University of Massachusetts, Nov. 20 2009

Hadron Physics with polarized photons at 9 GeV with GlueX

Searching for gluonic excitations in the light meson spectrum using photoproduction

Richard Jones University of Connecticut

Outline

Motivation

- gluonic excitations in QCD
- exotics in the light meson spectrum
- photoproduction of hybrid mesons
- Gluex at Jefferson Lab @ 12 GeV
 - 9 GeV polarized photon beam
 - photon beam source and instrumentation
 - other physics addressed by Gluex

Summary

Motivation: the hadron mass spectrum in QCD

Consider QCD with only heavy quarks:

Data from Lattice QCD show :

- the light mesons are glueballs
- qq mesons have the conventional positronium low-energy spectrum
- spectrum is distorted at higher excitations by a linear potential
- for r > 0.5 fm a tube_of gluonic flux forms between q and q

Motivation: the hadron mass spectrum in QCD

Consider QCD with only heavy quarks:

- gluonic excitations give rise to new potential surfaces
- for r >> r₀ gluonic excitations behave like flux tube oscillations

Motivation: conventional vs hybrid mesons

Motivation: extrapolation to light quarks

- Does the flux-tube picture still make sense for light quarks?
 - quarks are relativistic
 - \Box Fock subspaces mix (qq, qqqq, ...)
 - □ excited mesons are unstable (decays)
 - □ gluon fields modified by dynamical quarks (loops)
- Can experiments actually observe exotic states?
 - □ resonances may be broad difficult to observe individually
 - configurations mix exotic identification may be ambiguous
 - hybrids are embedded in a continuum of lighter 2-meson states
 - qq selection rules do not apply to 2-meson states
 - strong mixing may occur

Accounted for in quenched lattice studies, flux tube model Requires unquenched lattice studies, advanced methods

UMass seminar, Amherst, November 20, 2008

Motivation: conventional vs hybrid mesons

How excited state masses are extracted from LQCD data

 Jo Dudek (INT workshop 11/2009)
 "This fit is very unstable for all but the lowest mass in a given multiplet."

- How excited state masses are extracted from LQCD data
- Dudek et.al. (INT workshop 11/2009)
 - QCD gives a choice of many operators with the same J^{PC} (made from γ matrices remixed as spherical tensors)

Note: All of these operators have the same $q\overline{q}$ character, different angular momentum and gluonic content.

$$\overline{\psi}\Gamma\psi$$
 J=0,1

$$\langle 1, m_1; 1, m_2 | J, m \rangle \ \overline{\psi} \Gamma_{m_1} \overleftrightarrow{D}_{m_2} \psi \ J = 0, 1, 2$$

$$\begin{array}{c} \langle 1, m_1; J_D, m_D | J, m \rangle \\ \langle 1, m_2; 1, m_3 | J_D, m_D \rangle \quad \mathbf{J} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3} \\ \hline \psi \Gamma_{m_1} \overleftarrow{D}_{m_2} \overleftarrow{D}_{m_3} \psi \end{array}$$

$$C_{ij}(t) = \sum_{\mathfrak{n}} \langle 0|\mathcal{O}_i(0)|M_{\mathfrak{n}}\rangle \langle M_{\mathfrak{n}}|\mathcal{O}_j(0)|0\rangle e^{-m_{\mathfrak{n}}t}$$
$$C_{ij}(t) = \sum_{\mathfrak{n}} Z_i^{\mathfrak{n}} Z_j^{\mathfrak{n}*} e^{-m_{\mathfrak{n}}t}$$

Diagonalize this coupling matrix, each operator will have only one exponential

Dudek et.al., preliminary results @ pion mass 700 MeV/c²

Dudek et.al., preliminary results @ pion mass 700 MeV/c²

Question: where are all the continuum states?

suggested answer:

- \Box qq operator set incomplete
- variational method for diagonalizing ZZ* matrix can miss weak signals
- plans try again with a larger operator set, look at energy shifts with box size

Illustration of Luscher's method

Motivation: summary so far

QCD with only heavy quarks:

- □ hierarchy of hadrons with gluonic excitations
- mesons have a much simpler spectrum than baryons
- some gluonic mesons have exotic quantum numbers "hybrids"
- □ lightest hybrid exotic multiplet is 1⁻⁺, followed by 0^{+−}, 2^{+−}

QCD with light(er) quarks:

- □ requires unquenched LQCD, advanced techniques
- mass splitting exotic—conventional states unchanged
- \Box mixing of $q\overline{q}$ and $q\overline{q}g$ states with continuum is weak
- should be accessible to experiments !

Experiment: hybrid searches

- Most of the attention is focused on 3 observed states:
 - $\Box \pi_1(1400) \text{seen in } \eta\pi$ E852 Crystal Barrel
 - $\Box \pi_1(1600) \text{seen in } \rho\pi, f_1\pi, b_1\pi, \eta'\pi$ VES E852 Compass
 - $\Box \pi_1(2000) \text{seen in } f_1\pi, b_1\pi$ E852
- General observations regarding these analyses
 - □ all experiments (except CB) use pion beams
 - exotic intensities are typically 1/10 dominant ones
 - requires access to <u>complex multi-particle final states</u>
 - \Box requires <u>large samples</u> (~10⁶ in exclusive channels)
 - □ requires <u>good acceptance</u> (uniform and well-understood)

Experiment: $\pi_1(1400)$ from Crystal Barrel

Mass = $1400 + 20 + 20 \text{ MeV/c}^2$

Width = $310 + -50^{+50}_{-30}$ MeV/c²

without $\pi_1 \chi^2 / dof = 3$, with = 1.29

PWA fit to Dalitz plot: π_1 wave needed with same strength as the a_2

Experiment: $\pi_1(1600)$ from BNL-852

Experiment: $\pi_1(1600)$ from BNL-852

Mass = $1597\pm10+45-10 \text{ MeV/c}^2$ Width = $340\pm40\pm50 \text{ MeV/c}^2$

 $\pi^{-}p \rightarrow \eta' \pi^{-}p$

The exotic wave is the dominant wave in this channel.

Experiment: $\pi_1(1600)$ from Compass

Mass = 1660 MeV/ c^2 Width = 269 MeV/ c^2

$$\pi^- Pb \to \pi^+ \pi^- \pi^- (Pb)$$

(180 GeV pions, 420,000 events)

Partial Wave Analysis, preliminary arXiv:0910.5842 – unpublished

Experiment: $\pi_1(1600)$ from CLAS ?

No evidence of $\pi_1(1600) \rightarrow \rho \pi$, (13.5 nb upper limit).

 $\gamma p \rightarrow n\pi^+\pi^+\pi^-$

Baryons "removed" by hard kinematic cuts.

 $E_{\gamma} = 4.8 - 5.4 \text{ GeV}$ 83000 events after all cuts final acceptance < 5%

Argument: hybrid photoproduction

Quark spins anti-aligned

A pion or kaon beam, when scattering occurs, can have its flux tube excited

Data from these reactions show evidence for gluonic excitations (small part of cross section)

Quark spins aligned

Almost no data is available in the mass region where we expect to find exotic hybrids when flux tube is excited

Hybrid photon couplings on the lattice

- very little is known
- preliminary results for charmonium 1⁻⁺ hybrid Dudek, Edwards, Thomas PRD79 094504 (2009)
 - □ quenched (only charmed quarks)
 - only one lattice volume, one lattice spacing
 - □ only connected diagrams

□ disconnected diagrams may be suppressed by OZI rule

Hybrid photon couplings on the lattice

- very little is known
- preliminary results for charmonium 1⁻⁺ hybrid Dudek, Edwards, Thomas PRD79 094504 (2009)

authors comment:

- same scale as many measured EM transitions to conventional cc states
- very large for M1 eg. $\Gamma(J/\psi \rightarrow \gamma \eta_c) \sim 2 \text{ KeV}$ consistent with spin-triplet configuration for hybrid.
- no suppression of photocouplings for hybrids

GlueX Experiment: beam polarization

For circular polarization:

Suppose we want to distinguish the exchange: O^+ from O^- (A^N from A^U)

- With linear polarization we can isolate A^N from A^U
- Circular polarization gives access to their interference

GlueX Experiment: photon beam

12 GeV electrons

The coherent bremsstrahlung technique provides requisite energy, flux and polarization

What sets the scale for the maximum achievable coherent gain?

- coherent scattering: rate ~ (target thickness)²
- Iimited by something => "coherence length"
 - "duration" of bremsstrahlung radiative process
 - □ Landau-Pomeranchuk-Migdal effect

1. In an infinite crystal, radiation of a hard photon is localized (somewhat)

- HUP for off-shell electron (boosted to lab frame)
- b distance over which waves scattered for the scattered for the
- momentum transfer wavelength (longitudinal component)

All three of these amount to the same thing!

$$\sim \frac{E-k}{k}$$
 for E=12 GeV, k=9 GeV, cl = 6 nm, about 20 diamond unit cells

- coherent scattering: rate ~ (target thickness)²
- Iimited by something => "coherence length"
 - □ "duration" of bremsstrahlung radiative process
 - Landau-Pomeranchuk-Migdal effect
- 2. In an infinite crystal, the coherence length cuts off at the mean distance between radiation events <u>the LPM effect</u>
 - radiation rate diverges at long wavelengths always present!
 - ➢ for 9 GeV photons, 12 GeV electrons:

cl < 50 cm (due to LPM cutoff)

so what does place physical limits on radiator thickness?

1. multiple scattering

2. radiation damage

UMass seminar, Amherst, November 20, 2008

Gluex Photon Beam Collimation Geometry

must include multiple scattering => limits radiator thickness to 20µm ₂₈ UMass seminar, Amherst, November 20, 2008

Diamond crystal requirements: lifetime

 conservative estimate (SLAC) for useful lifetime (before significant degradation):

0.25 C / mm²

conservative estimate: 3-6 crystals / year of full-intensity running

Diamond crystal requirements: mounting

diamond-graphite transition sets in ~1200°C

Heat dissipation specification for the mount is not required.

translation step: 200 μm horizontal
25 μm target ladder (fine tuning)
rotational step: 1.5 μrad pitch and yaw
3.0 μrad azimuthal rotation

Hall D Beam Line

- Coherent bremsstrahlung beam contains both coherent and incoherent components.
- Only the coherent component is polarized.
- Incoherent component is suppressed by narrow collimation.

Active Collimator Design

Tungsten pin-cushion detector

reference: Miller and <u>Walz</u>, NIM 117 (1974) 33-37

measures current due to knock-ons in EM showers

beam test in Hall B in April 2007

incident photon beam

Active Collimator Sensitivity

test beam data (raw)

Photon tagging detector

Photon tagging detector

GlueX Detector

Construction of Hall D is underway

Ground breaking in April 2009

Live webcam feed of Hall D site

Current plans call for the first beam in HallD/GlueX in late 2014.

The Gluex collaboration

 ~40 physicists from 10 universities + Jefferson Lab (Canada, Chile, China, Greece, UK, USA)

other physics topics to be addressed (beside hybrids):

- Primakov measurement of eta, eta' lifetime
- □ rare eta decays
- hadron formation in nuclear medium
- inverse deeply virtual Compton scattering
- \Box threshold J/ ψ production
- □ cascade baryon spectroscopy
- recently welcomed new collaborators from UMass !

Summary

- QCD predicts that states with explicit gluonic degrees of freedom play a role in the hadron spectrum.
- Recent results from lattice QCD suggest that these states should be experimentally accessible (without requiring a complete solution to the n-meson scattering problem).
- ... that these states should have photon couplings as large as ordinary qq mesons.
- The Gluex collaboration is mounting a major effort at Jefferson Lab to find these states in photoproduction in the region where the lattice says they should be found.
- A state-of-the-art photon beam (and detector) are under construction to accomplish this ambitious goal.

GlueX Experiment: detector design

The GlueX detector design has been driven by the need to carry out amplitude analysis.

 $\eta_1 \rightarrow a^+_1 \pi^- \rightarrow (\rho^o \pi^+)(\pi^-) \rightarrow \pi^+ \pi^- \pi^+ \pi^$ all charged

 $h_0 \rightarrow b^o{}_1 \pi^o \rightarrow (\omega \pi^o) \gamma \gamma \rightarrow \pi^+ \pi^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma$ many photons

 $h'_2 \rightarrow K^+_1 K^- \rightarrow \rho^o \, K^+ \, K^- \rightarrow \pi^+ \pi^- K^+ K^-$

strange particles

Final state particles: $\pi^{\pm} K^{\pm} \gamma p$ n K_L

GlueX Analysis: test of PWA

If acceptance is not well understood, the PWA will "leak" one wave into another.

Break the GlueX detector in MC:

- distort B-field
- degrade resolution
- change hole sizes
- distort beam energy

Largest leakage is ~ 1/2% of a strong signal: $a_1(1^{++}) \rightarrow \pi_1(1^{-+})$

requirements for a crystal radiator

- 1. low-Z (large atomic form factor at q_{min})
- 2. large S-factor (dense packing in unit cells)
- 3. large Debye temperature (coherent yield)

element	best reciprocal lattice vector	P/P(diamond)
diamond	220	1.00
beryllium	002	0.86
boron	208	0.38
silicon	220	0.19