Meson Spectroscopy at GlueX

- Exotic hybrid mesons
- GlueX Experiment
 - Detector systems
- Summary

Carlos Salgado, Norfolk State University and Jefferson Lab for the GlueX Collaboration

Normal Mesons – $q\bar{q}$ color singlet bound states

Spin/angular momentum configurations & radial excitations generate the known spectrum of light quark mesons.

Starting with **u** - **d** - **s** we expect to find mesons grouped in nonets - each characterized by a given J, P and C.

Meson Spectroscopy from LQCD

Meson Spectroscopy from LQCD

At m_{π} =400 MeV, mass (1⁻⁺) ~ 1.9 GeV, mass (0⁺⁻) ~ 2.5 GeV

Experimental evidence for 1⁻⁺ exotic hybrids

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

See also the mini-review under non- $q \overline{q}$ candidates in PDG 06, Journal of Physics, G **33** 1 (2006).

π_1 (1400) MASS

 $\pi_1(1400)$

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below. 1354 ± 25 $\pi_1(1600)$ May be hybrid - Challenge in 3π $\pi_1(1600)$ MASS to separate exotic π_1 from π_2 TECN Cleaner η'π signal VALUE (MeV) EVTS DOCUMENT ID 1662⁺ ⁸ OUR AVERAGE $I^{G}(J^{PC}) = 1^{-}(1^{-}+)$ $\pi_1(2015)$ Listed among MASS (MeV) DOCUMENT IL WIDTH (MeV) EVTS "further states" $2014 \pm 20 \pm 16$ $230 \pm 32 \pm 73$ 145k LU Needs confirmation KUHN $333 \pm 52 \pm 49$ $2001 \pm 30 \pm 92$ 69k

. 6

Unlikely Hybrid

Dynamical origin?

Observation of $\pi_1(1600) \rightarrow \eta' \pi$

Photoproduction

Decomposition of total cross section $E_v = 9.3 \text{ GeV}$

Topology	σ (µb)	% of σ with neutrals
1-prong	8.5 ± 1.1	100
3-prong	64.1 ± 1.5	76 ± 3
5-prong	34.2 ± 0.9	86 ± 4
7-prong	6.8 ± 0.3	86 ± 6
9-prong	0.61 ± 0.08	87 ± 21
With visible strange decay	9.8 ± 0.4	-
Total	124.0 ± 2.5	82 ± 4

Approximately the 70% of total cross section in the energy region $E_{\gamma} \sim$ 7-12 GeV has multiple neutrals and is completely unexplored

GlueX strategy for hybrid meson search

- Use 8.4–9 GeV linearly polarized photons (12 GeV electron beam)
 - Expect production of hybrids to be comparable to normal mesons
 - Dearth of experimental data
 - Sensitivity to masses up to ~ 2.8 GeV/c²
- Use hermetic detector with large acceptance
 - Decay modes expected to have multiple particles
 - Hermetic coverage for charged and neutral particles
 - Medium resolution: momentum (~ 1-4%), energy (2-20%)
 - High data acquisition rate to enable amplitude analysis
- Perform amplitude analysis
 - Identify quantum numbers as a function of mass
 - Use linear polarization to help identify the J^{PC} of the final states
 - Check consistency of results in different decay modes

Photon beam and experimental area

Linearly Polarized Photon Beam

Rates are based on

- 12 GeV electron beam
- 20 μm diamond crystal
- 300 nA electron beam
- Rad-collimator: 76 m
- Collimator diameter: 3.5mm

Leads to $10^7 \gamma$ /s on target ($\Delta E\gamma$ =8.4-9GeV)

```
Design is expandable to 10^8\gamma/s
```


Hall D – GlueX detector

Solenoid: installed and field mapped

- Used for LASS at SLAC, for MEGA at Los Alamos, refurbished for GlueX
- Four separate coils, all different, "Cryo-stable" design
- Bore ID=185cm, length 400cm, Bmax=2.2T
- Full energy at 1500Å is ~30 MJ
- Field strength increases toward the downstream end of the magnet

BCAL: Barrel Calorimeter

Forward Calorimeter

<u>Lead Glass Calorimeter</u>

- 2800 lead glass F8-00 blocks 4x4x45cm³
- PMTs FEU84-3
- Cockroft-Walton bases

Fabricated at Indiana University

<u>Beam test with e⁻ in Hall B, 2012</u> • σ_F/E=20% at 100 MeV – as expected

Central Drift Chambers

Straw Tube Chamber surrounding the target 28 layers

Delivered to JLab

Fabricated at Carnegie Mellon

Angular Coverage: $6^{\circ}-155^{\circ}$ 3500 straw tubes r=8mm +/- 6° stereo layers dE/dx for p < 450 MeV/c Gas mixture: ~60/40 Ar/CO₂ Readout: FADC-125MHz Resolution: $\sigma_{r\phi}$ ~ 150 µm, σ_z ~1.5 mm

Forward Drift Chamber

Round planar chambers downstream of target Cathode and wire readout

Fabricated at JLab

- Gas Mixture: 40/60 Ar/CO₂
- Angular Coverage: 1º 30º
- Readout:
 - 2300 anode wires \rightarrow F1TDC
 - 10200 cathode strips \rightarrow FADC-125
 - 3 measured projections per plane
- Resolution: 200µm wires, 200µm strips

The material affects photon detection in EM calorimeters: <u>minimize the RL</u>

- Cathodes: 25 µm Kapton, 2 µm Cu
- Frames: G10+Rohacell sandwich
- 6 planes: 0.3% RL in active area

FDC construction

- All packages built
- All packages fully tested with cosmics
 - All wires and cathode strips good signals
 - The noise level is low
 - The efficiency is >98%
 - The cathode coordinate resolution is 200µm per plane - as expected
 - Drift time resolution is 200µm as expected
 - The geometry of the chamber is good

Time-of-flight system

Scintillator hodoscope Two independent planes

Fabricated at Florida State University

- Angular Coverage: 2° 11°
- 92 scintillators (2.5x6x252 cm³)
- Hamamatsu H10534 pmts
- Readout:
 - 176 channels CAEN V1290 TDCs
 - 176 channels 250 MHz fADCs
- Resolution: 80/√2 ps
- $\pi/K/p$ separation up to 2-3 GeV/c at 4σ

Modern method of signal capture: all pipeline

- 250MHz Flash ADC stores digitized signal in 8µs circular memory
- Trigger data contains detailed information useful for cluster finding, energy sum, etc.
- "Event" trigger extracts a window of the ADC data for pulse sum and time algorithms
- Hardware algorithms provide a huge data reduction by reporting only time & energy estimates for readout instead of raw samples

Readout and Trigger Modules (VXS based)

Tools for Amplitude Analysis (PWA)

 π (bachelor) Hybrid **ΤΡΟΜ**ε π (beam) Previous generation of amplitude analyses had many limitations, e.g. $\dot{\mathsf{R}}_{\pi\pi}$ $\epsilon = +$ natural use of the isobar model. spin S $\varepsilon = -$ unnatural parity exchange p (target) p (recoil)

Current generation of amplitude analyses

- Allow more flexibility when defining amplitudes
- Allow systematic studies of model dependencies
- Incorporate state of the art technology to increase fit speeds
 - Graphical Processor Units (GPUs)

There are no longer technological or experimental barriers to incorporating theoretical innovations into experimental analyses.

Sensitivity test using PWA tools

Expect hybrid signal to be large, but software tools can extract small signals

$$\begin{array}{c} \gamma p \rightarrow \pi^+ \pi^+ \pi^- n \\ \text{generated waves} \end{array}$$

 $a_1(1260) \rightarrow \rho\pi \qquad (S - wave)$ $a_2(1320) \rightarrow \rho\pi \qquad (D - wave)$ $\pi_1(1600) \rightarrow \rho\pi \qquad (P - wave)$ $\pi_2(1670) \rightarrow f_2\pi \qquad (S - wave)$ $\pi_2(1670) \rightarrow \rho\pi \qquad (P - wave)$

1⁻⁺ exotic wave generated with 1.6% relative strength

Summary

GlueX

- QCD allows for a rich spectrum of hadronic matter, as yet undiscovered.
- New calculations on the lattice predict the excitation of gluonic fields and, in particular, exotic hybrid mesons.
- GlueX will study the spectrum of mesons up to M ~ 2.8 GeV with a polarized photon beam and search for hybrid mesons with sensitivities of a few percent of the total cross section.

Project status

- The civil construction and accelerator are 90% complete
- Hall D experimental equipment is > 75% complete.
- Most GlueX detector systems are completed and being installed
- Hall D commissioning is planned for Oct 2014

Backup Slides

Photoproduction and linear polarization

- Production
 - The expectation from the flux tube model is that hybrids will be produced at a rate comparable to normal mesons.
 - This expectation is corroborated by recent lattice calculations that show that the strength of charmonium hybrid radiative decays are similar to normal mesons

 $\Gamma(\eta_{c1} \to J/\psi \gamma) \sim 100 \,\mathrm{keV}$

Dudek PRD 79 (2009) 094504

Polarization

- For a given produced resonance, linear polarization enables one to distinguish between naturalities of exchanged particles.
- If the production mechanism is known, linear polarization enables one to filter resonances of different naturalities.

Filter on naturality

Experimental status of exotic 1 ⁻⁺ π(1600)					
VES	$\pi^- A$	\rightarrow	$\pi^{-}b_{1}A$ $\pi^{-}f_{1}A$ $\pi^{-}\eta'A$	For review see Meyer PRC 82 (2010) 025208	
E852	$\pi^- p$	\rightarrow	$egin{aligned} & ho\pi^-p\ b_1\pi^-p\ f_1\pi^-p\ \eta^\prime\pi^-p \end{aligned}$		
Crystal Barrel	$\overline{p}n$	\rightarrow	$b_1\pi^-$		
E852-IU	$\pi^- p$	$\not\rightarrow$	$ \begin{array}{c} (\rho \pi^{-})_{\pi_{1}} p \\ (\rho^{-} \pi^{0})_{\pi_{1}} p \end{array} $		
CLAS	γp	$\not\rightarrow$	$(\rho \pi^+)_{\pi_1} n$	Only one photo-	
COMPASS	$\pi^{-}A$	\rightarrow	$ ho\pi^-A$	•	
CLEO-c	$\psi(2S)$	\rightarrow	$\gamma \chi_{c1}, \ \chi_{c}$	$_1 \to \eta' \pi^+ \pi^-$	
Jefferson Lab	Carlos	Salgado	X LANSPA Uruguay Dec 1-6, 20	113 29	

Analysis $\gamma p - b_1^{\pm} \pi^{\pm} p$

I. Senderovich, Ph.D. Thesis, GlueX-doc 2096

- $b_1\pi$ is model-favored decay mode for exotics
 - challenging 5πp final state
 - ωππ cross-section is 200 nb; assume 40 nb exotic signal
- Two resonances in b₁π: a 1⁻⁻ state at 1.89 GeV and a 2⁺⁻ state at 2.00 GeV
 - isobar model; polarized beam
- Statistics: ~260 hours of beam
- Dominant "background" is kinematicallyequivalent ωππ or 5π
 - emphasis on purity over efficiency
 - huge improvement from 3π: recoil proton, kinematic fitting
- Amplitude analysis extracts exotic signal

