GlueX Collaboration Meeting, Newport News, Feb. 21-23, 2013

# GlueX Simulation on the Open Science Grid 

## lessons learned from the Data Challenge December, 2012

Richard Jones, University of Connecticut

## Purpose

- Test the current simulation and reconstruction tools

1. bggen - pythia-based background Monte Carlo
2. hdgeant - geant3-based physics simulation, base detector
3. mcsmear - efficiency and resolution models
4. hd-ana - reconstruction of tracks, neutrals
5. REST plugin - summary of reconstruction results

- Develop the ability to manage production and data storage at rates approaching GlueX demands
- Produce a large sample of background simulation data

```
startup running at 107 tags/s,2000 events/s to tape goal: 10 billion events, 60 days at startup intensity
```


## GlueX Context

- steady-state cpu goal (from SW readiness review June, 2012)

$$
\begin{aligned}
& 9000 \text { Intel cores (2012) - includes only offline needs } \\
& \text { not all cores are equal: } 1 \text { Intel core }==2 . \times \text { AMD core }
\end{aligned}
$$

- plan combines lab and member university resources to achieve this goal
- GlueX is pursuing grid technology to enable aggregation of distributed resources for GlueX production
- Gluex exists as a Virtual Organization on the Open Science Grid since 2009 - result of Physics Information Frontier grant PHY9876044.


## OSG Context

- Open Science Grid - founded 2004
- primary driver supporting LHC experiments in N/S America
- over 75,000 cores, running a distribution of Linux
- sites at 72 institutions including 42 universities, 90 sites (US, Brazil)
- centrally managed and operated by full-time staff (GOC @ I.U.)


GlueX Collaboration Meeting, Newport News, Feb. 21-23, 2013

## GlueX Data Challenge 1.1

- total of 5,561,650000 events successfully generated
- 4,240,600,000 on the OSG
- 959,950,000 at Jefferson Lab
- 361,100,000 at CMU
- completed over a period of 14 days in Dec., 2012
- output data saved in REST format
- Reconstructed Event Summary Type (no hits information)
- approx. $2.2 \mathrm{kB} /$ event, including MC generator event info
- hadronic interaction in every event (pythia $8.4-9.0 \mathrm{GeV}$ )
- no em beam background or hadronic pile-up included
- 111236 files stored, 50 k events each
- typical run time 8 hours / job on Intel i7


## Problems encountered in OSG production

1. GlueX software environment staging

- 20 packages to install (counting all of sim-recon as 1 )
- production spread over 8 sites (fnal.gov, cornell.edu, purdue.edu, ucllnl.org, ucsd.edu, unesp.br, org.br, uconn. edu)

2. freeze-ups in hd-ana

- occurred any time an event took $>30$ s to process
- dependent on other things happening at the site
- tended to occur in clusters, many jobs at once

3. memory hogging in hd-ana (feeds into 2 )
4. segfaults in hdgeant

- artifact from one node at UConn - bad SDRAM chip

5. irreproducibility in mcsmear

## Achievements

- cpu availability was very high (>10,000 cores peak)
- production efficiency was not great (40-60\%)
- part of inefficiency is due to pre-emption (opportunistic)
- understanding sources of inefficiency is reason why we stopped @5B events

Daily Usage by VO (Wallclock Hours)


Daily Usage by VO (Process Hours)


GlueX Collaboration Meeting, Newport News, Feb. 21-23, 2013

## Production inefficiency

- $10 \%$ jobs would hang in hd_ana, up to 24 hr .
- 24 hr is $300 \%$ inflation of normal job time
- Ejected jobs would get requeued for later execution.
- Some fraction of these would hang $2^{\text {nd }}, 3^{\text {rd }}$ time around...
- Ad-hoc scripts were written to prune jobs that were stuck looping.
- Other known factors (store output to SRM, thrashing on memory


GlueX Collaboration Meeting, Newport News, Feb. 21-23, 2013

## Path for growth

- Congratulations to Gluex from OSG production managers
- R. Jones asked to present to OSG Council, Sept. 2012
- Council members inquired about GlueX computing plan
- Response: total scale ( 9000 cores $\times 5$ years approved)
- Q: How much might be carried out on OSG?
- A: Up to $5000 \times 300 \times 24 \mathrm{hrs} / \mathrm{yr}=36 \mathrm{M} \mathrm{hr} / \mathrm{yr}$
- Follow-up: By when?

What is your schedule
for ramping up resources?

- Response: by 2117, so far there is no detailed roadmap.
- Step 1: move existing resources into the grid framework
- Step 2: carry out new data challenges to test effectiveness
- Step 3: devise a plan for growing resources to the required level


## Access and support for Gluex users

- Support for resource consumers (10 users registered)
- howto get a grid certificate Getting a Grid Certificate
- howto access data from DC
- howto test your code on osg HOWTO get your jobs to run on the Grid
- howto run your skims on osg
- Support for resource providers (UConn, IU, CMU, ...?)
- NOT a commitment to $100 \%$ occupation by OSG jobs
- OSG site framework assumes that the local admin retains full control over resource utilization (eg. supports priority of local users)
- UConn site running for 2 years, new site at IU being set up
- MIT members have shared use of local CMS grid infrastructure
- Potential interest to configure CMU site as a Gluex grid site


## Case for further challanges

- Existing data set is still only 30 days @ low intensity.
- Existing simulation is missing features: em background, noise hits in BCal, hadronic pile-up.
- Most obvious bugs in framework have been identified in dc1.1, should verify solutions and look for new subleading effects.
- New simulation based on G4 is expected by Fall, will enable better estimates of material effects, hadronic backgrounds.
- As new sites are added, demonstrating ramp-up of capability to do GlueX simulations on the grid.

