

Hall D Beam Diagnostics

Trent Allison, Brian Bevins, Keith Cole, Roger Flood, Omar Garza, John Musson, and Dave Williams 5/12/2015

Hall D Beam Diagnostics

- Beam Current Monitors
- Cavity Beam Position Monitors
- Stripline Beam Position Monitors
 - BPM Test Stand
- Active Collimator
- Fast Feedback

Cylindrical Cavity Modes

Beam Current Monitor Cavity

- Electromagnetic field excited by beam
 - TM010 Mode
 - Probe port antenna picks up field
 - Test port also used to excite field
- Tuning port for centering at 1497 MHz
 - Annually or when vacuum is broken
 - Temperature stabilization required
- 1497 MHz Probe signal is sent to the Down Converter BCM Cavity Q=500

<u>P = - 40 dBm @ 1 uA</u>

MPS BCM Electronics

- Machine Protection System (MPS)
 - Loss = Injector A B C D BSY
 - Terminate beam delivery via Fast Shutdown (FSD) if loss is too large
- Resolution: 1.5nA
- Accuracy: 1% full scale (10uA)
- Calibrated to Injector Faraday Cup
- Primary role is to protect the machine!
 - 1 Hz EPICS channel available

Cavity Beam Position Monitors

- Electromagnetic field excited by beam
 - TM110 Mode
 - Probe antenna picks up field
 - Test also used to excite field
 - Copper coated to increase Q
 - Signal disappears at boresight!
- Tuning port for centering at 1497MHz
 - Annually/vacuum broken
 - Temperature stabilized
- 1497 MHz Probe signals get down converted
- Positions go as X/I and Y/I
- IPM5C11A & IPM5C11C
- <u>P = 92 dBm @ 100um uA</u>

Cavity BPM Electronics

Cavity BPM Testing ('5C11)

- Behaves as expected vs.
 Stripline BPM
- Signal goes to zero at cavity center
 - Phase shifts 180 degrees
 - Phase used to determine sign of position
- More commissioning time needed
- Aim to have valid positions down to 100pA beam currents at 1Hz

Hall A BCM Commissioning Run, 4/15

Stripline BPMs

$$Z_{t}(\omega) = \frac{Z_{strip} \cdot \alpha}{4\pi} \cdot e^{-\omega^{2} \sigma_{t}^{2}/2} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$$
 Transfer Impedance (V_{out}/I_{beam})

So, for 30 nA, and 1 Hz BW we expect ~ 10 um of resolution (remember this...!)

Note: This is *best case*, AND resolution is NOT accuracy!! Also, cabling and data stream efficiency will affect performance.

Beam Position Monitor Engineering, Stephen R. Smith, SLAC-PUB-7244, July, 1996.

Beam Position Monitoring, R. E. Shafer, Accelerator instrumentation. AIP Conference Proceedings, Volume 212, pp. 26-58 (1990).

Stripline Beam Position Monitors

- Used instead of M15 antenna BPMs
- Hand bending M15 antennas causes errors
- Easier & more precise manufacturing
- Better sensitivity
- 50 ohm devices

26 Striplines **IPMBS00** IPMBS01 IPMBS02 IPMBS03 IPMBS04 IPMBE01 IPMBE02 IPMBF03 IPMBE04 IPMBT01 IPMBT02 IPMBT03 IPM5C00 IPM5C01 **IPM5C02 IPM5C03** IPM5C04 IPM5C05 **IPM5C06** IPM5C07 **IPM5C08 IPM5C09 IPM5C10** IPM5C11 IPM5C11B **IPMAD00**

Stripline BPM Electronics

Stripline BPM System Components

BPM Receiver Chassis

BPM Test Stand

- Goubau Line with Stripline BPM on X and Y stages
- Vector Volt Meters used for BPM characterization
- Calibration Cell & 250' of LMR400 RF/control cables
- RF Down Converter & IF Receiver on another bench

BPM Test Stand Testing

- Stripline vs. M15 scans: less pin-cushion / barrel
- Flat in center, difference-over-sum works well
- Performed full scan of every new Stripline
 - Look-up tables will be used to improve positions beyond 1.5 cm²

-10 -10

BPM Test Stand Stripline Electronics Testing

~30nA @ 10 Hz

- Improving the signal-to-noise improves performance
- Filtering down to 1 Hz instead of 10 Hz gives an improvement factor of about 3.2
- This square root of bandwidth improvement holds true as long as the noise is Gaussian
- Scan: 250 um/step, yielding 10s of um resolution (per calc)

Stripline BPM Testing

- The plot shows Hall D current in black ramping from 0 to 75 nA
- The 5C07 and 5C09 BPM positions settle at about 7nA and accuracy improves as the signal-to-noise goes up (bandwidth of ~1Hz)

Stripline BPM Software

Screen Shot of ~30Hz Oscillation (Time & Frequency Plots)

Active Collimator

- **Richard Jones design** •
 - Tungsten pin-cushion wedges
 - Intercepts photon beam
 - Current output
- Difference-over-sum can be used on inner wedges when close to center (region 1 on the plot)

Active Collimator Electronics

Active Collimator outputs go to adjustable gain I-to-V amplifiers then VME ADC/control boards

Active Collimator Testing

burt scan ybeamscan2-11-07_rad_2e-5.txt

- Performs well, data above taken using X-stage to move through beam
- Hall D takes raw EPICS data and is calculating positions
- Engineering/Ops is also displaying waveforms, diff/sum positions and will soon have FFTs available

Fast Feedback Electronics

- All electronics for the position devices stream digital data out a fiber
- Any 8 devices can be connected to the FFB Chassis via fiber
 - IPMBT02, IPM5C00, IPM5C02, IPM5C06, IPM5C07, IPM5C11B, IPMAD00, Active Collimator
- 6 magnets (3 vertical & horizontal sets) are used to cancel beam motion
 - MCNBS04H/V, MCN5C00H/V, MCN5C04H/V
- Based on Hall A & C FFB Systems
 - 2 position devices and 2 magnet sets are used
 - The algorithm kicks beam with magnets and records position response to self calibrate
 - Holds trajectory constant
 - Feedback to 120 Hz then feed forward for higher 60Hz harmonics to 1 kHz
- Low currents will limit FFB bandwidth

Fast Feedback Testing

- Hardware was verified using beam
 - Fiber data
 - Magnet Controls
- Magnets mapped correctly
- Good response at 5.5GeV with headroom for 12GeV

IPM5C07 Stripline Frequency Response

Active Collimator time domain response to 1kHz FFB magnet kick

Fast Feedback Testing

- Not enough time to implement full FFB algorithm
- Line-synchronized 60Hz Feedforward suppression algorithm used last 2 days of the run
- Also engaged slow EPICS position locks to steady the beam

Hall D Diagnostics Summary

- Cavity BPMs and electronics seem to be working well, more commissioning time needed
- Stripline BPMs and electronics were very successful
 - DSP changes may further improve low current detection
- Active Collimator and electronics were very successful
- Fast Feedback made good progress and the complete algorithm will be ready for testing next run
- Happy to entertain Hall D colleagues!!