Radiation Damage in Diamond

Experimental data from SLAC

Patrick Krejcik, SLAC

March 13-17, 2001

Limitations due to radiation damage

• Total dose

- Data accrued from coherent bremsstrahlung experiments at SLAC dating back to 1970
- Single pulse damage
 - Test samples at the Final Focus Test Beam IP at SLAC

March 13-17, 2001

Single pulse damage

- Extreme charge density at the IP of a γ γ collider
 - Dielectric breakdown at peak field from electron bunch
 - Energy deposition and heating

FFTB Parameters

• Present mode of operation

- **30 GeV** electrons or positrons (50 GeV)
- **2*10¹⁰** particles per bunch (4*10¹⁰)
- **10 Hz** repetition rate (120 Hz)
- **3-4 mm** transverse beam sigma ($\sigma_v \sim 0.7 \ \mu m$)

Extreme fields

 $N_e \sim 2*10^{10}$ Max electric field $\sim 2.3*10^{10}$ Volts/meter

Peak current is 1370 Amp B~80 Tesla

March 13-17, 2001

Recent experiments at FFTB

• "coupon" tests to determine damage threshold in metals for collimators, vacuum chambers etc. for the NLC

– Found threshold< 1*10¹⁰ particles per pulse

Above which thermal damage is observed, leading to holes in the sample.

• Does diamond survive a single pulse?

First diamond test October, 2000

- 2 mm square x 0.25 mm thick diamond crystals supplied by APS, Argonne (W-K. Lee, E. Gluskin)
- Damage only observed in Al sample holder, none seen in diamond.

March 13-17, 2001

2nd International Work Energy Photon C

Second diamond test March, 2001.

- Better quality diamond crystal
- Characterize the diamond before and after radiation by x-ray topographic imaging.
 - Measure rocking angle before and after
- Sample is mounted in the beamline awaiting allocation of beamtime (2 shifts)
 - Will be using positrons

Experimental details

- With very small beam spot sizes, difficulty is in locating the area irradiated
- Sample is mounted on a wire scanner. Beam position located on 4 μm wires.
- Irradiate a 25 x 25 grid of points

Total dose limitations

Diamonds used for "The SLAC Coherent Bremsstrahlung Facility", R. Schwitters, SLAC-TN-70-32, 1970.

Beam

- 16 Gev electrons
- Few 10¹¹ electrons per pulse
- Up to 60 Hz rep. Rate
- 25 kW beam power
- Spot size ~7 mm

Diamond crystal

- selected out of ~3000 natural 5-6 carat diamonds
- 7 mm square slabs 0.5 to 1 mm thick
- •Major face is 100 plane, edge parallel to 011 axes

Total dose limits

- Severe radiation damage after 2*10¹⁹ electrons
 5*10¹⁹ electrons per cm²
- Observed as degradation in coherent to incoherent bremsstrahlung ratio
 - Accompanied by discoloration of crystal
 - Color centers that are single vacancies and interstices could be annealed with UV
 - Annealing can be applied once or twice, but eventually multiple defects accumulate that are immobile and cannot be annealed.
- dE/dX losses for a 25 kW beam amount to $\sim 1/2$ watt
 - Result in some misalignment of crystal mount
 - Radiation length in diamond ~22 cm

Dose at the NLC IP

 $\sigma_{x,y} = 332 \text{ x } 4.5 \text{ nm}$ WORST Case at the IP! $N_e = 0.82*10^{10}$

Bunch train 90 bunches 1.4 ns spacing repeated 120 Hz **Dose from a single bunch = 5*10²⁰ electrons cm⁻²** Diamond will last only one bunch passage !! Move diamond over 4.5 nm in 1.4 ns Peak velocity = 3.2 ms⁻¹ Average target velocity = 50 µm s⁻¹

Other diamond experiments at SLAC

- Channeling experiments circa 1980,
 - I.I. Miroschichenko, R. Avakian et al
- Coherent photon production, starting again ~2003
 R. Arnold, P. Bosted et al
- Diamond crystals will be used for x-ray beam diagnostics at the SLAC Linac Coherent Light Source ...

T450 – Damage Tests in Diamond for LCLS

Rick Iverson, Patrick Krejcik, Doug McCormick, *SLAC* Efim Gluskin, Wah-Keat Lee, *Argonne National Lab*.

- LCLS needs X-ray diagnostics along the undulator
- Single crystal diamond Bragg reflector needs to survive single pulse radiation damage from intense electron beam