Workshop on Photon Hadron Physics with the Glue-X Detector 6--8 March 2008 Jefferson Lab

Exclusive Di-Lepton Production

Charles Earl Hyde Université Blaise Pascal, and Old Dominion University

Kinematics of High Energy Exclusive Photo-Production: 2-Body & n-Body Final States

- Invariants
 - Center of Mass:
 - $W^2 = (q+p)^2$
 - Momentum Transfer squared
 - $t = \Delta^2 = (p' p)^2$
 - Final State "Particle"
 - $m^2 = (q')^2$
 - "Skewness" variable
 - $(q')^2/(W^2-M^2)$

•Azimuths:

- Scattering plane $\mathbf{q}' \otimes \mathbf{p}'$ around polarization plane $\mathbf{q} \otimes \boldsymbol{\varepsilon}$
- Decay plane $\mathbf{q}' \rightarrow \mathbf{k}_1 \otimes \mathbf{k}_2$ around Scattering Plane $\mathbf{q}' \otimes \mathbf{p}'$
- Target Polarization plane vs. other planes

Two-Body Final States

$$\gamma p \rightarrow p\gamma$$

 $\gamma p \rightarrow p\pi^0$
 $\gamma p \rightarrow n\pi^+...$

- Acceptance of recoil nucleon and scattered γ , or π can be matched with spectrometers/dedicated detectors.
 - Product of luminosity times acceptance favors dedicated experiments (Hall A,C)

Many-body Final States $\gamma p \rightarrow p\gamma^* \rightarrow pl^+l^-$ high mass $\gamma p \rightarrow p(\rho, \omega, \phi)$ $\gamma p \rightarrow p\pi^+\pi^-$ high mass

- Complicated final state favors large acceptance detector.
- Dileptons:
 - Access to Compton phase from interference with Bethe-Heitler
 - High-*t*, $m_{\pm} < m_{\pi}$: extension of Real Compton Scattering
 - Low-*t*, $m_+ < m_{\pi}$: Forward Compton Amplitude, GDH Sum Rule
 - Low-t, $m_{\pm} = \rho, \omega$: ρ, ω interference
 - Low-t, large m_±: Spatial imaging of quarks and gluons

Inverse Virtual Compton Scattering (iVCS): **Di-Lepton Photo-Production**

- q'=k₁+k₂
 Δ=(q-q')

Charge Conjugation & the BH•VCS Interference $d\sigma \propto \left|T^{BH}\right|^2 + 2\Re e \left[T^{BH}T^{VCS\dagger}\right] + \left|T^{VCS}\right|^2$

- Charge Conjugation Exchange:
 - [electron \Leftrightarrow positron] $[k_1, k_2] \Leftrightarrow [k_2, k_1]$
 - Interference term:
 - Odd number of photon couplings to lepton line.
 - $d\sigma(k_1, k_2) d\sigma(k_2, k_1) = BH \bullet VCS$ Interference
- VCS:
 - $(e^{\pm}p \rightarrow e^{\pm}p\gamma)$: requires electron and positron beams; or
 - Multiple beam energies (E07-007 Hall-A DVCS).

Deeply Virtual Compton Scattering Space-Like & Time-Like: QCD factorization:

- Space-Like
 - $x_B = Q^2 / (2p \bullet q)$
 - $\xi = x_B/(2-x_B)$
 - Generalized Parton Distributions (GPDs)

- Δ_{\perp} is fourier conjugate to transverse spatial coordinate **b** of parton of light cone momentum fraction $x \pm \xi$.
- Time-Like
- $\tau = (q')^2 / (2p \cdot q)$
- $\eta = \tau/(2-\tau)$

Factorization & Evolution: DIS

- DIS Factorization Scale: Q² ≈ few GeV²
- Very gentle QCD evolution scale-breaking for 0.1 < x_B <0.6

Beam helicity-independent cross sections at $Q^2=2.3$ GeV², $x_B=0.36$ PRL97:262002

Inverse DVCS

- Factorization at large $m_{\pm}^2 = (q')^2$
 - Di-Lepton mass in region of smooth R
- Hall D / Glue-X
 - q = 9 GeV; $W^2 - M^2 \approx 17 \text{ GeV}^2$
 - $4 \le m_{\pm}^2 \le 9 \text{ GeV}^2$
 - $0.25 \le \tau \le 0.55$
 - Comparable to x_B range of DVCS at 11 GeV.
 - J/Psi measures Gluon GPDs at $\tau \ge 0.6$

Two-Photon data from BELLE

- Compatible with "Handbag" model
 - Scaling as W⁻ⁿ
 - All isospin/flavors equal.
 - M.Diehl, P.Kroll, C.Vogt EPJC26 (2003) 567.

A.E. Chen, Int J. Mod Phys A**21** (2006) 5543 S. Uehara *et al*, PRL **96** (2006) 082003

E.Berger, M.Diehl, B.Pire hep-ph/0110062

- Strong BH peak for k or k' co-linear with q
 - Integrate over $45^{\circ} < \theta_{\text{Rest}} < 135^{\circ}$.
- $|DVCS|^2 / |BH|^2$

• ep \rightarrow ep γ : $\propto 1/y^2 = [Q^2/(2k_eMx_B)]^2$

- BH larger at CEBAF energies, DVCS dominates at high energy
- $\gamma p \rightarrow p l^+ l^-$: $\propto (-t) / m^2 <<1$: BH always dominant

E.Berger, M.Diehl, B.Pire hep-ph/0110062

- W²=25 GeV², m²=5 GeV²
 - $d\sigma^{BH} \propto W^{-4}$
- Integrated over
 - $45^{\circ} < \theta_{\text{Rest}} < 135^{\circ}$.
 - $0 \le \varphi \le 360^{\circ}$.
- Coherent Photon Luminosity
 - $10^8/s \cdot 2 \text{ g/cm}^2 = 0.12 \text{ Hz/nb}$
 - 2000 hours = 800 events/pb
- 2000 hours $\otimes [\Delta m^2 = 1 \text{GeV}^2] \otimes \Delta t = 0.15 \text{ GeV}^2$
 - 10 pb per bin
 - 8000 events per bin
 - $4\otimes 4$ bins in $m^2\otimes t$

Interference Signal

- BH background is subtracted by charge conjugation difference
- $W^2=25 \text{ GeV}^2$, $m^2=5 \text{ GeV}^2$ $t = -0.2 \text{ GeV}^2$ Integrated over
 - $45^{\circ} < \theta_{\text{Rest}} < 135^{\circ}$
- $\int \cos \phi \, d\sigma^{\text{Int}} d\phi \approx 0.2 \text{ pb/bin}$
- Inteference $\pm \sqrt{BH}$ =160 \pm 60 events
- Circularly polarized photons will generate an independent observable (Im part of Interference of comparable magnitude).
- Monte Carlo event generator with integration over ideal detector in progress.

Conclusions

- Di-Lepton measurements in DVCS regime are feasible
 - Requires maximum luminosity and several months of beam time.
 - Photon tagging may not be required, since final state is overcomplete
 - Specialized trigger possible
 - $\approx 100\%$ of beam energy in 2 EM showers.
 - Charge Conjugation access to Re part of BH•DVCS interference
 - Consistency with electroproduction is test of factorization
 - Variation of photon energy is 2nd test of factorization

Electrons or Muons?

- High energy $a + b \rightarrow \mu + X$
 - Inclusive muons swamped by inclusive pion background
- Exclusive $\gamma + p \rightarrow \mu^+ \mu^- + p$
 - Exclusive $\pi^+\pi^-$ at large mass-squared strongly suppressed
 - $q\bar{q} \rightarrow \pi^+\pi^-$ Distribution Amplitude $R_{2\pi}(s)$
 - Measured in BELLE: $\gamma \gamma \rightarrow \pi^+ \pi^-$
- π/μ rejection factor *r*
 - $(\pi^+\pi^-)/(\mu^+\mu^-)$ rejection factor = r^2
- Even moderately good muon id makes di-muons feasible.