Update on Tagger Microscope Prototyping for the GlueX Collaboration Meeting: January 2010

Igor Senderovich

GlueX Tagged Beam Working Group

January 29, 2010

Amplifier Board Interface to Amplifie

Electronics Overview

Control board:

- Firmware loaded on FPGA
- Ethernet communication with PC

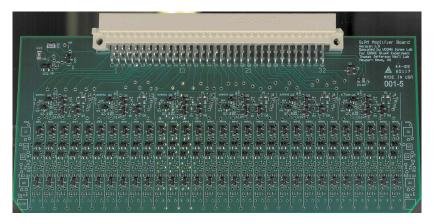
Electronics Fiber Array Assembly

- ▶ V_{bias} via DAC: 32-chan., $14 \text{ bit}, \leq 200 \text{ V}$
- on-board health sensors (Temp., ADC) of self and amp. board

Backplane: power; patch through of SiPM signals, bias voltage, monitor line

Amplifier boards contain:

- array of up to 30 SiPMs
- fast, two-stage transimpedance amplifiers
- summing circuitry
- ▶ board temperature sensor (±0.5 °C)

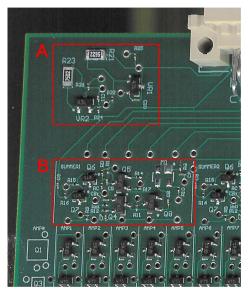


Amplifier Board Electronics Fiber Array Assembly

SiPM Amplifier Board

Amplifier Board prototypes have been received!

- awaiting receipt of the mating board (Backplane)


(Mitchell "Woody" Underwood)

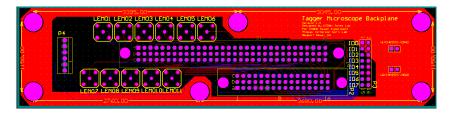
Amplifier Board Interface to Amplifiers

Amplifier Board Features

Electronics

Fiber Array Assembly

A. Voltage references circuits (with large resistors for easy tweaking)


B. Summing circuit instance, adding signals from the 5 amps below equipped with gain selection

Igor Senderovich

Interface to Amplifiers

Status of Backplane

The Backplane **board prototype is complete** and will be received soon, pending processing of purchase order (paperwork got stuck somewhere in the university bureaucracy)

Review of board's functions:

- Control/Amp board patch-through with good light-seal
- power distribution
- analog output (LEMO connectors for wiring to fADC)
- 8-bit board address coding via jumpers

Electronics Amplifier Board Fiber Array Assembly Interface to Amplifiers

Digital Control Board Prototypes

3 assembled Control Boards were received last summer.

- ▶ a few cases of layout mistakes have been caught and corrected.
- clock compatibility issue has been solved with a new clock source.
- 2 boards produce overload on low voltage supply lines to DAC (Ball Grid Array!)
 - current hypothesis: improper temperature profile used in reflow process
 - returned to assembly firm for x-ray imaging.
- Firmware debugging is complete:
 - non-DAC-related functionality tested on all boards.
 - the healthy board is operational and meets all specs!

Electronics Ampl Fiber Array Assembly Inter

Amplifier Board Interface to Amplifiers

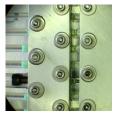
Control Software

Control software is in development. (*Michael Fowler*) Overall software structure:

1. Microscope control boards: FPGA firmware \checkmark

t ethernet

- 2. C++ based packet parser/writer based on libpcap encapsulates the protocol \checkmark
 - sockets
- 3. Java-based control tools [in progress]
- 4. GUI [in progress]


Integration into a larger suite of control software will be straightforward.

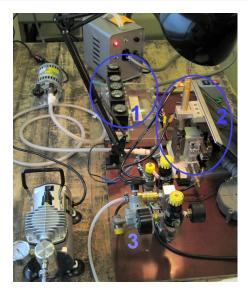
Electronics Fiber Array Assembly Fiber Array Assembly MSU Fiber-splicing apparatus

Optical Epoxy Approach

Conveyor belt assembly of fibers well established:

- End-milling streamlines trimming and polishing
- Trapped bubbles in cured epoxy eliminated: quick vacuum treatment before application
- Batch gluing of scintillator to waveguide is now easy; results consistent
- Fiber curl reshaping and packing into bundles, thin isolation coats worked out

Problem: the optical glue bonds are weak and brittle (broken joint below) Possible solution: improving bonding to fiber by leaving rougher surface.

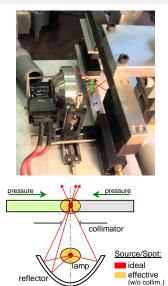

(Brendan Pratt, Jim McIntyre)

Igor Senderovich

Update on Tagger Microscope Prototyping

Fiber Array Assembly MSU Fiber-splicing apparatus

Fusing Fibers


Fiber splicer designed in MSU by Ron Richards (for GEM and $D\emptyset$)

- 1. timing relays to automate steps
- 2. splicer
- 3. pneumatic control valves, indicators etc.

Our initial concern: the acrylic cladding has a much lower melting point than polystyrene. Would the former mix, melt/burn away?

Fiber Array Assembly MSU Fiber-splicing apparatus

Splicing Details

Essential features of the splicing jig

- \blacktriangleright A $250\,W$ photo lamp heats the joint
- A collimating foil (with aperture indicated in green) produces a roughly focused spot at fiber joint
- Twin clamps with grooves for fibers; the clamp in background applies pressure along fiber axis during welding
- Air-cooled glass ferrules (not shown) mold the melting plastic near junction

Fiber Array Assembly MSU Fiber-splicing apparatus

Fiber Splicing Tests

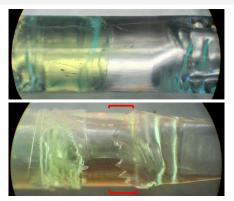


Figure. Square fibers welded in a cylindrical ferule for an initial test.

Bottom photo shows results of efforts to chip off cladding.

(Brendan Pratt)

Very promising early tests of the apparatus: without proper molding ferrules for square fibers or tuned beam time/focus

- Excellent bond and apparent optical clarity
- Distinct cladding layers preserved! (Note remains after flaking off cladding - bracketed in red above)

Goals for Beam Test

Preliminary tests on the bench of all the control and readout functions will be conducted. A pulser can be used for much of the initial testing.

Issues to look into during beam test

- testing amplified SiPM signals with fADC (if available)
- practice online scintillator alignment to electron trajectory
- pulse photo-statistics: satisfying time resolution requirement?
- pulse shape: efficiency lost due to dead time.
- any rate-related issues in SiPMs (hopes to push the detector to 5 MHz)
- cross-talk signal sharing among...
 - adjacent optical channels.
 - adjacent amplifiers

(Tolerable? Consistent with the Monte Carlo?)

Outlook

Tentative work schedule on the prototype for the next few weeks:

- 1. testing the full complement of electronics pending receipt of backplane
- 2. minimal interface software (i.e. w/o GUI, record-keeping etc.): \sim 2 weeks
- 3. mechanical fabrication/assembly: \sim 3 weeks
- 4. fiber array fabrication: 1-3 months (depends on success fusing fibers)
- Expected beam test: Hall B, (parasitically with g9 Frost) aim: March 2010 - start of run, possibly later in the spring.