GlueX at Jefferson Lab:

 a search for exotic states of matter in photon-proton collisionsInternational Winter Conference on Nuclear Physics

Bormio, Italy
January 27, 2014

Matthew Shepherd Indiana University

Outline

- Motivation
- hadron spectroscopy as a tool for exploring QCD
- expectations from Lattice QCD
- experimental objectives
- The GlueX detector and beamline
- subsystem design
- status of construction and installation
- Analysis
- expected sensitivity in key meson search channels

Gluon Interactions in QCD

- QCD has interesting properties
- gluon-gluon interactions
- confinement
- How do we experimentally explore the strong coupling regime of QCD?

Probing Strong Interactions

melt it

nuclear matter

take it apart and reassemble it in different ways

put it under a

 microscope

Questions for Hadron Spectroscopy

- What role do gluons play in the structure of matter?
- What are the fundamental degrees of freedom that make up hadrons?
- Does QCD predict experimentally observable gluonic excitations?
- Can we observe evidence for gluonic degrees of freedom in the spectrum of meson states?

Conventional and Hybrid Mesons

color singlet quark anti-quark

$$
J=L+S \quad P=(-1)^{L+1} \quad C=(-I)^{L+S}
$$

Allowed JPC: $0^{-+}, 0^{++}, I^{--}, I^{+-}, 2^{++}, \ldots$ Forbidden $J^{P C}: 0^{-}, 0^{+-}, I^{-+}, 2^{+-}, \ldots$

Lightest Hybrids

$$
\begin{array}{ccc}
& S_{q q}=1 & S_{q \bar{q}}=0 \\
\rho^{C C}: & 0^{+}, 1^{-+}, 2^{-+} & 1-- \\
\uparrow_{\text {"exotic hybrid" }} &
\end{array}
$$

Lattice QCD Predictions

Majority of experimental data to date is related to one state, the π_{1}.

Searches for the π_{1}

TT DEPARTMENT OF PHYSICS

Isoscalar Exotic Hybrids

- OZI-rule and decay modes help one infer quark flavor
$\frac{\mathcal{B}\left(f_{2}^{\prime}(1525) \rightarrow \pi \pi\right)}{\mathcal{B}\left(f_{2}^{\prime}(1525) \rightarrow K K\right)} \approx 0.009$

$$
\frac{\mathcal{B}\left(f_{2}(1270) \rightarrow \pi \pi\right)}{\mathcal{B}\left(f_{2}(1270) \rightarrow K K\right)} \approx 20
$$

(measured by experiment)

The Heavy Quarkonium Context

- Many new $X Y Z$ states in charmonium and bottomonium
- see Ryan Mitchell's talk on Friday morning
- Interpretation?
- hybrids with conventional meson quantum numbers?
- DD or $B B$ interactions?
- tetraquarks?
- Can we establish a correspondence between light and heavy meson spectra?

The BaBar Collaboration [PRL 95, I4200I (2005)]

The BESIII Collaboration [PRL I IO, 25200 I (20I3)]

$Y(2175)$: peculiar strangeonium?

- BaBar: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \varphi \pi \pi$ reports $1-$ state $Y(2175)$
- Belle, BES (in J/ Ψ decay) confirm
- decay mode similar to $Y(4260) \rightarrow J / \Psi \pi \pi$
- Questions
- is $Y(2175)$ supernumerary?
- does $Y(2 I 75)$ behave like $Y(4260)$?
- what does it mean?

Recap

- QCD at low energy is strong: gluon-gluon interactions
- Recent advances in first-principles QCD calculations
- Experimental goals
- search for light quark hybrids
- study how they decay
- compare with heavy quarks
- ...?

12 GeV Upgrade to JLab

- Upgrade maximum electron energy from 6 GeV to 12 GeV with addition of cryomodules
- Add new experimental hall: Hall D
- starts operation in 2015
- Upgrade experimental facilities in other halls
- \$339M total project cost now well over halfway complete: CD-4B now Spring 2017

GlueX in Hall D

- core physics motivation:
- light hybrid spectroscopy
- other opportunities: $\Gamma_{Y \gamma}$ via Primakoff, baryon spectroscopy, charged pion polarizability, η factory, ...
- $\approx I \mid 5$ physicists; $2 \mid$ institutions
- collaboration founded around I998

Beamline Design

- some models predict enhanced hybrid photoproduction
- no restrictions on produced JPC
- need 9 GeV tagged linearly polarized photons
- coherent bremsstrahlung scattering of $12 \mathrm{GeV} \mathrm{e}^{-}$off of a $20 \mu \mathrm{~m}$ thick diamond wafer

$\mathbf{m}_{3 \pi}\left[\mathrm{GeV} / \mathbf{c}^{2}\right]$

The Tagger Area

Instrumentation

Broadband Hodoscope ($3.0-11.8 \mathrm{GeV}$)
I-2\% typical resolution on E_{γ} (sampling)

Tagger

Microscope (8.4-9.0 GeV)
0.1% resolution on E_{Y}

Tracking

Goals

coverage: $1^{\circ} \leq \theta \leq 140^{\circ}$ resolution: $\sigma / p=1-3 \%$

Central Drift Chamber

- 28 layers: 16 stereo $\left(\pm 6^{\circ}\right), 12$ axial
- design position resolution: I $50 \mu \mathrm{~m} / \Phi, 2 \mathrm{~mm} \mathrm{z}$

Forward Drift Chamber

- u/v cathode strip readout on each side of anode wires
- $200 \mu \mathrm{~m}$ resolution
- 4×6-layer packages; 60° rotation for each subsequent layer

Calorimetry

Future
Particle ID

Goals

coverage: $2^{\circ} \leq \theta \leq 120^{\circ}$
average approximate resolution:
$\sigma / E=6 \% / \sqrt{ } E+2 \%$
low energy threshold:
forward: 50 MeV barrel: 60 MeV
126.4°

FDC
Forward Drift Chambers

$30-\mathrm{cm}$ target

Barrel Calorimeter

- Pb-SciFi calorimeter based on KLOE design; 48 4-m long modules
- large area ($1.2 \mathrm{~cm} \times 1.2 \mathrm{~cm}$) Silicon photomultiplier readout (Hamamatsu)
- resolution: $\sigma / \mathrm{E}=5 \% / \sqrt{ } \mathrm{E}+\mathrm{I} \%$

Forward Calorimeter

- $\quad 28004 \mathrm{~cm} \times 4 \mathrm{~cm} \times 45 \mathrm{~cm}$ lead glass blocks; (glass from the E852 experiment at BNL)
- readout: I" FEU 84-3 PMTs
- $\quad \sigma / E=6 \% / \sqrt{ } E+2 \%$:

Particle ID/Timing

TOF Wall

Future
Particle ID

Particle ID and Timing

- Start counter: thin scintillator with approximately 300 ps resolution (strong position dependence)
- SiPM readout
- Forward TOF: two-scintillator planes; 70 ps resolution; $4 \sigma \mathrm{~K} / \pi$ up to $2 \mathrm{GeV} / \mathrm{c}$
- conventional PMT readout

Data Rates

- Design rate: $10^{8} \mathrm{\gamma} / \mathrm{s}$ tagged photons on target in the polarization peak; initial running at $10^{7} \mathrm{Y} / \mathrm{s}$
- Fully pipelined, zero-deadtime readout electronics
- level one trigger: 200 kHz
- level three output: $300 \mathrm{MB} / \mathrm{s}$ (20 kHz of "interesting physics" selected with software trigger)
- Expected statistics in initial, low intensity run:
- I x 10^{8} events: $\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{+} n$
- 5×10^{6} events: $\gamma p \rightarrow \omega \pi \pi^{+} p$
- 10^{5} - 10^{6} events: $\gamma p \rightarrow \eta ’ \Pi^{+} n$
- an order of magnitude more data later

72 Channel
125 MHz I2-bit Flash ADC

Analysis Procedure

Typical Channel: $\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{+} n$

- $\pi^{+} \pi^{-} \pi^{+} n$ topology
- neutron undetected
- 2% of total hadronic cross section
- overall 28% efficiency at 95% purity
- Use as a test of detector sensitivity to small amplitudes

Other Reactions of Interest

Meson of Interest (X)	Reaction Topology	Mass $M_{X}^{\text {min }}$	$\begin{aligned} & {\left[\mathrm{MeV} / c^{2}\right]} \\ & M_{X}^{\max } \end{aligned}$	Signal Yield $\left[10^{6}\right]$	Events $10 \mathrm{MeV} / \mathrm{c}$
$h_{2}^{\prime}(2600)$	$\gamma p \rightarrow\left(K_{1}(1400) K\right)_{X} p$	2415	2785	1.5	4.0
	$K^{*} \rightarrow K \pi \quad$ complementary to non-strange topology (h_{2}): $b_{1} \pi$				
$\eta_{1}^{\prime}(2300)$	$\gamma p \rightarrow\left(K^{*} K_{S}\right)_{X} p$	2000	2600	0.46	1.5
	$\begin{aligned} & K^{*} \rightarrow K^{ \pm} \pi^{\mp} \\ & K_{S} \rightarrow \pi^{+} \pi^{-} \end{aligned} \quad \text { comp }$	complementary to non-strange topology (η_{1}): $f_{i} \eta$			
$\phi_{3}(1850)$	$\gamma p \rightarrow\left(K^{+} K^{-}\right)_{X} p$	1720	1980	5.3	21
$Y(2175)$	$\begin{aligned} \gamma p & \rightarrow\left(\phi f_{0}(980)\right)_{X} p \\ \phi & \rightarrow K^{+} K^{-} \end{aligned}$	2060	2290	0.12	0.52
	$f_{0}(980) \rightarrow K^{+} K^{-}$				

- Pythia-based non-resonant cross section predictions
- PAC-approved full intensity physics run (~2017)
- 90% signal purity

Upcoming Milestones

- Installation mostly complete by Spring 2014
- Fall 2014: first commissioning beam in Hall D ("readiness milestone")
- 20I5-20I7: initial "low intensity" physics running
- Spring 2017: 12 GeV upgrade officially complete
- 20I7-?: high intensity running and possible particle identification upgrades

Summary

- Many exciting developments in meson spectroscopy
- "understanding" requires theory + experiment
- studying a spectrum of states is essential
- extraordinary recent results in bottomonium and charmonium
- may provide insight for light quark studies
- The GlueX experiment
- is in advanced stages of construction and installation
- is poised to explore light meson photoproduction with unprecedented statistical precision in the next few years

