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Outline

� Motivation
� gluonic excitations in QCD

� exotics in the light meson spectrum

� photoproduction of hybrid mesons

� Gluex at Jefferson Lab @ 12 GeV
� 9 GeV polarized photon beam

� photon beam source and instrumentation

� other physics addressed by Gluex

� Summary
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Motivation: the hadron mass spectrum in QCD

Consider QCD with Consider QCD with only heavy quarks:only heavy quarks:

� the light mesons are glueballs

� qq mesons have the conventional 
positronium low-energy spectrum

� spectrum is distorted at higher 
excitations by a linear potential

� for r > 0.5 fm a tube of gluonic
flux forms between q and q
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V0(QQ)

(GeV)
glueball decay threshold

Data from Lattice QCD show :
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� gluonic excitations give rise to 
new potential surfaces

� for r >> r0 gluonic excitations 
behave like flux tube oscillations

� inspires the flux tube modelflux tube model

Motivation: the hadron mass spectrum in QCD

Consider QCD with Consider QCD with only heavy quarks:only heavy quarks:
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Motivation: conventional vs hybrid mesons

m=0   CP=(-1)S+1

m=1    CP=(-1)S

Flux-tube Model

ground-state 
flux-tube

m=0

excited flux-tube 
m=1

CP = (-1)L+S (-1)L+1

= (-1)S+1

S=0, L=0

J=1  CP=+

JPC=1++,1--

(not exotic)

S=1, L=0

J=1  CP=-

JPC = 0-+,00++--

11--++,1+-

2-+,22++--
exoticexotic

normal mesons

11--++ or 11++--



UMass seminar, Amherst, November 20, 2008
6

Motivation: extrapolation to light quarks

� Does the flux-tube picture still make sense for light quarks?
� quarks are relativistic

� Fock subspaces mix (qq, qqqq, …)
� excited mesons are unstable (decays)

� gluon fields modified by dynamical quarks (loops)

� Can experiments actually observe exotic states?
� resonances may be broad – difficult to observe individually
� configurations mix – exotic identification may be ambiguous

� hybrids are embedded in a continuum of lighter 2-meson states
� qq selection rules do not apply to 2-meson states

� strong mixing may occur

Accounted for in quenched lattice studies, flux tube model

Requires unquenched lattice studies, advanced methods
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FluxFlux --tube model:  8 degenerate nonetstube model:  8 degenerate nonets

1++,1-- 0-+,0+-,1-+,1+-,2-+,2+- ~1.9 GeV/c2

Lattice calculations Lattice calculations –– 11--++ nonet is the lightestnonet is the lightest

~1.8 - 2.0 GeV/c2

In the charmonium sector:In the charmonium sector:

Splitting = 0.20 GeV/c2

1-+

0+-

2+-

Splitting ≈ 0.20 GeV/c2

S=0 S=1

Motivation: conventional vs hybrid mesons

UKQCD (97)  1.87 ± 0.20 GeV/c2

MILC (97)       1.97 ± 0.30 GeV/c2

MILC (99)       2.11 ± 0.10 GeV/c2

Lacock (99)    1.90 ± 0.20 GeV/c2

Mei(03)           2.01 ± 0.10 GeV/c2

Bernard (04)   1.79 ± 0.14 GeV/c2

1-+      4.39 ± 0.08 GeV/c2

0+- 4.61 ± 0.11 GeV/c2



UMass seminar, Amherst, November 20, 2008
8

Recent results with unquenched lattices

� How excited state masses are extracted from LQCD data

� Jo Dudek (INT workshop 11/2009)
“This fit is very unstable for all but 
the lowest mass in a given multiplet.”

Euclidean time

C
ij(

t) ∑
−= tm

n
nea
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Recent results with unquenched lattices

� How excited state masses are extracted from LQCD data
� Dudek et.al. (INT workshop 11/2009)

� QCD gives a choice of many operators with the same JPC 

(made from γ matrices remixed as spherical tensors)

Diagonalize this coupling matrix,
each operator will have only one
exponential

Note: All of
these operators
have the same
qq character,
different angular
momentum and
gluonic content.
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Recent results with unquenched lattices
Dudek et.al., preliminary resultspreliminary results @ pion mass 700 MeV/c2

PP

PV

VV

PA
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Recent results with unquenched lattices

�� Question: where are all Question: where are all 
the continuum states?the continuum states?

� qq operator set incomplete

� variational method for 
diagonalizing ZZ* matrix 
can miss weak signals

� plans – try again with a 
larger operator set, look at 
energy shifts with box size

Dudek et.al., preliminary resultspreliminary results @ pion mass 700 MeV/c2

ωπ continuum near b1 resonance

(GeV)

suggested answer:

Illustration of Luscher’s method
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Motivation: summary so far

� QCD with only heavy quarks:
� hierarchy of hadrons with gluonic excitations
� mesons have a much simpler spectrum than baryons
� some gluonic mesons have exotic quantum numbers – “hybrids”
� lightest hybrid exotic multiplet is 1–+, followed by 0+– , 2+–

� QCD with light(er) quarks:
� requires unquenched LQCD, advanced techniques

�� mass splitting exoticmass splitting exotic——conventional states unchangedconventional states unchanged

�� mixing of mixing of qqqq and and qqgqqg states with continuum is weakstates with continuum is weak
� should be accessible to experiments !
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Experiment: hybrid searches
� Most of the attention is focused on 3 observed states:

� π1(1400) – seen in ηπ
� π1(1600) – seen in ρπ, f1π, b1π, η’π
� π1(2000) – seen in f1π, b1π

� General observations regarding these analyses
� all experiments (except CB) use pion beams

� exotic intensities are typically 1/10 dominant ones

� requires access to complex multi-particle final states

� requires large samples (~106 in exclusive channels)

� requires good acceptance (uniform and well-understood)

E852 Crystal Barrel

E852 CompassVES

E852
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Mass = 1400 +- 20 +- 20 MeV/c2

Width =  310+-50+50
-30 MeV/c2

PWA fit to Dalitz plot:   
π1 wave needed with 
same strength as the a2without π1 χ2 /dof = 3, with = 1.29

ηπ0π−

CBAR Exotic

Experiment: π1(1400) from Crystal Barrel
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Partial Wave Analysis

π1(1600) →ρπ
Mass  = 1598 ±8+29-47    MeV/c2

Width =  168±20+150-12 MeV/c2

(~250,000 Events)

Experiment: π1(1600) from BNL-852

pp +−−− → ππππ
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ππππ-p →→→→ ηηηη’ππππ-p 

Mass  = 1597±10+45-10  MeV/c2

Width =  340±40±50  MeV/c2

The exotic wave is the 

dominant wave in this 

channel.

(~6000 Events)

Experiment: π1(1600) from BNL-852
Partial Wave Analysis
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(180 GeV pions, 420,000 events)

arXiv:0910.5842 – unpublished
Mass = 1660  MeV/c2

Width = 269 MeV/c2

Partial Wave Analysis, preliminary

Experiment: π1(1600) from Compass
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γp→nπ+π+π-

Eγ = 4.8 – 5.4 GeV
83000 events after all cuts
final acceptance < 5%

Baryons “removed” by 

hard kinematic cuts.

No evidence of π1(1600)→ρπ, 
(13.5 nb upper limit). 

Experiment: π1(1600) from CLAS ?
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Almost no data is available
in the mass region

where we expect to find exotic hybrids
when flux tube is excited

Argument: hybrid photoproduction

A pion or kaon beam, 
when scattering occurs,

can have its flux tube excitedππππ     or ΚΚΚΚ
beam

Quark spins anti-aligned

Data from these reactions show 
evidence for gluonic excitations
(small part of cross section)
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Hybrid photon couplings on the lattice

� very little is known
� preliminary results for charmonium 1–+ hybrid

Dudek, Edwards, Thomas PRD79 094504 (2009)

� quenched (only charmed quarks)
� only one lattice volume, one lattice spacing
� only connected diagrams

� disconnected diagrams may be suppressed by OZI rule
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Hybrid photon couplings on the lattice
� very little is known
� preliminary results for charmonium 1–+ hybrid

Dudek, Edwards, Thomas PRD79 094504 (2009)

� same scale as many 
measured EM transitions 
to conventional cc states

� very large for M1 – eg.           
Γ(J/ψYγηc ) ~ 2 KeV 
consistent with spin-triplet 
configuration for hybrid.

� no suppression of 
photocouplings for 
hybrids

authors comment:
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GlueX Experiment
Lead Glass

Detector

Solenoid

Electron Beam from CEBAF

Coherent Bremsstrahlung

Photon Beam

Tracking

Target

Cerenkov

Counter

Time of

Flight

Barrel

Calorimeter

Note that tagger is

80 m upstream of

detector

12 GeV electrons are required In order 
to produce a 9 GeV photon beam with a 
significant degree of linear polarization 

� 9 GeV gamma beam
� MeV energy resolution

� high intensity (108 γ/s)
� linear polarization

www.gluex.org
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GlueX Experiment: beam polarization

L = 0, 1, or  2

PV = Pγ ⋅ PX ⋅ −1( )L

Suppose we want to distinguish the
exchange: O + from 0 - ( AN from A U )

V = vectorphoton

m = 1

m = -1

R

L

AN + AU

AN − AU

For circular polarization:
� With linear polarization we 

can isolate AN from AU

� Circular polarization gives 
access to their interference

R J=0– or 0+

X

photon

for R with J = 0

Gottfried-Jackson frame

exchange particle
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GlueX Experiment: photon beam

flu
x

photon energy (GeV)

12 GeV electrons
The coherent 
bremsstrahlung 
technique provides 
requisite energy, 
flux and polarization

collimated

Incoherent &
coherent spectrum

tagged
with 0.1% resolution 

40%
polarization

in peak

electrons in

photons out

spectrometer

diamond
crystal
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coherent bremsstrahlung

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

q

large coherent gainlarge coherent gain

kz

kx

in k-space coherent part selected by collimation

What sets the scale for the maximum achievable coherent gain?
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coherent bremsstrahlung
� coherent scattering: rate ~ (target thickness)2

� limited by something => “coherence length”
�� ““durationduration”” of bremsstrahlung of bremsstrahlung radiativeradiative processprocess

�� LandauLandau--PomeranchukPomeranchuk--MigdalMigdal effecteffect

1. In an infinite crystal, radiation of a hard photon is localized (somewhat)

� HUP for off-shell electron (boosted to lab frame)

� distance over which waves scattered
earlier and later drift out of phase

� momentum transfer wavelength (longitudinal component)
e’

k

e θ

e’

k

e θ

All three of these amount to the same thing! All three of these amount to the same thing! 

k

kE −
~ for E=12 GeV, k=9 GeV, cl = 6 nm, about 20 diamond unit cells
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coherent bremsstrahlung
� coherent scattering: rate ~ (target thickness)2

� limited by something => “coherence length”
�� ““durationduration”” of bremsstrahlung of bremsstrahlung radiativeradiative processprocess

�� LandauLandau--PomeranchukPomeranchuk--MigdalMigdal effecteffect

� so what does place physical limits on radiator thickness?

2. In an infinite crystal, the coherence length cuts off at the mean 
distance between radiation events – the LPM effect

� radiation rate diverges at long wavelengths – always present!

� for 9 GeV photons, 12 GeV electrons:

cl < 50 cm    (due to LPM cutoff)

1. multiple scattering
2. radiation damage
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v

Gluex Photon Beam Collimation Geometry

radiator

D

nominal beam axis

electron
beam dump

ϑC

c
r

ε: beam emittance (rms)
ϑe : electron beam 

divergence angle
ϑC: characteristic                                           

bremsstralung angle

(1)  ε = v ϑe

(2)  r = D ϑe

(3)  c = D ϑC / 2

v << c  ε << r ϑC / 2 

ε << 3 x 10-8 m.r

ϑe

collimator

(vertical scale is expanded ~105)

must include multiple scattering => limits radiator thickness tomust include multiple scattering => limits radiator thickness to 2020µµmm
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Diamond radiators for Gluex

large area, highly parallel Xlarge area, highly parallel X--ray beam from Cray beam from C--line monochromatorline monochromator

θ

2θ
X-ray CCD
camera

diamond crystal

Assessment with X-rays
at the CHESS light source

375.1 375.15 375.2 375.25 375.3
0

0.2

0.4

0.6

0.8

1

rocking angle (mrad)

In
te

ns
ity

10 µr FWHM
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� conservative estimate (SLAC) for useful lifetime 
(before significant degradation):

� conservative estimate: 33--6 crystals / year6 crystals / year
of full-intensity running

0.25 C / mm0.25 C / mm 22

Diamond crystal requirements: lifetime
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temperature profile of crystal
at full intensity, radiation only

oC

Diamond crystal requirements: mounting

diamond-graphite transition sets in ~1200oC

Heat dissipation specification
for the mount is not required.

x (mm)

y (mm) translation step: 200 µm horizontal
25 µm target ladder (fine tuning) 

rotational step: 1.5 µrad pitch and yaw
3.0 µrad azimuthal rotation
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Hall D Beam Line

� Coherent bremsstrahlung beam contains both coherent and 
incoherent components.

� Only the coherent component is polarized.
� Incoherent component is suppressed by narrow collimation.

radiator collimator
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Active Collimator Design
� Tungsten pin-cushion 

detector
� reference: Miller and Walz , 

NIM 117 (1974) 33-37

� measures current due to 
knock-ons in EM showers

active device
primary collimator (missing)

incident photon beam

beam test in Hall B in April 2007

12 cmbeam

tungsten plates
tungsten pins
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x (mm)

y 
(m

m
)

current asymmetry vs. beam offset

20%

40%

60%

Active Collimator Sensitivity

inner
cable
outer

Monte Carlo simulation test beam data (raw)
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Photon tagging detector

Tagger “microscope”

scintillating fibers

read out with SiPM’s
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Photon tagging detector
scintillating fiber readout scheme

“Silicon PMT”
(multi-pixel APD
in Geiger mode)

2mm

� 8 MeV tagging channel width
� 200 ps time resolution
� 4 MHz/fiber
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Future



UMass seminar, Amherst, November 20, 2008
38

CHLCHL--22

Upgrade Upgrade 
magnets and magnets and 

power power 
suppliessupplies

12 GeV CEBAF Upgrade
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Construction of Hall D is underway 

Current plans call for the first beam in HallD/GlueX in late 2014.

Ground breaking in April 2009Ground breaking in April 2009 Live webcam feed of Hall D siteLive webcam feed of Hall D site



UMass seminar, Amherst, November 20, 2008
40

The Gluex collaboration
� ~40 physicists from 10 universities + Jefferson Lab (Canada, Chile, 

China, Greece, UK, USA)

� other physics topics to be addressed (beside hybrids):
� Primakov measurement of eta, eta’ lifetime

� rare eta decays
� hadron formation in nuclear medium

� inverse deeply virtual Compton scattering

� threshold J/ψ production
� cascade baryon spectroscopy

� recently welcomed new collaborators from UMass !
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Summary
� QCD predicts that states with explicit gluonic degrees of freedom 

play a role in the hadron spectrum.

� Recent results from lattice QCD suggest that these states should be 
experimentally accessible (without requiring a complete solution to 
the n-meson scattering problem).

� … that these states should have photon couplings as large as 
ordinary qq mesons.

� The Gluex collaboration is mounting a major effort at Jefferson Lab 
to find these states in photoproduction in the region where the lattice 
says they should be found.

� A state-of-the-art photon beam (and detector) are under construction 
to accomplish this ambitious goal.
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γγγγ

p

X

ππππ,Κ,γ,Κ,γ,Κ,γ,Κ,γ

n,p

t-channel meson photoproduction

σσσσ((((t) ~ e-αααα t

photons pions protons

~
1G

eV
/c

10-60o

GlueX Experiment:  topologies
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GlueX Experiment: detector design
The GlueX detector design 
has been driven by the need 
to carry out amplitude analysis.

γγγγ

p

X

ππππ,Κ,γ,Κ,γ,Κ,γ,Κ,γ

n,p

η1 → a+
1π− → (ροπ+)(π−) → π+π−π+π−

h0 → bo
1πο → (ωπο)γγ → π+π−γγγγγγ

Final state particles: π± K± γ p           n KL

h’2 → K+
1K−→ ρo K+ K−→ π+π−K+K−

π1 η1 η’1 b2 h2 h’2 b0 h0 h’0

all charged 

many photons 

strange particles

1−+ 2+− 0+−
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γ p � π1
+n � π+π+π-n

� π+π0π0n

γγγγ

p
n

π
π

π
X

ρ

m3π3π3π3π [GeV/c2]

φφ φφ G
J

a2 ππππ2222

η=η=η=η=−−−−1111

η=η=η=η=−−−−1111

η=+1η=+1η=+1η=+1

η=+1η=+1η=+1η=+1

η=+1η=+1η=+1η=+1

Double-blind study of 3π final states

Polarization effects!

GlueX Monte Carlo

GlueX Analysis: test of PWA 
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neutral

charged

If acceptance is not well 
understood, the PWA will 
“leak” one wave into another.

Break the GlueX detector in MC:
• distort B-field
• degrade resolution
• change hole sizes
• distort beam energy

Largest leakage  is ~ 1/2%
of a strong signal :   a1(1++) � ππππ1(1-+)

GlueX Analysis: test of PWA 
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coherent bremsstrahlung
� requirements for a crystal radiator

1. low-Z (large atomic form factor at qmin)
2. large S-factor (dense packing in unit cells)
3. large Debye temperature (coherent yield)

element best reciprocal lattice vector P/P(diamond)

diamonddiamond
berylliumberyllium
boronboron
siliconsilicon

2 2 0
0 0 2
2 0 8
2 2 0

1.001.00
0.860.86
0.380.38
0.190.19


