

Beamline and Tagger status

GlueX Tagged Beam Working Group (U.Conn., Glasgow U., CUA)

Hall-D Collaboration Meeting March 29-31, 2007

Photon beam properties

(argumentation at Hall-D Beamline and Tagger Review Jan.'06)

Direct connections with the physics goals of the GlueX experiment:

•	Energy	9 GeV	solenoidal spectrometer meson/baryon resonance separation lineshape fidelity up to m _X = 2.8GeV/c²
•	Polarization	40 %	adequate for distinguishing reactions involving opposite parity exchanges
•	Intensity	10 ⁷ γ∕/s	provides sufficient statistics for PWA on key channels in initial three years
•	Resolution	10 ⁻³ <u>δE</u> E	matches resolution of the GlueX spectrometer tracking system

Are these parameters consistent with latest detector simulations, PWA?

radiator crystals

First test at CHESS (Nov.'06) (more to come after C1 beamline upgrade)

1Mb CCD camera

Crucial: procurement of high-quality, thin diamonds

Note: 20um crystal broke while remounting

radiator crystal alignment

like Hall-B alignment via "Stonehenge" method:

Hall-B goniometer (6 d.o.f.) for crystal positioning

 $\begin{array}{l} Beam~(SB){=}(SB_{*},SB_{0}){=}(4.9^{2},9.78)~mrad,~\phi_{0}{=}~0.75~deg\\ Beam-to-Crystal vector~BC = -(S{+}SB) = (-5.81,~24.73)~mrad\\ \end{array}$

Beam (SB)=(SB_{*}, SB_b)=(0.00, 0.00) mrad, ϕ_0 = 45.00 deg Beam-to-Crystal vector BC = -(S+SB) = (-5.81, 24.73) mrad

Hall-D tagger

- two-magnet design with horizontal deflection
- hodoscope: variable 'microscope' & coarse fixed array
- photon spectrum: coherent and incoherent bremsstrahlung

primary e-beam

0 mm

deflected e-beam

magnets+vacuum chamber

tagging hodoscopes

- Beam energy $E_0 = 12 \text{ GeV}$ •
- coherent peak at 7-10 GeV (typically 9.0 GeV) ۲
- microscope tags ~600 MeV near coh. peak
 - E=0.1% (9 MeV) with transverse segmentation
 100 channels
- fixed hodoscope (tags 3.0-11.4 GeV)
 - located 20 cm from true focal plane (to allow for microscope motion)
 - E_•=3.0 9.0 GeV: 50% sampling with E=60 MeV
 100 channels
 - E_•=9.0 11.4 GeV: photon beam monitoring:
 - options: E=60 MeV (max.rate ~1.1 MHz/counter) 40 channels
 - E=20 MeV (max.rate ~0.34 MHz/counter) 120 channels

rate estimates

Fixed array: rate estimates

3e+06 2.5e+06 2e+06 1.5e+06 0.5e+06 0.5e+06

fixed array:

50% sampling of lower energy range - crystal alignment: special runs@low intensity photon beam monitoring @full intensity for E• >9 GeV Counter width ~1.1-3.7cm Resolution • E~60MeV Rates at 10⁷•/s ~0.8-1.1MHz

Microscope array:

- ø channel width: 9MeV (0.1%)
- Ø overcome rate limitation by transverse segmentation
- ø focal plane coord. roughly linear with energy
- crossing angle changes with energy:
 microscope optimized for E• ~ 8-10 GeV

Instrumented collimator:

inner diam. 5mm, position-sensitive passive detector, 76m from radiator

Ó

Tungsten pin-cushion detector

Pair Spectrometer

- positioned downstream of instrumented collimator
- left-right coincidence (16 counters each side)
- relative flux monitoring of collimated photon beam (~600 MeV around coherent peak)
- trigger device for pair polarimeter (special runs)

optional: pair polarimeter (NSF proposal)

- measurement of photon polarization
- complimentary to photon spectrum analysis

Budget

	procurement	labor
magnets, vacuum chamber	\$ 1,125k	\$ 200k
hodoscope	\$ 363k	\$ 370k
goniometer	\$ 127k	\$ 50k
diamond radiators	\$ 60k	\$ 110k
collimator	\$ 85k	\$ 40k
pair spectrometer	\$ 100k	\$ 80k
sweep magnets, beampipe, lead wall	\$ 55k	\$ 20k

excludes electronics