ntroduction Results

Magnet Optimization using Poisson

Igor Senderovich

GlueX Tagged Beam Working Group

September 10, 2009

Motivation

Some remaining Tagger Magnet design questions:

- 1. Can the amount of iron be decreased to save cost?
 - What price is paid in extra current/power requirement?
 - What is the effect on fields outside the magnet?
- 2. What machining imperfections in the poles can we tolerate?

The Tagger Review suggested that we show the *optimality of the* geometry and highlighted the need for *better-justified tolerances*.

This study serves as input for cost considerations and MC calculations of tagger resolution.

Introduction Motiv Results Tools

Introduction to Poisson

Poisson, part of Poisson Superfish software suite from Los Alamos, is a 2D solver for electro- and magneto-static fields.

- no replacement for real 3D calculation
- allows for a quick calculation of a field map cross-section
- may suggest how the entire field scales with certain parameters

Figure: Graphical output of Poisson solver. Symmetry about y = 0 plane is assumed

troduction Yoke Optimization Results Effect of Pole Slam

Current Requirement

The saturated iron would require change in current to reach the required fields (1.5 T operating; up to 1.8 T at startup, during adjustment to deal with hysteresis)

Introduction Yoke Optimization Results Effect of Pole Slam

Power Requirement

The power scales as current squared! (Additionally, AC capacity for corresponding heat removal must be considered - *not included*)

Figure: Power scaling from current design for the $1.5 \,\mathrm{T}$ operating point.

troduction Yoke Optimization Results Effect of Pole Slant

Stray Fields

Figure: Stray fields along y=0 plane for various yoke alteration scenarios. For reference: outer edge of coils is at $36\,{\rm cm}$

Introduction Yoke Optimization Results Effect of Pole Slant

Effect of Pole Slant

A slanted pole turns out to have a very simple effect on the field. To first order, the local field depends only on local pole separation.

Introduction Yoke Optimization Results Effect of Pole Slant

Horizontal Field Component

The B_x component is fairly uniform, measured along lines of constant y, to within a few percent. The $B_x(y)$ between the poles follows a straight-forward parameterization:

Introduction Yoke Optimization Results Effect of Pole Slant

Conclusion and Work Outlook

- Yoke height: these early studies suggest that we are near optimum - near the knee of the current/power curves
- Pole slant: the calculations yield straight-forward parameterizations of the field between non-parallel poles. Monte Carlo calculations with appropriately-corrected field maps will suggest a tolerance on slope.

Calculations can be performed for new iron configurations as well as other pole-machining aberrations.