OUTLINE:

\square Status of ablation-ready diamond samples
\square Review of first article from Applied Diamond
\square Diamond Ablation upgrades
\square Timeline

WHERE WE WERE WITH SINMAT: JD70S

- Pitting
- Trenches
- Broken edges
- Irregular thickness
- NO GOOD

RECEIVED THINNED JD70 SAMPLES FROM SINMAT LAST FRIDAY

JD70-2-smooth

JD70-2-crater

Same pitting and wedge behavior

DIAMOND ABLATION: JD70-1 FINAL

JD70-1_final
\square Attempted and succeeded to mill to $20 \mu \mathrm{~m}$.
\square Limited rectangular region dropped out on last pass.
\square We believe this to be caused by the deep grooves and pits left by Sinmat's etching process.

JD70-7 (7.1 X 7.1 X 1.2 Mm3)

\square Applied diamond to slice 1.22 mm thick JD70-7 into three separate $250 \mu \mathrm{~m}$ pieces with parallel, polished surfaces.
\square First Article to assess the quality of their work before commissioning the last 7 mm diamonds for thinning.
\square Use birefringence to reveal crystal quality of individual piece in comparison with CHESS results taken last May of JD70-7

Jefferson Lab
JD70-7-A

birefringence image taken under microscope

Jefferson Lab
JD70-7-B

birefringence image taken under microscope

Zygo interferometer surface profile

Jefferson Lab

JD70-7-C

birefringence image taken under microscope

Zygo interferometer surface profile

Jefferson Lab
JD70-7-A VS.
CHESS ROCKING CURVE MEASUREMENT

Jefferson Lab

CONCLUSIONS

\square Initial measurements shows little to no change in crystal structure from Applied Diamonds process
\square The order is out for Applied Diamond to process the other (6) 7 mm diamonds left in our inventory.
\square Will begin laser ablating the 3 diamonds we have now.
\square Also ordering an electronic-grade diamond (7×7×0.4 mm ${ }^{3}$) from Microwave Industries

LaSER ABLATION UPGRADES: CUT RATE CONTROL

 Ideal case

 Using X-stage motor velocity, Y step is constant

Using Y-stage step size, X velocity is constant

NEW

MEASURE CUT DEPTH VS. LASER ENERGY:

UC30-19_calibration

UC30-19_calibration

CUT DEPTH VS. LASER ENERGY:

\square Cross sectional cut ($x=2.5 \mathrm{~mm}$)
\square Ablation turns off at non-zero pulse height average.
\square Use third order polynomial fit to calculate cut depth on the fly for each row of the diamond.
\square Calculate next row's Y step based on the ratio of this value and a reference cut depth set at the beginning of the run.

UC30-23: CUT USING Y-STEP METHOD:

UC30-23

UC30-23: TRENCH CAUSED BY ROW OVERLAP:

\square Laser power dies as a function of pulses.
\square Laser was refilled on Row 120, exactly where the trench was cut.
\square LabView software was altered to prevent an overlap.Effect is magnified since X motor speed was reduced to $1 / 5^{\text {th }}$ the normal velocity (higher cut rate per row).
\square Produced very flat regions even with extremely low laser energy values.

LaSER ABLATION UPGRADES: PULSE CONTROLS

Arduino based pulse generator limited to 32K memory.

- Needed a microprocessor that can \square read in a sequence file \square run C code in real time \square receive and send digital IO
Raspberry Pi runs Linux, has multiple GPIOs, but not known for real-time control.
Disabling the OS interrupts during pulse sequences we attain timing of 1μ s precision, perfect!
\square Just finished integrating into revised LabView software and will begin running after collaboration meeting.

Jefferson Lab

CORRECTIVE CAPABILITY:

\square Measure surface features: Zygo interferometer.Process image using smoothing algorithm.
\square Create sequence of raster patterns.
\square Run raster sequence over the diamond using new pulse controller and Y step method.
\square Measure surface and repeat.

TIMELINE:

Receipt of thinned samples from Applied
Diamonds:
June 30'h 2015

Completion of ablation milling of one $7 \mathrm{x} 7 \mathrm{~mm}^{2}$ diamond:
July 30th 2015

Receipt of one	
$7 \times 7 \times 0.4 \mathrm{~mm}^{3}$	
diamond from	
Microwave	Delivery to Jlab of at least 3 mounted radiators:
Industries:	September $15^{\text {th }}$

Jefferson Lab

ACKNOWLEDGEMENTS

This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208

