

Search for Gluonic Excitations in Hadrons with GlueX Hadron 2011

Igor Senderovich

June 16, 2011

Physics Motivation Production Approach

Outline

Introduction Physics Motivation Production Approach

Detector Detector Overview Trigger and Readout

Physics Motivation

Can we probe the gluonic field in hadrons directly?

hybrid mesons (i.e. with gluonic excitation)

Other physics:

- precision measurement of $\Gamma(\eta \to \gamma \gamma)$ via Primakoff effect
- general light-quark spectroscopy, e.g.
 - excited vector mesons poorly understood
 - strange sector analogs of X, Y, Z mesons
- ► understand the Ξ spectrum
- inverse DVCS
- production near charm threshold
- hadronization in the nuclear medium

Figure: Lattice QCD mass predictions as a function of pion mass. (J. Dudek et al., 2010)

Meson Quantum Numbers

Consider the $q\overline{q}$ system and its J^{PC} quantum numbers. Since:

•
$$S = 0, 1$$
 and $L = 0, 1, 2, \ldots \implies J = L - 1, L, L + 1$

$$\blacktriangleright P = (-1)^{L+1} \text{ and } C = (-1)^{L+S}$$

Meson Quantum Numbers

Consider the $q \overline{q}$ system and its J^{PC} quantum numbers. Since:

▶
$$S = 0, 1$$
 and $L = 0, 1, 2, ... \implies J = L - 1, L, L + 1$

$$\blacktriangleright \ P = (-1)^{L+1} \text{ and } C = (-1)^{L+S}$$

 $\therefore q\overline{q}$ quantum numbers:

Meson Quantum Numbers

Consider the $q\overline{q}$ system and its J^{PC} quantum numbers. Since:

•
$$S = 0, 1$$
 and $L = 0, 1, 2, \ldots \implies J = L - 1, L, L + 1$

•
$$P = (-1)^{L+1}$$
 and $C = (-1)^{L+S}$

 $\therefore q\overline{q}$ quantum numbers: "exotic" quantum numbers:

► Exotic states ⇒ unambiguous signature of new degrees of freedom

Exotic States: Experimental Evidence

Introduction

The following are some tentative observations of possible exotic states thus far: $^{1} \ \ \,$

State	Mass (GeV)	Width (GeV)	Prod.	Decays	Experiments
$\pi_1(1400)$	1.351 ± 0.03	0.313 ± 0.040	$\pi^- p$, $\bar{p}n$	$\pi^-\eta$, $\pi^0\eta$	E852, CBAR
$\pi_1(1600)$	1.662 ± 0.015	0.234 ± 0.050	$\pi^- p$, $ar p p$	$\eta'\pi$, $b_1\pi$,	E852, CBAR,
				$f_1\pi$, $ ho\pi$	COMPASS, VES
$\pi_1(2015)$	2.01 ± 0.03	0.28 ± 0.05	$\pi^- p$	$b_1\pi$, $f_1\pi$	E852

¹masses and widths from PDG

Production Method

Data so far: (mostly) π beam prod. \Leftarrow exotic hybrid prod. suppressed? A possible argument: the spin flip needed for exotic q.n. is suppressed. Proposal: use S = 1 beam \rightarrow photons! Lowest-lying hybrids (flux-tube model):

 γ beam source: Coherent Bremsstrahlung in diamond

- ▶ 9 GeV, 40% polarization fraction
- $10^8 \gamma/s$ with $\sim 2 \,\mu {
 m A}$ beam current
- collimation $75\,\mathrm{m}$ downstream
- ▶ $8 \,\mathrm{MeV/counter}$ tagging with high efficiency

x 10⁸

Detector Overview Trigger and Readout

$12\,{\rm GeV}$ upgrade

Search for Gluonic Excitations in Hadrons with GlueX

Detector Overview Trigger and Readout

Hall Construction

Detector Overview Trigger and Readout

Hall Construction

Detector Overview Trigger and Readout

Detector Overview

Barrel Calorimeter (BCAL)

Sampling (10%) SpaCal Design based on KLOE Emcal:

- ▶ $40 \,\mathrm{MeV} 3.5 \,\mathrm{GeV}$ range
- ▶ $11^{\circ} < \theta < 120^{\circ}$ coverage
- $\blacktriangleright~191~\text{Sci/Pb}$ layers $\rightarrow~15.5\,\mathrm{X}_0$
- $\sigma_E/E = 5.54/\sqrt{E} \oplus 1.6\%$
- $\sigma_z = 5 \,\mathrm{mm}$
- $\sigma_{\Delta t/2} = 70 \, \mathrm{ps}/\sqrt{E}$
- ► +5 °C-stabilized Hamamatsu SiPM readout

Role:

- $\blacktriangleright~\gamma$, π^0 , $\eta~{\rm reconstruction}$
- PID input through: energy, dE/dx, time of flight

Igor Senderovich

Barrel Calorimeter (BCAL)

Sampling (10%) SpaCal Design based on KLOE Emcal:

▶ $40 \,\mathrm{MeV} - 3.5 \,\mathrm{GeV}$ range

Role:

- γ , π^0 , η reconstruction
- PID input through: energy, dE/dx, time of flight

Igor Senderovich

Detector Overview Trigger and Readout

Forward Calorimeter (FCAL)

Lead Glass Calorimeter

- ▶ $2^{\circ} < \theta < 11^{\circ}$ coverage
- ► 2800 F8-00 and F108 Pb-glass blocks: 4 × 4 × 45 cm
- FEU 84-3 PMT readout
- $\bullet \ \sigma_E/E = 5.7/\sqrt{E} \oplus 1.6\%$
- $\sigma_r = 5 6 \,\mathrm{mm}$
- $\sigma_t < 150 \, \mathrm{ps}$ using algorithms on FPGA

ntroduction Detec Detector Trigge

Detector Overview Trigger and Readout

Central Drift Chamber (CDC)

Upstream Endplate

Staw Tube Drift Chamber

- ► 3522 aluminized mylar straw tubes, 1.6 cm dia.
- ▶ 12 axial, 16 (6°) stereo layers
- dE/dx for π ,K, $p < 450 \,\mathrm{MeV/c}$
- $\sigma_r = 150 \,\mu{\rm m}, \, \sigma_z = 1.5 \,{\rm mm}$

•
$$\sigma_p/p = 1.5 - 3\%$$

•
$$6^{\circ} < \theta < 165^{\circ}$$
 coverage

Forward Drift Chamber

Cathode Strip Design:

- ▶ 4 packages \times 6 planes/package \times 96 wires/plane = 2304 wires
- 4 packages × 12 planes/package × 216 strips/plane= 10368 strips

Figure: Cathode readout, redundancy and angular shifts to reduce ghosting. Next layer offset by 60°

- 1 cm sense wire pitch
- $0.5\,\mathrm{cm}$ cathode plane pitch
- $\bullet \ \sigma_{x,y} = 200 \,\mu\mathrm{m}$
- ▶ $1^{\circ} < \theta < 30^{\circ}$ coverage

Detector Overview Trigger and Readout

Time of Flight Wall and Start Counter

Time of Flight Wall

- cross-hatched scintillator paddles
- ▶ $2.5\,\mathrm{cm}$ thick, $6\,\mathrm{cm}$ wide
- double-sided readout
- ► goal: $100 \text{ ps} = (\sigma_0 = 80 \text{ ps}) \oplus (\sigma_{TDC} = 60 \text{ ps})$ Demonstrated so far: 110 ps

Start Counter: beam bunch ID

- 40 scintillators with cooled SiPM readout
- σ_t optimization in progress: material/resolution trade-off

Electronics & Software

Fully pipelined front-end electronics

- VMEx64/VXS startards
- fADC: 12 bit, $8 \,\mu s$ buffer with FPGA-based algorithms. Version:
 - 250 MHz, 16 channel
 - ▶ 125 MHz, 72 channel
- F1TDC: $3.9 \,\mu s$ buffer ($3 \,\mu s$ trigger latency expected)
 - ▶ 60 ps resolution, 32 channel
 - ▶ 120 ps resolution, 64 channel
- $\blacktriangleright~\sim 3\,{\rm GB/s}$ DAQ rate, $\sim 300\,{\rm MB/s}$ to tape \rightarrow L3 computer farm essential

Software: significant efforts in parallelization

- 1. vectorized operations on CPU (SIMD etc.)
- 2. GPU for PWA fits, tracking?
- 3. fully-multithreaded reconstruction/analysis code, on-demand reconstruction
- 4. integration of beowulf clusters and collaboration with Open Science Grid (OSG)

Introduction	Detec
Detector	Trigg

Trigger

Goal: high-multiplicity, minimum-bias events $E_{\gamma} > 8.4 \,\mathrm{GeV}$

- 1. commissioning, warm-up at $10^7 \: \gamma/{\rm s}$
- 2. full hardonic rate: $10^8 \gamma/s$
 - ∴ photo-production: $360 \, \rm kHz$

Alogorithm: require:

- 1. track multiplicity
- 2. energy minimum:

 $E_{BCAL} = A + B \cdot E_{FCAL}$

Introduction	Detecto
Detector	Trigger

Trigger

Goal: high-multiplicity, minimum-bias events $E_{\gamma} > 8.4 \,\mathrm{GeV}$

- 1. commissioning, warm-up at $10^7\,\gamma/{\rm s}$
- 2. full hardonic rate: $10^8 \gamma/s$
 - ... photo-production: $360\,\mathrm{kHz}$

Alogorithm: require:

- 1. track multiplicity
- 2. energy minimum:

 $E_{BCAL} = A + B \cdot E_{FCAL}$

Trigger

Igor Senderovich

Acceptance relative to E852

Goal set forth: high and uniform acceptance

Figure: Comparative acceptance plots in a sample channel: high and uniform acceptance in invariant mass and Gottfried-Jackson frame angles.

Summary

GlueX: an imperative new search

- mesons with excited gluonic degrees of freedom
 - an important test of QCD
 - understanding confinement
- vast new source of photo-production data

Fitness for its mission:

- linearly polarized photon beam
- high statistics with minimum-bias trigger
- hermetic detector \rightarrow proper PWA
- construction on schedule, transition to installation
- beam in 2014
- ...but plenty to do and with many openings for collaborators!

Detector Overview Trigger and Readout

Backup Slides

Detector Overview Trigger and Readout

Coherent Bremsstrahlung

Coherent scattering of e^- on a crystal lattice.

or

quasi-Compton scattering from virtual photons in the crystal reciprocal lattice

Result: bremsstrahlung spectrum enhancement with polarized γ peaks lssues: smearing from e^- multiple scattering

Experimental Implementation: diamond thinned to $20 \,\mu m$ to reduce multiple

scattering

- $\blacktriangleright~$ 40% pol. frac. under 9 ${\rm GeV}$ peak
- ▶ $10^8 \gamma/s$ with $\sim 2 \,\mu {\rm A}$ beam current
- collimation with long lever arm (75 m downstream) to filter out widely distributed incoherent photons.

Introduction Detector Overview Detector Trigger and Readout

Beamline

- Broad-band hodoscope
 - γ -spectrum measured $3 11.7 \, \text{GeV}$
 - ▶ tagging 9 11.7 GeV
 - ► 30 MeV/counter
- Fine-resolution hodoscope ("microscope")
 - ▶ tagging 8.3 9.1 GeV
 - ▶ 8 MeV/counter
 - vertical collimation for tagging efficiency improvement

Trigger

Goal: high-multiplicity, minimum-bias events $E_{\gamma} > 8.4 \,\text{GeV}$

- 1. commissioning, warm-up at $10^7\,\gamma/{\rm s}$
- 2. full hardonic rate: $10^8 \gamma/s$
 - \therefore photo-production: $360 \, \mathrm{kHz}$

Track multiplicity + energy requirement: $E_{BCAL} = A + B\dot{E}_{FCAL}$

Trigger Cut Effects

Result:

- low-energy hadronic rate cut with good yield in area of interest
- ▶ rate after L1 @ $10^8 \gamma/s$: ~ 150 kHz < 200 kHz limit

Checking some signal channels:

1 2

 $\rightarrow \mathbf{D} \ \mathbf{n} \pi'$

1 2