Ongoing Work at UConn on diamonds and replacement

fibers

Brendan Pratt, James McIntyre University of Connecticut GlueX Collaboration Meeting May 2016

OUTLINE

• CHESS results

• Laser status and ablation upgrades

• Ongoing work

Measuring thickness:

electron beam

 σ_x : 1e-3m σ_y :0.5e-3m Normalized Shows diamond thickness seen by the electron beam

JD70-100: CHESS data

JD70-100_scan scan 1

w.c.r.c. σ = 16.3 \pm 0.1µr

JD70-100_scan scan 1

CHESS

JD70-117: 21.6 ± 0.5µm

JD70-117 pass 7

JD70-117: CHESS data w.c.r.c. σ = 320.4 \pm 0.1µr Highest stress point where frame meets JD70-117_study1 scan 4 JD70-117_study1 scan 4 thinned region v (mm) 60 μrad 8 7 6 5 4 3 2 1 1 4500 8 - 50 +000 7 6 5 4 4 3 1 2 1 1 3500 40 3000 2500 30 2000 20 1500 1000 10 500 otu 111 0 0 8 8 9 Relief pockets form u (mm) u (mm) Peak centroid GLUE

6

CHESS

JD70-118: 31.1 ± 0.5µm

JD70-118-8

/home/pratt/Diamonds/Programs/data/JD70-118-8

JD70-118: CHESS data

JD70-118_study2 scan 1

w.c.r.c. σ = 537.9 \mp 0.1 μ r

JD70-118_study2 scan 1

-

CHESS

JD70-111: 26.4 ± 0.4µm

/home/pratt/Diamonds/Programs/data/JD70-111_7

/home/pratt/Diamonds/Programs/data/JD70-111_7

JD70-111: CHESS data

JD70-111_study1 scan 5

w.c.r.c. σ = 493.8 \mp 0.1 μ r

JD70-111_study1 scan 5

CHESS

JD70-119:40.1 ± 0.3µm

target surface

target surface

JD70-119:CHESS data

otuulu

w.c.r.c. σ = 390.5 \mp 0.1 μ r

2

ot

GLUE

JD70-119_study1 scan 1 prad 0009 v (mm) v (mm) 9 8 7 6 5 4 1 1 2 1 8 crack 5000 4000 3000 2000 1000

0

9

u (mm)

JD70-119_study1 scan 1

CHESS

17

0

60

- 50

-40

30

20

10

1111

9

8

μrad

JD70-108: Sent to D.D.K. for etching

JD70-108_12

JD70-108_12

- 13

CHESS

JD70-114: Will be machined from both sides

JD70-114-3

JD70-114-3

Laser Status: skeptically optimistic

- Laser had short on 4kV line in laser
 - Replaced damaged electrical and mechanical components
- ILC energy feedback reporting inconsistent energy values
 - Replaced burned out op-amp and capacitors on energy monitor circuit board
- Purchased "new" Lambda Physik EMG 102 excimer laser
 - Now have spare parts (some of which have already been needed and installed)
- Now running with highest energies ever seen!

What we're working on now

- Surface variation along X axis is low (<1µm r.m.s.), but along Y axis it increases as the diamond is machined. Possible reasons include:
 - Chamber pressure changing over time (Cutting rate is largely affected by chamber pressure).
 - Unknown offset in Y axis from 45° tilt of diamond
 - Cut depth vs. laser energy calibration is introducing noise
- Installed mass-flo controller on roughing pump to reduce change in chamber pressure experienced over the 5+ hours of ablation. Can now control pressure within 1 mtorr
- Calibrating walk in Y axis as a function of cut depth
- Will check cut depth vs. laser energy calibration

Connection with BNL group for RIE

Oxford-F plasma system. Used to remove dead carbon from ablated diamond making use of the different bond strength between diamond and the dead carbon.

. Controls include:

- RF power (controls ion kinetic energy), ICP (plasma density)
- chamber temperature (ion kinetic energy an reaction rate)
- pressure (possibility of ions/atoms collide wi other)
- gas mixture (isotropic etching or anisotropic etching).

Summary:

- First round of 7mm radiators produced
- CHESS data shows broad rocking curves of ablated samples throughout entire crystal including frame...not expected
- Currently exploring 3 separate techniques for reducing strain
 - D.D.K. etching JD70-108 from $40\mu m$ → $20\mu m$
 - UConn machining JD70-114 from both sides
 - UConn sending machined sample to BNL for RIE post processing
- Laser is now running well, producing highest energies to date.

Acknowledgements

• This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208

James M^cIntyre

<u>Outline</u>

- Modifications to production setup
- Light yield testing
- Fused joint testing (destructive and non-destructive testing)
- Current status

<u>Hard-Water Deposits</u>

<u>Kinks in Fiber</u>

Inside Sealed Box

Outside Box

Hot-Air Bending Box

Results (current)

Hot-Air Bending Box

- Maintains constant temperature (+/- 2°F)
- Finer adjustments of the S-bend allowed
- No thermal shock while bending
- No hard-water stains
- 1-person operation
- Overall easier to use

Hot-Water Bending Unit Results (old version)

Each fiber is color-coded and tracked during production and testing

Fused vs. Unfused

Testing:

- 8 fused, unbent fibers with both ends highly polished
- 7 unfused, unbent light-guides only with both ends highly polished

<u>Results</u>:

<u>Fused</u>

- Avg. Pulse Height (pixels) = 441 <u>Unfused</u>
- Avg. Pulse Height (pixels) = 471

<u>Light Loss</u> ~ 6.4 %

Within Spec. Fused Joint

- Slight cladding gap
- Supported 750 grams without breaking

GlueX Collaboration Meeting, May 9, 2016

Oversized Fused Joint

- No cladding gap
- Supported 900 grams without breaking

Broken Fused Joint (SciFi / Light guide)

- Fused joint placed at center of a gap spanning $1\frac{3}{_{16}}$ inches
- Supported a 750 gram weight without breaking

Manufacturing Defects

- Random locations
- Can making insertion into chimney impossible

Fiber width (2 mm)

Current Status

- 4 Fiber bundles
 - Fused, polished, & light yield tested
 - Meets all JLab contract specifications
 - Ready for bending (awaiting summer student workers to start)
- 5 Fiber bundles
 - Fused, polished, some light yield tested
 - Do not meet JLab specs for fused joint cross-sectional dimensions
 - > 2.05 mm avg. cross-section
 - Most can be sanded into spec.
 - A student researcher is investigating the effect of sanding on light yield
- Oversized fused joint
 - Mounting straps put too much stress on joint when bundling 30 oversized fibers
 - Mixing a fiber bundle with in-spec. & oversized fibers will work

Current Status

- SciFi
 - ~ 52 meters unused
 - Enough to produce at least 50 more bundles
- Light-guide fiber
 - ~ 530 meters unused
 - Enough to produce 10 more bundles
- Looking into using *round* light-guides fused to square SciFi
 - Little to no modifications should be required

Questions?