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Outline

s Proton target
VDM, what can we learn?

Generalized VDM
Dipole description.

o Nuclear shadowing.
What controls the onset of shadowing.

s Photoproduction of vector mesons, coherent vs
incoherent.
Glauber model (VDM).
Black disc limit.



Outline

» Coherence time/length.
Energy dependence of nuclear effects for
coherent and incoherent production.

o Formation time.
Pre-hadron — hadron.

o Something different:
Excitation of color dipoles in nuclei;
Tunneling from vacuum in nuclear environment.



Proton target

What can one learn from data on photoproduction
of vector mesons off a proton target?
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The v — V vertex is known from either V — eTe™
decays or from ete~ — V annihilation. Therefore, if
the VDM were correct, one could extract from data

Vector dominance:

unique information about interaction of the unstable
vector meson V.
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Proton target

Example:
One could try to determine the J/W-proton cross
section from data on vyp — Wp.
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= (1.24 £ 0.13) mb X (\/5/10 GeV)0'4

This is 3 times smaller that data on nuclear targets
need and what generalized VDM suggests.
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Proton target

For n states we have n(n + 1)/2 unknown diffractive
amplitudes, but data provide only n equalities.

In the case of J/W¥ one can use also color
transparency sum rule and solve the two-channel
problem,
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VDM fails badly!

On the other hand, GVDM does not have any

model-independent solution even within the pole
approximation.



Dipole description
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Hadronic fluctuations of a photon: y* T-a
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The phenomenological dlpole cross section is well
fitted to photoabsorption and DIS data. Having a
model for the vector meson wave function, ¥y (7, a),
one can predict the v — V cross section.



As far as the photon and [
vector meson wave func-
tions and the dipole cross
section are known, one can
predict the photoproduc-
tion cross section.

At the same footing one
can predict the vector
meson-proton cross sec-
Although model-
dependent, this is the only
way to ”extract” oY from
data.

tion.
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Dipole description
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Nuclear shadowing

VDM: Y@Y ) yv@x

Energy dependence is controlled by the longitudinal

m2 1
momentum transter g = % =
C
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Nuclear shadowing

Low and high energy limits:
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Nuclear shadowing

Real life is much more compli-
cated. Shadowing vs diffraction

in the Gribov picture:

(') However, the absorptive cross sections are not
known, as well as the diffractive amplitudes between
different excites states.

@ Theoretical tools are available within the dipole

description.
The light-cone Green function technique:
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Nuclear shadowing
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Vector meson production

Coherent vs incoherent production off nuclei

@® Coherent production: the nucleus remains intact

YA — V A.

VDM: ! v

do(yN — VNN)
dt
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Vector meson production

S
At low energy the coher- @ | =>12GeV
ent production cross section %
vanishes, at high energies %
(g Ra < 1) saturates, S
| ’
3 _
o(vyA - VA) = \/ ete oy < A??
aemMV

VDM Paradise:

all the GVDM corrections are suppressed by A—1/3!

O Differently from photoproduction on proton

targets, one can extract o) N rather reliably from

data on coherent photoproduction on heavy nuclei.



Vector meson production

@ Incoherent production: vA — V A*, the nucleus
7 [ ]

gets excited or breaks up to fragments (no pion

production is allowed in order to use completeness).
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This VDM result essentially simpliﬁes in low-
(I < 1fm) and high-energy limits (I, 2 R4)
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Vector meson production

Incoherent production drops with energy.

A
JLab \

Transparency
N
™

Transparency is controlled by the coherence length
l. which rises with energy v.



Vector meson production
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Vector meson production
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Vector meson production

Incoherent production is strongly affected by
corrections to VDM. Dipole description
demonstrates a strong deviation from VDM, while it

well agrees with data:
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Excitation of color dipolesin nucle

Interference of inelastic

: . . ) 1.F X : ~
interactions with different i + AN pd-—pg X n
nucleons, neglected in the -~ } \\ -
Glauber approximation E I
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The excited heavy color

1

octet-octet dipole may decay
to 2 nucleons producing | L)
one of them in backward 400 500 600

. direction. : P (Mev/c)




Excitation of color dipolesin nucle

Measurements with 40 GeV

pions at Serpukhov
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Tunneling from vacuum In nucle
YA — pX

O String model is a reasonable model for soft
dynamics of pp production. The energy for pp
creation is taken from the color field of the string,
which has energy density 1 GeV/fm. Therefore, the
pp pair pops out of vacuum with minimal separation
L > 2fm (in c.m. frame). After boosting to the lab.
frame the pathlength through the potential barrier
becomes as long as 5 fm.



Tunneling from vacuum In nucle

@ Is the antiproton propagating

through a tunnel absorbed in nu-

clear medium?

It turns out that under poten-

tial barrier the real and imaginary

parts of the potential interchange.
Absorption leads to a phase shift.
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