b
~3b22b2! D 2sin@b#J ,

~9.16!

F~12 !5E
bl

`

dbE
bl

b

db2
C~b!

2Tb H @113r ~x!T#sinS b1T
1

b
P~b,b2! D2sin@b#J ,

where

P~b,b2!5bl~3b22bl !16~b22bl !~b2b2!, ~9.17!

and finally

F~00!5E
0

bl
db

C~b!

2Tb
~bl2b!$@113r ~x!Nb#sin@b1Nb2#2sin@b#%. ~9.18!
e
o
e
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These contributions to the form factor cannot be interpre
as radiation from the surfaces, from the exterior, and fro
the interior of the target, respectively, because the contri
tions from each region is not positive definite. The total su
the form factorF, is positive definite.

Note that in the BH limit of smallT, F→1, the defined
normalization. In the LPM limit ofT@N@1, which ensures
that bl5T/N is also much larger than one, the form fact
can be shown to be dominated byF~00!. One then finds
F→(3/4)r (x)Ap/2N. SinceN is proportional to~12x!21,
the form factorF vanishes as the square root ofk in the
soft-photon limit. This is the expected suppression from t
LPM effect.

X. PHYSICAL INTERPRETATION AND NUMERICAL
RESULTS

In this section we discuss and illustrate the physical ph
nomena that are reflected in the behavior of the form fac
F(N,T,x) as a function of the scaling variablesT andN.
First, recall the definitions of the scaling variables:

T5
p

3

l

aL
, N5

p

3

l f
aL

,

bl5
l

l f
, l f5

2xp

m2~12x!
5
2pipf
m2k

. ~10.1!

The behavior of the form factor in certain limiting regimes
quite easy to interpret physically. Keep in mind thatT is
determined by the target geometry and composition, not
nematics. On the other hand, the value ofN is determined by
kinematics and target composition, not target geometry;N
increases as the photon energyk decreases.

Small T: In this regime, the target thickness is much le
than the mean free path. Thus there can be little multi
scattering and the form factor must be close to 1, signifyi
the predominance of the Bethe-Heilter process. ForN!T,
the value of the form factorF is controlled by the integration
region~00!. Contributions from the exterior regions grow fo
largerN values. Eventually, the double exterior region~12!
dominates.
ted
m
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or
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Large T: The target thickness is much greater than th
mean free path. Thus the electron will definitely underg
many multiple-scattering events in traversing the target. Th
form-factor behavior and its physical interpretation depen
strongly upon the value ofN. For N much smaller than 1,
that is for l f!aL, the quadratic-phase oscillation is negli-
gible, the region~00! dominates, andF;1; the physics is
that of the Bethe-Heitler process. For largerN in the region
T@N@1, the quadratic-phase oscillation is important and
controls the value ofF~00!. This is the LPM regime in which
the form factor asymptotically varies asN21/2, the character-
istic of LPM suppression of bremsstrahlung. For even large
N in the regionN@T@1, the formation length is larger than
the large target thickness. The LPM suppression is incom
plete in that the multiple scattering only takes place over

FIG. 1. A plot of the form factorF(N,T) at T50.1, that is, the
target thickness is one-tenth of the radiation length, for a range ofN
values. The solid curve is the total form factor. The dashed curv
labeled~00! is the contribution from inside the target. The dotted
curve is the contribution when at least one source coordinate
outside the target. The curves are computed only at the indicat
points and connected by straight lines.
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fraction of the formation length. The integration region~00!
contributes less to the form factorF, and the mixed regions
~02!, ~10!, and~12! eventually become the dominant con
tributors asN increases further into the regionN.T2.

The behavior discussed above can be directly seen in
numerical evaluation of the form factor@18#. All calculations
were done in the soft-photon limitr (x);1.

It is found thatF~N, T50.01!.1 for all N. As N varies
from 0.001 up to 10, that is for 10.bl.0.001, the form
factor decreases very slightly, less than 1 percent. ForN&T,
the ~00! region dominates, while for larger values the ext
rior regions dominate.

In Figs. 1–3, the form factorF(N,T) is plotted as a func-
tion of N for selectedT values in the experimental range o

FIG. 2. A plot of the form factorF(N,T) at T51.0, that is, the
target thickness is equal to one radiation length. The various cur
are described in the caption to Fig. 1.

FIG. 3. A plot of the form factorF(N,T) at T510, that is, the
target thickness is ten times the radiation length. The various cur
are described in the caption to Fig. 1.
-

the

e-

f

interest. The computer data are not smoothed and the curv
are composed of straight-line segments connecting the co
puted points. The dashed lines show the contribution of th
purely internal region~00!. The dotted lines arise from the
remaining mixed and external regions,@~02!1~10!1~12!#.
The total form factor always has an overall smooth behavio
but definite oscillatory contributions from the interior and
external integration regions arise from the sinusoidal inte
grands. ForN&T, the internal region dominates the form
factor. For somewhat larger-N values, the external regions
dominate.

In Fig. 1,F~N, T50.1! is plotted forN ranging from 0.01

ves

ves

FIG. 4. A plot of the form factorF(N,T) for a range ofT values
is plotted againstN. The important dependence on the target thick
ness and the approach to the thick target limit of LPM is evident

FIG. 5. Plots of the form factorF(N,T) vsk for T510 and 1 are
given. The physical parameters were chosen to roughly correspo
to the SLAC experiment for a gold target of thickness 6%L and
0.7% L, respectively. Note the break at k'50 MeV in theT51
data.
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to 50, orbl ranging from 10 down to 0.002. In Fig. 2F~N,
T51! is plotted for N ranging from 0.02 to 200
~500.bl.0.05!. In Fig. 3 the form factorF~N, T510! is
plotted forN, again ranging from 0.02 to 200. The small
scale oscillations in the individual contributions are eviden
The LPM regime is the region 1,N&T where~asymptoti-
cally! the form factor should fall as 0.94/AN. In all the
graphs the regimeN*T2, in which the form factor becomes
independent ofN but T dependent, is evident. AsN in-
creases, one eventually enters into the regime of low-pho
energies and the index of refraction of the medium becom
important. These effects are not treated here.

In Fig. 4 the form factorF(N,T) for differentT values is
plotted againstN. This plot shows the behavior as the targe
thickness increases from a thin target,T50.1, to the very
thick-target LPM limit,T.100. Finally, in Fig. 5 the form
factorF(N,T) for two T values is plotted against the photon
momentumk. We emphasize that this calculation assume
single-photon emission only. The values ofT510 and 1 ap-
proximately correspond to the SLAC experiment for a go
target of 6%L and 0.7%L, respectively. The break in the
slope atk550 MeV is an effect of finite-target thickness
This break is present in the data of@5# for a beam energy of
25 GeV ~in which the radiation lengthL is denoted byX0!.
For k values smaller than this value, the formation leng
becomes larger than the target thickness. Detailed comp
sons of our results for finite target thickness and the expe
mental data are in preparation by the SLAC E-146 Collab
ration.

Note added.After this work was submitted for publica-
tion, we became aware of three earlier papers which e
tended the classical treatment of the LPM effect@19–21#. In
particular, the error in the treatment of Landau and Pom
anchuk discussed in the Appendix was first pointed out a
corrected in@20#.
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APPENDIX

In this appendix we show the error in the Landau
Pomeranchuk classical derivation that led them to choo
^pW '

2 &54pm2/a in order to get the correct Bethe-Heitle
limit instead of~8.6!. Our starting point is Eq.~1! in Sec. 76
entitled ‘‘Electron-Cascade Processes at Ultra-High En
gies,’’ in the collected works of@8#. If the higher-order terms
in 1/g are not neglected, whereg[vr 12 with rW125rW12rW2 ,
-
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one finds, in place of their Eq.~2!, the result

dI5dI11dI2 ,

where

dIi5
e2vdv

p E
2`

` E dt1dt2
exp@ iv~ t12t2!#

r 12
Ji . ~A1!

The integrands are

J15FVW 1•VW 22
~VW 1•rW12!~VW 2•rW12!

r 12
2 G

3Fsin~g!13
g cos~g!2sin~g!

g2 G ,
J25@22VW 1•VW 2#Fg cos~g!2sin~g!

g2 G . ~A2!

The leading contributions to these integrals comes from th
slowly oscillating terms with phasev[( t12t2)2r 12]. That
is, whenv(12V)(t12t2)&1, whereV is the velocity. In
this caseg;(12V)21@1.

This argument led Landau and Pomeranchuk to neglect
terms of order 1/g2. Although this approximation is valid for
the second term inJ1, it is invalid for J2, which has a coef-
ficientVW 1•VW 2;1 in contrast to the coefficient inJ1 that van-
ishes in the limit of small scattering.

To be specific, consider a single scattering~classical! at
t50 so that we can write, to orderuDVu2!1,

VW ~ t !5VW ~0!F12
1

2

uDVu2

V~0!2
u~ t !G1DVW u~ t !, VW ~0!•DVW 50.

~A3!

Defining u i5u(t i), we find

VW 1•VW 25V~0!2F12
1

2

uDVu2

V~0!2
~u12u2!

2G ,
g5vV~0!~ t12t2!F11

1

2

uDVu2

V~0!2
t1t2

~ t12t2!
~u12u2!

2G ,
VW 1•VW 22

~VW 1•rW12!~VW 2•rW12!

r 12
2 5uDVu2

t1t2
~ t12t2!

2 ~u12u2!
2.

~A4!

The Landau-Pomeranchuk result isI 1, which can be
readily evaluated as

dI15
e2

3p

E2uDVu2

m2 dv5
e2

3p

uDpu2

m2 dv, ~A5!

which is precisely 1/2 the correct classical answer. Next, on
readily finds that the integralI 2 is also, to leading order,
proportional touDpu2/m2 with the contribution coming from
the term ing proportional toDV2. The result is thatI 15I 2
which accounts for the missing contribution.
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