////////////////////////////////////////////////////////////////////////// // // // Lorentz Algebra Package // // // // The present package implements all the basic algorithms dealing // // with three-vectors and four-vectors, together with their transform- // // ations. Four-vectors are derived from three-vectors and inherit // // all of their members. Direct access to the components is provided // // through the subscript operator [i] which covers the range 1...3 for // // three-vectors and 0...3 for four-vectors. Transformations are // // implemented as a friend class so that they can operate directly on // // the data members of the vector, which are otherwise hidden. The // // special transformations (rotations and boosts) inherit from the // // general class LorentzTransform. Products of rotations are other // // rotations, whereas the product of a boost with anything is simply // // a LorentzTransform. The LorentzTransform objects can be tested // // for the property of being a pure rotation or boost. They can also // // implement non-isochronous and improper transformations. // // // // Rotations may be specified either by Euler angles or by a rotation // // axis. All angles are assumed to be in radians. Vector classes are // // defined for both Real_t and Complex_t generic types. For complex // // vectors there are several additional member functions to deal with // // operations that are specific to complex numbers. // // // // The classes comprising this package are: // // TThreeVectorReal is a base class // // TThreeVectorComplex is a base class // // TFourVectorReal is a TThreeVectorReal // // TFourVectorComplex is a TThreeVectorComplex // // TLorentzTransform is a base class // // TThreeRotation is a TLorentzTransform // // TLorentzBoost is a TLorentzTransform // // The following aliases are defined for these classes: // // TUnitVector is an alias for TThreeVectorReal // // TThreeVector is an alias for TThreeVectorReal // // TFourVector is an alias for TFourVectorReal // // // // This package was developed at the University of Connecticut by // // Richard T. Jones // // // //////////////////////////////////////////////////////////////////////////