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Decay width of light quark hybrid meson from the lattice.

C. McNeile and C. Michael
Theoretical Physics Division, Dept. Math. Sci.,

University of Liverpool, Liverpool L69 7ZL, UK.

Lattice QCD with Nf = 2 flavours of sea quark is used to explore the spectrum and decay of a
JPC = 1−+ spin-exotic hybrid meson. We test lattice determination of S-wave decay amplitudes
at threshold using b1 → πω where agreement with data is found. We find a hybrid meson state at
2.2(2) GeV with a partial width to πb1 of 400(120) MeV and to πf1 of 90(60) MeV.

PACS numbers: 12.38.Gc, 12.39.Mk, 13.30.Eg

I. INTRODUCTION

QCD has the potential to produce spin-exotic hybrid
mesons. Lattice QCD is one of the most reliable ways
to evaluate their properties and mass values have been
reported. For a successful experimental study of such
states, it is necessary that the total decay width is not
too wide. The strength of this decay in which a gluonic
excitation produces a quark-antiquark pair is not easy
to estimate phenomenologically. For the case of heavy-
quark hybrid mesons, lattice QCD has given guidance
on the predominant decay channel and the decay width.
This estimate [1] is of a width sufficiently narrow that
experimental study is feasible. Here we address the issue
of the decay mechanism and associated widths for the
spin-exotic meson made of light valence quarks.

Lattice QCD offers a first principles route to determine
the spectrum of spin-exotic hybrid mesons. The first re-
ported results, refs. [2, 3, 4, 5], used quenched lattices.
There have been subsequent studies using lattices with
dynamical quarks, refs. [6, 7], but then the issue of the
decay of the hybrid meson has to be addressed directly.
Indeed the MILC group [7] emphasise that they cannot
easily distinguish a hybrid meson from a two-body state
such as πb1 with the same quantum numbers.

This is an important field to explore, since experimen-
tal results are somewhat inconclusive and there have been
several candidate states proposed, see refs. [8, 9, 10, 11,
12, 13, 14, 15, 16].

The study of hadronic decays from the lattice is not
straightforward - see ref. [17]. It is possible, however, to
evaluate the appropriate hadronic matrix element from a
lattice if the transition is approximately on-shell. Since
we will explore S-wave decays at threshold, we test our
lattice methods on a case which is known experimentally,
namely b1 → πω, obtaining agreement. For the case of
a spin-exotic hybrid meson (here we focus mainly on the
isovector JPC = 1−+ meson labelled ρ̂ where the ‘hat’
notation implies opposite C), the S-wave decays to πb1

and πf1 are explored here. We follow methods generically
similar to those used by us to study ρ decay [18]. Indeed
these methods were first employed [1] in a study of hybrid
meson decay, where the valence quarks are taken as very
heavy (i.e. static). Here we use light valence quarks -
lighter than the strange quark.

II. LATTICE METHODS

In order to study spin-exotic hybrid mesons, it is in-
evitable that non-local operators have to be used to cre-
ate (and destroy) the hybrid meson - since hybrid mesons
with spin-exotic quantum numbers explicitly cannot be
made from quark and antiquark alone. The gluonic
component can be incorporated either by using a closed
colour flux loop (eg. clover-like) or by separating the
quark and antiquark sites by a combination of colour flux
paths. Here we use that latter construction - as it was
found to be effective in an earlier study [2, 3].

In order to construct the hybrid meson sources, one
needs either propagators from different spatial points [2],
or some more elaborate construction. The hybrid meson
is relatively heavy, so the signal to noise ratio will be
poor. This suggests that a spatial-volume source would
be attractive. Such sources are achievable using stochas-
tic methods - and were indeed employed in our study of
ρ decay [18]. Compared to the case of the ρ meson, the
hybrid meson is even more challenging. We explored a
variety of different prescriptions, attempting to optimise
the signal/noise for the two-point hybrid correlator at
moderate t-separations.

A. Stochastic method

For a given effort (namely number of inversions), the
stochastic noise is reduced the more one dilutes (or thins -
see refs. [19, 20]) the set of stochastic sources used - until
with sources at one colour-spin at one point, one has the
conventional exact inversion. Conversely, the more corre-
lators one evaluates, the more the statistical noise inher-
ent in the gauge configurations is reduced. So clearly we
have to compromise - and the balance point for a hybrid
meson may be different from that used, for example, for
ρ decay.

As an example, we measured the connected meson two-
point correlator at t = 8 from different methods using
200 gauge configurations (lattice U355 of Table I). The
standard deviations over gauges were found to be for the
b1 and a0 meson 0.0028 and 0.0125, respectively, from
the conventional method using 12 colour-spin sources at
one space-time site; 0.0015 and 0.0070 from using the
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same conventional method with four space-time sources
per gauge configuration; while with a stochastic spatial-
volume source we obtained 0.0013 and 0.0034. The
stochastic method is superior, especially for the a0 me-
son, although it involves more inversions as the method
used a sequence of sources, each at one time value and
one colour-spin value but all space. With 8 time values
selected per gauge configuration, this involves 12×8 in-
versions. The essential step in obtaining a small stochas-
tic error is to minimise the number of random numbers
needed to evaluate the relevant correlators. This we ex-
plain in more detail.

With a random source, ξi, which is non-zero on some
subset of colour-spin-space-time and satisfies 〈ξ∗i ξj〉 =
δij ; 〈ξiξj〉 = 0 when averaged over different instances of
the random numbers, then one solves the propagation
from this source iteratively, as usual, Mikφk = ξi. Here
we use Z2 noise in both real and imaginary parts. The
basic idea is then that ξ∗kφj is an unbiased stochastic

estimator of the propagator M−1

jk , albeit a rather noisy
one, and can be used to construct mesonic correlators.
A considerable decrease in the noise comes from using
the ‘one-end-trick ’ which is [18, 19] to combine two ap-
propriately related φ’s to obtain the mesonic two-point
correlator. So if MikφΓ

k = Γijξj , then φ∗Γφ will, averaged
over stochastic samples, automatically select a meson cre-
ated by q̄Γq. An appropriate sum also needs to be made
over the sink (indices available on φΓ and φ) to destroy
such a meson. If one uses random sources ξ for each spin
component separately, one has the appropriate φΓ avail-
able for any independent γ matrix or product of them.
This is then an efficient method to evaluate all mesons
created by q̄Γq, and we presented some results for the b1

and a0 two-point functions above.
In order to extend this approach to create a hybrid

meson, one needs to create a source Hijξj for each orig-
inal source ξi where Hij is a sum of a set of operators
comprising spatial paths and γ-matrices which create the
hybrid meson when combined as above. In this work we
only create the spin-exotic JPC = 1−+ meson in one
spin component. We also create a fuzzed source Fijξj to
give us an independent mesonic creation operator. From
φ∗Hφ and φ∗HφF , we are able to create a hybrid meson in
two different ways (the latter has some unwanted mixing
of opposite C, which can be projected out by building the
sink operator with the required C-value). We also need
an extended propagator to cope with the pion emission in
the decays we shall study. Thus overall we need 4×12×8
inversions per gauge configuration. This relatively heavy
overhead is justified because with dynamical fermions,
there are a limited set of gauge configurations.

B. Lattice configurations and two point correlators

We wish to use gauge configurations with dynamical
quarks so that decay is physically allowed, as in the real
world. It is sufficient for this study to have Nf = 2

flavours of sea-quark, since this allows the light quark
sector to be explored. We use clover-Wilson fermions
and the lattice data sets used are described in Table I.
They have different quark masses and spatial volumes to
explore systematic effects.

Because of the improved signal to noise offered by our
stochastic method, we have improved determinations of
the meson masses from two-point correlators. As well as
local operators, we use fuzzing [21] with paths of length
f1 (2a for U355 for compatibility with previous work, 3a
for C410) composed of fuzzed links (5 iterations of fuzzing
with 2.5 straight + sum U-bends, projected to SU(3)).
We have a 2 × 3 matrix of correlators: local or fuzzed
at the source and an additional larger scale fuzzing at
the sink with fuzzed links with 10 iterations of fuzzing
combined to length f2 (4a for U355, 5a for C410). For
the axial mesons b1 and a1, we use operators q̄γiγ5γ4q
and q̄γiγ5q, respectively, (and their fuzzed extensions)
to determine the correlators which are fitted to give the
ground state masses listed in Table II.

We are also able to extract the spin-exotic hybrid mass
from our two-point correlators. We use a hybrid opera-
tor made (as in ref [2]) of U-shaped paths Pi from fuzzed
links and combined with γ-matrices to be in the T−+

1

representation: q̄ǫijkPiγjq. We have at the source such
an operator with sides of length f1 and also the fuzzed
version of this (with straight links of length f1 combined
with the U-shaped ones). At the sink we have both of
these operators as well as an additional one made of U-
shaped paths with length f2 composed of more heavily
fuzzed links. At the sink we take care to give the fuzzed-
hybrid operator a well defined charge conjugation. We
again have a 2 × 3 matrix of correlators which we fit to
determine the energy eigenstates. Using the t-range 2-8,
we obtain the mass values given (for the ground state)
in Table II from a factorising fit to the correlator ma-
trix with ground state and 1 excited state. The fit is
illustrated in fig. 1 for U355. We can also use a 2 × 2
submatrix of correlators in a variational treatment, ob-
taining m(ρ̂)a = 1.38(12) (U355 from t-values 5/4 with
basis 3/2) and 1.68(13) (C410 from t-values 4/3 with ba-
sis 3/2). These latter values are formally upper limits.
They are consistent with the fitted values given in Ta-
ble II.

To compare these mass determinations, we use r0, ob-
taining m(ρ̂)r0 = 7.0(3) and 5.4(2) for U355, C410 re-
spectively, where the errors are statistical only. There
are also systematic errors from the fits, which can be con-
strained partly by the variational results quoted above,
and which are at least as big as the statistical errors.
These fit values are statistically barely consistent: it may
be that finite volume effects are significant (C410 has a
spatial extent 5/3 bigger than U355) or that finite lat-
tice spacing effects are important (U355 has a smaller
lattice spacing by 3/5 and uses NP clover rather than
tadpole-improved clover). Since we are unable to distin-
guish between these scenarios, we construct a weighted
average, namely: m(ρ̂)r0 = 5.9(6).
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FIG. 1: Effective mass (from t : (t − a)) of the JPC = 1−+

hybrid meson in lattice units from a 2×3 matrix of correlators
for U355. The fit described in the text is illustrated.

We note that the result of previous quenched calcu-
lations was summarised [22] at around 1.9 GeV which
corresponds to m(ρ̂)r0 = 4.8. Thus we conclude that the
Nf = 2 studies, using a fully unitary theory, tend to give
higher hybrid meson masses than quenched. Our aver-
aged mass corresponds to 2.2(2) GeV (from r0 = 0.53
fm). As discussed later, there are additional systematic
errors.

We also have measured correlators between two-body
operators and the hybrid meson - these we will discuss in
the context of the decay mechanism. They can also be
used to extract energy values, as we discuss later. First
we analyse the reliability of the evaluation of decay tran-
sition strengths for S-wave decays at threshold by con-
sidering a case where the result is known experimentally:
b1 → ωπ.

C. Transition b1 → ωπ

The study of decays from Euclidean lattice gauge the-
ory has a long history and not many results. The only
case that has been studied in detail on a lattice [18]
where experimental results exist is ρ → ππ which has
a P-wave decay, necessitating non-zero momentum on a
lattice. For an S-wave decay, a zero momentum transi-
tion is accessible and this we explore here.

Code no. κ m(π)r0 L/r0 am(π) am(ρ)

U355 200 0.1355 1.47 3.2 0.292(2) 0.491(7)

C410 237 0.1410 1.29 5.3 0.427(1) 0.734(4)

U395 12 20 0.1395 1.92 3.5 0.558(8) 0.786(8)

U395 16 20 0.1395 1.94 4.65 0.564(3) 0.785(8)

TABLE I: Lattice gauge configurations U355 from
UKQCD [23], C410 from CP-PACS [24] and U395 from
UKQCD [25] used. These have Nf = 2 flavours of sea quark
and we use valence quarks of the same mass as the sea
quarks.

Code am(b1) am(a1) am(ρ̂)

U355 0.78(2) 0.72(2) 1.39(6)

C410 1.17(3) 1.15(2) 1.78(5)

TABLE II: Axial meson and hybrid meson masses deter-
mined from lattice gauge configurations U355 and C410 using
stochastic methods.

On a lattice, one can create two body states of a given
total momentum. In a large spatial volume, these two
bodies will interact very little and so the two body state
will be approximately the product of the single body
states. The interaction can be studied by measuring the
shift in the two-body energy while varying the lattice
spatial size, as established by Lüscher [26, 27, 28, 29].
This approach, however, needs very accurate energy de-
terminations and is thus not feasible in many cases at
present. A simpler, but less rigorous, alternative is to
measure the transition strength from initial state to two-
body state directly on a lattice. This is feasible [1] when
the initial and final state have approximately the same
energies (i.e. on-shell transition). The decay transition
amplitude measured on a lattice can then be related to
the large volume value via Fermi’s golden rule. For an S-
wave decay at threshold, the phase space is actually zero,
so relating the lattice with a discrete spectrum of two-
body states to the large volume continuum of two-body
states needs to be validated.

Here we study b1 → ωπ which has predominantly an S-
wave decay [30] with partial width Γ = 0.142(9) GeV. We
shall compare effective coupling constants for the S-wave
transition, defining g2 = Γ/k where k is the decay mo-
mentum, so g2 = 0.38(2). In order to study the b1 → ωπ
D-wave transition which would shed light on the decay
mechanism [31], we would have to create non-zero mo-
mentum mesons which we do not study in this work.

On our lattices, the b1 mass is approximately the same
as the sum of π and ρ masses, so we are close to an
on-shell transition. In principle, the ω meson, which is
flavour singlet, receives disconnected contributions, but
these we expect [32] to be negligible based on previous
lattice studies. We measure the three-point correlation
(b1|ωπ) where the π and ω are both summed over the
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whole volume at one time-slice and the b1 meson is also
summed over all volume at another time-slice. We mea-
sure for each of the three spin orientations of b1 and ω
(which are aligned). This is achieved using our stochastic
methods with the ω as the source and with an extended
propagator for the zero-momentum pion, for which a
fuzzed operator is chosen.

We then evaluate the ratio

R(t) =
(b1|ωπ)

√

(b1|b1)(ω|ω)(π|π)

where each correlation is taken at the same t-separation
on the lattice. This ratio R(t) of the three point cor-
relation to a combination of two-point correlations nor-
malises the meson creation operators. It is plotted in
fig. 2 for the case where each meson operator is fuzzed
(which enhances the ground state contributions). The
slope of R versus t is then the lattice transition ampli-
tude xa. We see that a linear behaviour is present over a
significant interval in t, so confirming the interpretation
of the slope as the lattice transition amplitude. In our
further analysis, we evaluate this slope around t/r0 = 1.
The decay width Γ is then given, via Fermi’s Golden
Rule, by Γ/k = g2, where

g2 =
1

π
(xa)2(L/a)3

E(ω)aE(π)

E(ω) + E(π)

where k is the centre of mass momentum of the decay
products.

The coupling strength g2 should be independent of lat-
tice spatial size (L). Moreover its dependence on the
quark mass can also be explored. In order to investigate,
we evaluate the effective coupling from a range of dif-
ferent lattice configurations (all having Nf = 2 flavours
of sea-quark). We plot in fig. 3 the effective coupling g
evaluated from the slope (xa) in fig. 2 at t/r0 = 1.

For a zero-momentum transition, which is what we
study here, there should be no dependence on lattice vol-
ume of the hadronic transition strength. In order to be
able to vary the lattice spatial volume while keeping ev-
erything else fixed, we make use of 123 × 24 and 163 × 24
configurations labelled U395 in Table I. As shown on
fig. 2, where the appropriate factor of (12/16)3/2 has
been included, R(t) agrees within statistical errors for
these two cases. This confirms that the extraction of the
hadronic transition amplitude is insensitive to the lattice
spatial volume when it is changed by a factor of 2.4.

To study the dependence on the quark mass, we com-
pare our higher statistics studies U355 (m(π)r0 = 1.47)
and C410 (m(π)r0 = 1.29). Qualitatively, we see from
fig. 2, they have similar transition strengths. There is
some evidence of a decrease of the coupling strength as
the quark mass is decreased. This is consistent with ap-
proaching the experimental value as m(π) → 0, as shown
in fig. 3.

Thus we conclude that our method for extracting an
estimate of the decay transition strength is indeed reli-

FIG. 2: Normalised ratio R(t) of transition b1 → πω at time

t in lattice units (a factor of (12/16)3/2 has been included for
the U395 12 data set). The continuous (dotted) straight lines
represent fits to the expected behaviour for U355 (C410) and
their slopes (xa) are related to the effective coupling constant
g as described in the text.

able for an S-wave decay at threshold. We now explore
hybrid meson decays.

D. Hybrid meson decay

With our lattice parameters, there are several two-
body thresholds with the quantum numbers of the hy-
brid meson in the energy range of interest, namely πf1,
πb1, πη and πρ, where the latter two cases involve non-
zero momentum since they are P-wave decays. We first
investigate the coupling between the hybrid meson ρ̂ and
the two-body channel πb1. This latter channel has an
S-wave coupling to the hybrid, so the energy threshold
on our lattice is given by the values of aE(π, b1) in Ta-
ble III. These values are similar to our estimate of the
hybrid meson mass, so that the normalised off-diagonal
transition gives useful information. We use similar meth-
ods for ρ̂ → b1π as used above for b1 → πω.

The simplest way to investigate the hadronic matrix
element responsible for decay ρ̂ → b1π is to evaluate the
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FIG. 3: Effective coupling of transition b1 → πω evaluated
from the slope in fig. 2 at time t/r0 = 1 for different lattices
with different pion masses (in units of r0 ≈ 0.5 fm). The
strange quark mass corresponds to (m(π)r0)

2
≈ 3.4.

Code aE(π, b1) ρ̂ → b1π ρ̂ → f1π

xa Γ/k xa Γ/k

U355 1.07(2) 0.046(5) 0.58(12) 0.017(7) 0.08(6)

C410 1.60(4) 0.045(7) 0.82(26) 0.023(7) 0.22(13)

Average 0.66(20) 0.15(10)

TABLE III: Hybrid meson decay amplitudes and rates.

ratio

H(t) =
(ρ̂|b1π)

√

(ρ̂|ρ̂)(b1|b1)(π|π)

where each correlation is taken at the same t-separation
on the lattice. This ratio normalises the meson creation
operators. One could also normalise directly the two-
particle state (πb1) but, as discussed [18] for ρ → ππ,
we expect the dominant contribution to be the product
(especially for large L). Indeed we do check that the
correlation between these two-point correlators (π|π) and
(b1|b1) is consistent with zero out to t = 8a.

If there were only a single state coupling to the ρ̂ and
πb1 operators, the ratio H would be 1.0. The observed
value is small (see fig. 4) which shows that this is not the
case.

In the case where there are two states (the hybrid me-

FIG. 4: Normalised ratio of ρ̂ → b1π and ρ̂ → f1π. The
operator used for ρ̂ is either U-bends of size 2 or 3 (H2 or H3)
or the same combined with fuzzing (FH2 or FH3). The π and
axial meson are always fuzzed. The straight lines represent
the trend of the data: the slope (xa) is the quantity required.

son and the two-body threshold), the ratio H(t) then
behaves [1] as xt where x is the lattice transition am-
plitude, provided that the transition is approximately
on-shell and that xt << 1. We do indeed observe an
approximately linear behaviour and, moreover, the value
is consistent between different choices of external opera-
tor (fuzzed or not) for both the b1 meson and the ρ̂. Thus
we can assume that the ground state mesons dominate
and read off the lattice transition amplitudes which are
given in Table III. Statistically these slopes are quite well
determined, although as we discuss later, the systematic
errors are dominant. The decay width Γ is given, via
Fermi’s Golden Rule, by

Γ/k =
1

π
(xa)2(L/a)3

E(b1)aE(π)

E(b1) + E(π)

where k is the centre of mass momentum of the decay
products.

Then using our observed mass values for the π and
b1, the values we obtain for the partial width Γ/k of the
decay ρ̂ → b1π are given in Table III. We emphasise
that, on the lattice, we are working with unphysical light
quark masses which makes the transition nearly on-shell.
The underlying assumption, however, is that the cou-
pling constant g (where Γ/k is an effective proxy for g2)



6

is insensitive to changes in the quark masses. This was
confirmed by our study [18] of ρ decay and our study,
above, of b1 decay shows only a relatively small depen-
dence (see fig. 3).

As shown in Table III, the resulting values of the cou-
pling (quoted as Γ/k) vary between the two lattice eval-
uations we have used. As discussed above for b1 decay,
each set of lattice configurations has favourable and less
favourable features (large volume, smaller lattice spac-
ing, lighter quarks, etc.). The best way forward is to
regard these two studies as indicative of the systematic
errors arising from these limitations. As a compromise
we quote averaged effective couplings in Table III which
take into account some of these systematic errors.

As well as ρ̂ → πb1, we can also explore another S-wave
decay: ρ̂ → πf1. In this case, a disconnected diagram
also contributes to the decay, but we expect the contri-
bution from such disconnected diagrams to be small for
the axial-vector meson [32]. We also assume that the f1

meson, because of the small disconnected contribution, is
dominantly ūu+d̄d. Then the relevant ratio is shown also
in fig. 4. This again shows a linear increase with t, lead-
ing to estimates of the hadronic transition xa and partial
width Γ/k for this decay shown in Table III. These sub-
stantially smaller values are only partly attributable (a
factor 0.5 in rate) to quark diagram counting and are
dominantly a dynamical effect.

If one was convinced that the disconnected contribu-
tions could be neglected for ω̂ decays to πa1 then our
estimate for x obtained above can be used. With the
same assumptions we would obtain a partial width Γ/k
of 0.45(30).

The excited two body state where π and b1 have mo-
menta ±2π/L has an energy estimated on our U355 lat-
tice at Ea = 1.36. This is close to the energy we find
for our hybrid state. It would be desirable to evaluate
the transition from ρ̂ to this excited two-body state to
check for a consistent estimate of the decay width. On a
lattice, however, this excited two-body state will be very
hard to isolate because of the dominant contribution of
the threshold state which has the same overall quantum
numbers.

In this work we do not explore the P-wave decay chan-
nels such as πρ; πη etc., since we have not introduced
non-zero momentum, although as in the case of ρ decay,
this is in principle possible.

With Nf = 2 flavours of sea-quark, we expect the ρ̂
meson to be mixed with the two body channels such as
πb1. Indeed by careful measurement of the energy of
the two-body state, it is possible to deduce [26, 27, 28,
29] the scattering phase shift and, hence, properties of
the ρ̂ resonance, if there is only one two-body channel
open. In this case, however, several channels are open
which invalidates the assumptions. Furthermore, we do
not have sufficient precision in our energy determination
to pursue this although preliminary attempts have been
made [33].

We can, however, attempt a joint fit to the matrix

of operators available: three ρ̂ operators (as discussed
above) and also the πb1 operator where the π is fuzzed
but the b1 may be either local or fuzzed. We thus have
a 4 × 5 matrix of correlations, assuming that (πb1|πb1)
can be replaced by the product (π|π)(b1|b1) which we
do measure. For U355, from such a 3-state fit for the
t-range 4-8 we obtain lowest energies of 0.93(15)/a and
1.41(8)/a. This is indeed consistent with the picture we
have assumed so far.

III. DISCUSSION

We study the spin-exotic channel with JPC = 1−+ and
we do obtain a signal for a state additional to the two-
body threshold. On our lattices this state is relatively
heavy - at 2.2(2) GeV. We find consistent mass values
from the hybrid channel alone and when the πb1 channel
is included. Since mixing between the discrete two-body
channels and the hybrid meson is enabled on our lattice,
it is possible that this mixing moves the hybrid mass up -
but this shift would be expected to be of order xa which
we find to be only 0.05 and hence within our quoted sta-
tistical error. As we only have a signal out to t/a ≈ 6, we
will not be able to resolve a rich hybrid spectrum - since
we are only able to make 2-state fits to the hybrid sector.
So it is possible that there are several hybrid mesons in
this mass region, one of which is lighter than our mass
estimate. Indeed our variational estimate explicitly is an
upper mass estimate. We do have some control over the
contribution of two-body states to the hybrid sector and
those we explicitly measure contribute only a negligible
amount.

For our quark masses (approximately 2/3 of strange
for U355 and 1/2 for C410), previous lattice results gave
a lighter hybrid mass (around 2 GeV), but they were
predominantly quenched. We do not attempt a mass ex-
trapolation, although phenomenological estimates [2, 3]
would be that the light-quark hybrid state is some 200
MeV lighter than that we study here. For further discus-
sion of the subtleties of extrapolating in quark mass see
ref. [5, 34]. We are also unable to extrapolate to smaller
lattice spacing or to larger spatial volumes. The neglect
of strange sea-quarks is also hard to quantify but could
be quite small for the states we consider. Even though
these restrictions imply that our mass determination has
systematic errors, we are considering a consistent lattice
field theory and we expect hadronic transition strengths
to be a good indication of the physical world.

The signal for the hadronic transition which causes de-
cay is very clear and is consistent with the simple inter-
pretation in which the slope gives the decay amplitude.
The most suitable way to quote our result is as effec-
tive couplings given by partial widths Γ(ρ̂ → πb1)/k =
0.66(20) and Γ(ρ̂ → πf1)/k = 0.15(10). These error es-
timates do not include any error from extrapolation to
physical quark masses. If the ρ̂ meson is at 2.0 GeV then
the physical decay to πb1 has momentum k = 0.611 MeV
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and for a heavier hybrid meson the momentum would
be even larger. This implies that we expect the hybrid
meson to have a partial width to πb1 of 400(120) MeV
which implies a total width greater than this.

There are experimental indications for a ρ̂ resonance
around 2 GeV with a total decay width reported as 333
MeV (from ref. [15] studying πf1 final states) and as 230
MeV (from ref. [16] studying πb1 final states). These
total width values should be the same if there is one un-
derlying state and can be compared with the total width
we estimate. The agreement is close enough to warrant
further experimental investigation. It would be of con-
siderable interest to know if the experimental branching
fractions (as yet unknown) tie in with our expectation
(namely dominance of πb1 over πf1). Indeed phenomeno-
logical models do indicate [34] that the πb1 mode should
dominate the width and that widths of O(100) MeV are
possible. Flux tube models [35, 36] give Γ/k in the range
.06 to .28 for πb1 and .04 to .10 for πf1.

The equivalent decay to ρ̂ → πb1 for a heavy-quark
hybrid will be Υ̂ → B(0−)B∗∗(1+) which is not expected
to be allowed energetically. So the previous estimate [1]

for the decay width of the Υ̂ is not modified by this work.

IV. CONCLUSIONS

We have evaluated the S-wave transition b1 → πω at
threshold from the lattice and obtained agreement with
the experimental value. We find some evidence that
the coupling constant varies with the quark mass, being
smaller for lighter quarks.

We have studied the spectrum and decay to πb1 and
πf1 of the spin exotic isovector hybrid meson ρ̂. This
state has potential couplings to many two-body states in
the same energy region which inevitably means that ap-
proximate methods will be needed. We find statistically
well determined results in our study which are consis-
tent with a hadronic transition from ρ̂ to πb1 and πf1

whose strength we evaluate. From this lattice determi-
nation, assuming that the effective coupling constant is
independent of quark mass, one can estimate the phys-
ical partial widths, obtaining Γ(ρ̂ → πb1)/k = 0.66(20)
and Γ(ρ̂ → πf1)/k = 0.15(10) where k is the decay mo-
mentum. Note that, if the result we found for b1 → πω
is generic and the effective coupling decreases with quark

mass, then the physical decay width of the hybrid meson
would be smaller than our estimates. We note that the
width of the hybrid meson is large primarily because of
larger phase space rather than larger coupling, compared
to the decay of a typical meson, such as b1 → πω.

Our determination of the mass of this hybrid meson
gave higher values than obtained previously for our lat-
tice with smaller lattice spacing (U355) but averaging
over our two sets of lattices we obtain 2.2(2) GeV for light
quarks of similar mass to strange, which is similar to the
value 2.0(2) GeV previously determined. Because of the
possibility of a rich spectrum (both of hybrid mesons and
of two-body states) we cannot exclude systematic errors
in our mass determination and we can only be certain
that it is an upper limit. We do, however, see some ev-
idence that the hybrid meson may lie higher in energy
when the two-body decay channels are coupled (as they
are with dynamical sea quarks).

The study of the properties of an unstable state
(namely the spin-exotic hybrid meson) demands careful
treatment on a lattice. We have shown that this is fea-
sible and future studies with lattices closer to the con-
tinuum and with lighter quarks and higher statistics will
allow further refinement of our estimates.

Overall our results are rather disappointing from a
viewpoint of experimental searches for spin-exotic hybrid
mesons. We have evaluated two decay channels which
combine to give a total width of over 400 MeV. This
will make the detailed experimental study of the hybrid
meson relatively difficult. There are detailed predictions
(such as that the πb1 mode will be dominant) that can
be checked, however.
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