Results of Amplitude Analysis in the $b_1\pi$ channel for the GlueX Collaboration Meeting: October 2012

Igor Senderovich

October 6, 2012

Outline

Reconstruction Intermediate State Reconstruction Signal Purity

Amplitude Analysis Results Fits of signal only Fits with signal and Pythia processes

Input

Generated signal put in with the following parameters:

X resonance: two interfering waves:				
wave (J^{PC})	L	S	$m_0({ m GeV})$	$\Gamma_0 ({\rm GeV})$
1	0	1	1.89	0.16
2+-	1	1	2.00	0.25

▶ $b_1(1^{+-})$: system allows $L_{b_1} = 0, 2$ with D/S amp. ratio: 0.28

•
$$\omega(1^{--})$$
: known dominant wave - $L_{\omega} = 1$

• "
$$\rho$$
": locked to $\omega \to L_{\rho} = 1$

Figure $b_1\pi$ photo-production and decay. ω is modeled as a sequence of two-body decays: pion and dipion system (not physical ρ)

Reconstructing $b_1\pi$ in Data: $\pi^0 \rightarrow 2\gamma$ - summary of issues

Looking for the $\pi^0(\to 2\gamma)$ in the $\omega \to \pi^+\pi^-\pi^0$ Problem: huge background under π^0 peak in $M_{2\gamma}$ distribution

- hadronic split-offs from charged showers
 - shower-track association issue
 - electromagnetic shower ID

Reconstruction Amplitude Analysis Results

- noise hits
 - mcsmear configured realistically?
 - refine cluster/shower algorithm to minimize susceptibility

Reconstructing $b_1\pi$ in Data: $\pi^0 \rightarrow 2\gamma$ background

Distribution of reconstructed invariant mass of 2γ in Pythia.

Left: Base calorimetry algorithms and current model of BCAL noise. Right: No BCAL noise hits + tweaks to shower association and photon hypothesis ID

1. BCAL noise hits turned off

Reconstruction Amplitude Analysis Results

- 2. envelope for deep shower-track association broadened
- 3. Neutral shower ID disqualified for any of:
 - shower's energy centroid deeper than 65% of BCAL module
 - energy in 4th layer > than 70% of shower total
 - significant gaps between clusters: energy only in the 1st & 4th layers
 - all energy deposited in the first layer

Intermediate State Reconstruction Signal Purity

Reconstructing $b_1\pi$ in Data: π^0

Reconstruction Amplitude Analysis Results

Looking for the $\pi^0(\to 2\gamma)$ in the $\omega \to \pi^+\pi^-\pi^0$ (tested on Pythia)

remaining background under π^0 peak in $M_{2\gamma}$ distribution - mostly hadronic split-offs from charged showers

Improving purity:

 tweak shower algorithm for better association of shower clusters to charged tracks

Reconstructing $b_1\pi$ in Data: π^0

Reconstruction Amplitude Analysis Results

Looking for the $\pi^0(\to 2\gamma)$ in the $\omega\to\pi^+\pi^-\pi^0$ (tested on Pythia)

remaining background under π^0 peak in $M_{2\gamma}$ distribution - mostly hadronic split-offs from charged showers

Improving purity:

- tweak shower algorithm for better association of shower clusters to charged tracks
- impose timing cut speed of light γ arrival from target (work of Will L.)

Reconstructing $b_1\pi$ in Data: π^0

Reconstruction Amplitude Analysis Results

Looking for the $\pi^0(\to 2\gamma)$ in the $\omega\to\pi^+\pi^-\pi^0$ (tested on Pythia)

remaining background under π^0 peak in $M_{2\gamma}$ distribution - mostly hadronic split-offs from charged showers

Improving purity:

- tweak shower algorithm for better association of shower clusters to charged tracks
- impose timing cut speed of light γ arrival from target (work of Will L.)
- ► $\pm 30 \,\mathrm{MeV}$ cuts on $M_{2\gamma}$ in 4C and $4\mathrm{C}+\mathrm{C}(M_{\omega})$ fits

Reconstructing $b_1\pi$ in Data: π^0

Reconstruction Amplitude Analysis Results

Looking for the $\pi^0(\to 2\gamma)$ in the $\omega\to\pi^+\pi^-\pi^0$ (tested on Pythia)

remaining background under π^0 peak in $M_{2\gamma}$ distribution - mostly hadronic split-offs from charged showers

Improving purity:

- tweak shower algorithm for better association of shower clusters to charged tracks
- impose timing cut speed of light γ arrival from target (work of Will L.)
- ► $\pm 30 \,\mathrm{MeV}$ cuts on $M_{2\gamma}$ in 4C and $4\mathrm{C}+\mathrm{C}(M_{\omega})$ fits

Distributions from reconstructed **signal** sample, for comparison

Reconstructing $b_1\pi$ in Data: ω

Reconstruction Amplitude Analysis Results

 $\omega(782)$ is narrow: $\Gamma=8.5\,{\rm MeV}$ (on the scale of detector resolution) – good filter for signal if mass is constrained in fit. Caution: must minimize bias toward ω Procedure: progressive kinematic fits:

- ► fit candidate ω with all permutations of last 2 pions using $4C+C(M_{\pi^0})$ only
- identify best-fit permutation
- check if fit-tuned $M_{\pi^+\pi^-\pi^0}$ within $\pm 36\,{\rm MeV}$
- if so, proceed to full 6C fit (candidate can still be vetoed by poor fit with ω constraint)

Plot: 4C+C(M_{π^0}) fit-tuned $M_{\pi^+\pi^-\pi^0}$ from Pythia sample

Reconstructing $b_1\pi$ in Data: ω

Reconstruction Amplitude Analysis Results

 $\omega(782)$ is narrow: $\Gamma=8.5\,{\rm MeV}$ (on the scale of detector resolution) – good filter for signal if mass is constrained in fit. Caution: must minimize bias toward ω Procedure: progressive kinematic fits:

- ► fit candidate ω with all permutations of last 2 pions using $4C+C(M_{\pi^0})$ only
- identify best-fit permutation
- check if fit-tuned $M_{\pi^+\pi^-\pi^0}$ within $\pm 36\,{\rm MeV}$
- if so, proceed to full 6C fit (candidate can still be vetoed by poor fit with ω constraint)

Plot: 4C+C(M_{π^0}) fit-tuned $M_{\pi^+\pi^-\pi^0}$ from $b_1\pi$ signal sample

Intermediate State Reconstruction Signal Purity

Reconstructing $b_1\pi$ in Data: Suppressing $\Delta \to \pi p$

Common contaminating process: excitation of proton into $\Delta(1232)$ How to recognize pion from Δ vs forward system. ($M_{\pi p}$ not sufficient) Solution: angular distribution – will be spoiled for false decay daughter pairing:

Reconstruction Amplitude Analysis Results Reconstruction Intermediate State Reco Amplitude Analysis Results Signal Purity

Cut Optimization

Parameters remaining after basic analysis:

- event reconstruction quality: $CL_{\text{kin.fit}}, CL_{\pi^0 \text{fit}}, dE/dx_{\text{proton}}$ hard cut
- purity: M_{b_1}
- ▶ purity: filtering Δ resonances: M_{Δ} , ϕ_{Δ} , $\cos \theta_{\Delta}$

Two goals: signal reconstruction efficiency and purity \Rightarrow multi-objective optimization, genetic algorithm used

The Pareto-optimal front of solutions optimizing efficiency and purity of a data sample.

Note: The units are not meaningful in themselves as they scale from rates and efficiencies of a baseline set of cuts.

Amplitude Fit Results: Signal Only, Perfect Detector

leakage to false waves – negligible

Amplitude Analysis Results

- consistency with expected: χ² is 2.6 and 8.8! poor convergence to true minimum?
- phase motion: error bars inconsistent with local fluctuation.
 - further proof of poor convergence?
 - contributions to uncertainty not fully understood?
- reasonable functionality to attempt fitting reconstructed events

Note: $\Delta \phi_{exp}$ calculated for each generated event individually. Phase difference is only meaningful inside an event's amplitude mixture.

 Reconstruction
 Fits of signal only

 Amplitude Analysis Results
 Fits with signal and Pythia processes

Amplitude Fit Results: Signal Only, GlueX Detector

Invariant mass figure:

results with expected values bands

- significant leakage to the uniform wave
 - mostly from from 1^{--}
 - stronger at lower invariant mass
- phase motion error bars inconsistent with fluctuations – fit convergence issues?

 Reconstruction
 Fits of signal only

 Amplitude Analysis Results
 Fits with signal and Pythia processes

Amplitude Fit Results: Signal Only, GlueX Detector

Invariant mass figure:

results with expected values rescaled for the leakage fraction

- significant leakage to the uniform wave
 - mostly from from 1^{--}
 - stronger at lower invariant mass
- phase motion error bars inconsistent with fluctuations – fit convergence issues?

Amplitude Fit Results: $40 \text{ nb } 2^{+-}$ & Pythia (GlueX)

Cross-section scaling:

 Pythia: 13.9 G evts (9 GeV) generated
 ~ 260 h run time

Amplitude Analysis Results

• $b_1 \pi$: 18 M evts, ~ 25% 2⁺⁻

Cuts: $CL_{\rm kin.fit} > 0.02$, $CL_{\pi^0 fit} > 0.02$, $M_{\Delta} > 1.37$, $|\phi_{\Delta}| < 1.34$, $\cos \theta_{\Delta} < 0.33$

- leakage to the uniform wave mostly from from 1^{--}
- leakage from ωππ to various "b₁π" waves (investigated separately later)
- phase motion: error bars shown not yet trustworthy but their relative scale indicates fit uncertainty

Amplitude Fit Results: $40 \text{ nb } 2^{+-}$ & Pythia (GlueX)

Cross-section scaling:

 Pythia: 13.9 G evts (9 GeV) generated
 ~ 260 h run time

Amplitude Analysis Results

• $b_1 \pi$: 18 M evts, ~ 25% 2⁺⁻

Cuts: $CL_{\rm kin.fit} > 0.02$, $CL_{\pi^0 \rm fit} > 0.02$, $M_{\Delta} > 1.37$, $|\phi_{\Delta}| < 1.34$, $\cos \theta_{\Delta} < 0.33$

- leakage to the uniform wave mostly from from 1^{--}
- leakage from ωππ to various "b₁π" waves (investigated separately later)
- phase motion: error bars shown not yet trustworthy but their relative scale indicates fit uncertainty

Amplitude Fit Results: Pythia's $\omega \pi \pi$ (GlueX)

- understanding how this dominant contribution from Pythia (as reconstructed, analyzed) projects onto our wave set. Isolated reconstructed events labeled with the following truth info:

- ▶ $2\pi^+2\pi^-\pi^0 p$ final state only
- \blacktriangleright an intermediate ω seen

Amplitude Analysis Results

no intermediate baryons

Observations:

- ostensibly isotropic decays in Pythia not fully absorbed by the uniform wave
- non-trivial θ, ϕ features seen
 - can be generated by false identification of decay's daughters
 - \triangleright > 1 ω , other low-lying mesons?
 - other topologies, without interm. baryons passing filter?

Summary and Outlook

Performed an analysis of a possible exotic state physics channel: $\gamma p \to X p \to b_1 \pi p$

- reconstruction and analysis of this signal in light of photo-production background
- \blacktriangleright Amplitude Analysis of the simulated data comparable to $\sim 260\,h$ of running and assuming a $40\,nb$ signal

Outlook - much to do to further this effort:

- \blacktriangleright need broad γ spectrum with tagging with accidentals included in analysis
- generate more background
- understand fit uncertainty and convergence in the limit of high statistics
- test for leakage with more waves and understand it
- put in more realistic angular distribution than Pythia's for competing processes