Reflecting and Crystal Optics Coherence Preserving

Tetsuya Ishikawa

SPring-8/RIKEN, Japan

Outline

- 1. Introduction
- 2. Coherence Preserving X-Ray Mirrors; Present Status
- 3. Coherence Propagation in Perfect Crystal Optics
- 4. Summary

Collaborators

X-Ray Mirror Development

Kazuto Yamauchi, Kazuya Yamamura, Hidekazu Mimura, Akira Saito, Katuyoshi Yabashi, Alexei Souvorov (JASRI/SPring-8), Mari Shimura, Yukihito Ishizuka <u>Endo, Yuzo Mori (Osaka Univ.), Kenji Tamasaku (RIKEN/SPring-8), Makina</u> (IMCJ)

Diamond Crystal

(JASRI/SPring-8), Hitoshi Sumiya, Naoto Toda, Shuichi Sato (Sumitomo Electric Kenji Tamasaku, Tomoyasu Ueda (RIKEN/SPring-8), Makina Yabashi <u>Industries</u>)

Coherence Propagation in Dynamical Diffraction Hiroshi Yamazaki (JASRI/SPring-8)

What we know so far ...

Effect of partial coherence on kinematical diffraction (Sinha et al., PRB, 1998) Well-prepared Si crystals can preserve x-ray coherence.

Synthetic diamond ?

٩.

Dynamical diffraction theory to describe coherence

August 22-23, 2003

X-Ray Mirrors

August 22-23, 2003

Plasma CVM

<u>generated in the atmospheric pressure plasma</u> . A chemical process utilizing reactive species

without any crystallographic damage **Radical density is very high.** High removal rate processing

Removal rate(µm/min	170	94	36	32	6.4		2.5
Material	Fused silica	Silicon	Molybdenum	Tungsten	Silicon	carbide	Diamond

BBM) **Elastic Emission Machining**

An ultraprecision machining process utilizing chemical reaction

ment System	X-ray optics with the accuracy of the spatial resolution of Iry.	Large area Fizeau interferometer	Laser Piezo-electric itit controller itit controller	ev. Sci. Instrum. 74 pp.2894-2898 (2003)
A Combined Figure Measure	For fabrication process of hard Figure measurement system v subnanometer-level and with t submillimeter-level is necessa	Microscopic interferometer stitching	Microscopic interferometer miner Mirror Mirr	Ĩ

Incident angle 1.2mrad / Mirror length 100mm / Mirror material Silicon single crystal (001)

Workshop on X-ray Science with Coherent Radiation @ LBL

Distance(mm)

(mm)

Distance(mm)

Wave-Optical Calculation

Yamauchi et al. submitted to Appl. Opt.

Inverse Problem

image

Workshop on X-ray Science with Coherent Radiation $@~\mathrm{LBL}$

surface profile

Workshop on X-ray Science with Coherent Radiation @ LBL

Nearly Diffraction-Limited Focusing is Realized !

intensity profiles around the focal spot

<u>Aspherical Mirror Figuring: Elliptical Mirror</u>

Yamauchi et al. JSR (2002)

2D Focusing with KB Configuration

August 22-23, 2003

1 hour for alignment High Stability (>24 hours)

Workshop on X-ray Science with Coherent Radiation @ LBL

KB mirror aligner

Focusing properties (at the 1 km end-station of

Visible microscope

Diamond Crystals

Workshop on X-ray Science with Coherent Radiation @ LBL

August 22-23, 2003

Si 220- C 111 Double Crystal Workshop on X-ray Science with Coherent Radiation $@~\mathrm{LBL}$

(higher angle) @half max

)

(lower angle)

ahalf max

Quasi-Plane-Wave X-Ray Topography

111 reflection of Diamond, Bragg geometry, E=9.44 keV

(111) Diamond, As-Cleaved Sample

(a) center

Quasi-Plane-Waye X-Ray Topography

220 reflection of Diamond, Laue geometry, E=14.55 keV (111) Diamond, As-Cleaved Sample

Rocking Curve Measurement

(111) Diamond, As-Cleaved Sample

Limited Aperture $(0.5 \times 0.5 \text{ mm}^2)$

Peak Position/Peak Width Mapping

111 reflection of Diamond, Bragg geometry, E=9.44 keV Si 220 (b=20.9)-C 111 Quasi-Parallel Setting (111) Diamond, As-Cleaved Sample

0.5" step

Relative Central Position of Rocking Curves

FWHM (Darwin width=4.08")

Coherence Propagation in **Dynamical Diffraction**

Coherence Propagation in Dynamical Diffraction

We cannot separate spatial and time coherence. Mutual coherence function is important.

Workshop on X-ray Science with Coherent Radiation @ LBL

August 22-23, 2003

$D_{j}(Q,T) = \gamma_{o} \int d\xi_{P} D_{o}(P,T-u-v) U_{j}(P;Q)$ $U_i(P; \mathcal{Q})$: time-independent propagator **Coherence Propagation in Dynamical X-Ray Diffraction** Wavefields inside the Crystal $b = \gamma_{0} / \frac{1}{\chi_{h}}$; asymmery factor $\gamma_o = \hat{\mathbf{S}}_o \cdot \hat{\mathbf{n}}, \ \gamma_h = \hat{\mathbf{S}}_h \cdot \hat{\mathbf{n}}$ $u = S'_o - S_o, v = S'_h - S_h$ $P(s_o, s_h), Q(s'_o, s'_h)$ Vacuum rystal Yamazaki & Ishikawa, JAC **35** (2002) 314. Time-Dependent Takagi-Taupin Equation $\left(\frac{\partial}{\partial s_o} + \frac{\partial}{\partial T} - iK\frac{\chi_o}{2}\right)D_o = \frac{iKC\chi_{\overline{h}}}{2}D_h$ $\frac{\partial}{\partial s_h} + \frac{\partial}{\partial T} - iK\frac{\chi_o}{2}\right) D_h = \frac{iKC\chi_h}{2} D_o$ T = ct50

Workshop on X-ray Science with Coherent Radiation @ LBL

August 22-23, 2003

Time-Independent Propagators

Laue Geometry

$$U_{o}(P;Q) = \frac{1}{\sin 2\theta_{B}} \left\{ \Theta(u) \delta(v) \exp\left(\frac{iK\chi_{o}u}{2}\right) - \kappa\Theta(u) \Theta(v) \sqrt{\frac{u}{v}} J_{1}\left(2\kappa\sqrt{uv}\right) \exp\left[\frac{iK\chi_{o}\left(u+v\right)}{2}\right] \right\}$$
$$U_{h}(P;Q) = \frac{iK\chi_{h}}{2\sin 2\theta_{B}} \Theta(u) \Theta(v) \sqrt{\frac{u}{v}} J_{0}\left(2\kappa\sqrt{uv}\right) \exp\left[\frac{iK\chi_{o}\left(u+v\right)}{2}\right]$$

Bragg Geometry

$$U_{o}(P;Q) = \frac{1}{\sin 2\theta_{B}} \left\{ \Theta(u) \delta(v) \exp\left(\frac{iK\chi_{o}u}{2}\right) - \kappa\Theta(u)\Theta(v) \left(\sqrt{\frac{u}{v} - \frac{1}{|b|}\sqrt{\frac{v}{u}}}\right) J_{1}(2\kappa\sqrt{w}) \exp\left[\frac{iK\chi_{o}(u+v)}{2}\right] \right\}$$
$$U_{h}(P;Q) = \frac{iK\chi_{h}}{2\sin 2\theta_{B}} \Theta(u)\Theta(v) \left[J_{0}(2\kappa\sqrt{w}) + \frac{v}{u|b|}J_{2}(2\kappa\sqrt{w})\right] \exp\left[\frac{iK\chi_{o}(u+v)}{2}\right]$$

 $\Theta(u)$: Heaviside step function except that $\Theta(0) = 0$ $\delta(v)$: Dirac delta function

$$b = asymmetric factor, \kappa = K |C| (\chi_h \chi_{\overline{h}})^{\frac{1}{2}}/2$$

Vacuum Wayes (Bragg Geometry)

Incident Wavefield in Vacuum

 $D_{o}(s_{o}, z_{o}, T) = A_{o}(s_{o}, z_{o}, T) \exp\{iKz_{o}(\theta_{o} - \theta_{B})\cos\theta_{B}\}$ $A_{o}(s_{o}, z_{o}, T); independent of the glancing angle, \theta_{o}$

S_h

N

Vacuum

02

Crysta

$$D_h\left(s_h, z_h, T
ight) = A_h\left(s_h, z_h, T
ight) \exp\left\{-iKz_h\left|b\right|\left(heta_o - heta_B
ight)\cos heta_h$$

$$A_{h}(s_{h}, z_{h}, T) = \frac{iKC\chi_{h}}{4\sin\theta_{B}} \int dz_{o}A_{o}(s_{o}, z_{o} - |b|z_{h}, T - s_{h} + s_{o}) \exp\left(-\frac{i\kappa z_{o}W}{\sqrt{|b|}\sin\theta_{B}}\right) o\left(\frac{\kappa z_{o}}{\sqrt{|b|}\sin\theta_{B}}\right)$$
$$W = \frac{K}{4\kappa} \sqrt{|b|} \left\{ 2(\theta_{o} - \theta_{B}) \sin 2\theta_{B} + \chi_{o} \left(1 - \frac{1}{b}\right) \right\}$$
$$\omega(x) = J_{o}(x) + J_{1}(x)$$

Propagation of Coherence Function (Bragg Geometry)

Coherence Function; Goodman 1985

Between two points (s_o, z_{ol}) and (s_o, z_{o2}) on the z_o axis

$$\Gamma_{o}\left(z_{o1}, z_{o2}; \tau\right) = \left\langle A_{o}\left(s_{o}, z_{o1}, T + \tau\right) A_{o}^{*}\left(s_{o}, z_{o2}, T\right) \right\rangle$$

$$\tau; temporal delay, \left\langle \dots \right\rangle; time average$$

The coherence function on the z_h axis after diffraction

$$\Gamma_{h}(z_{h1}, z_{h2}; \tau) = \left\langle A_{h}(s_{h}, z_{h1}, T + \tau) A_{o}^{*}(s_{h}, z_{h2}, T) \right\rangle$$

$$\approx \int dz_{o1} \int dz_{o2} \Gamma_{o}(z_{o1} - |b| z_{h1}, z_{o2} - |b| z_{h2}; \tau) \exp\left\{ \frac{i \kappa W(z_{o1} - z_{o2})}{\sqrt{|b|} \sin \theta_{b}} \right\} \omega \left(\frac{\kappa z_{o1}}{\sqrt{|b|} \sin \theta_{b}} \right) \omega^{*} \left(\frac{\kappa z_{o2}}{\sqrt{|b|} \sin \theta_{b}} \right)$$

Mutual Coherence Function on a line parallel to **h** after diffraction is evaluated from MCF on a line parallel to **h** before diffraction

August 22-23, 2003

Rocking Curve

$$(W) = \left\langle \int_{-\infty}^{+\infty} dz_Q \left| A_h(Q,t) \right|^2 \right\rangle$$
$$= \frac{\left| b \right| \left| \alpha \right|^2}{4} \left| \frac{\chi_h}{\chi_h} \right|_{-\infty}^{+\infty} dz_P \int_{-\infty}^{+\infty} dz'_P \Gamma_o(z_P,z'_P)$$
$$\times \exp\left[i \alpha W(z_P + |b| z_Q) \right] \omega \left[\alpha(z_P + |b| z_Q) \right] \exp\left[-i \alpha^* W^*(z'_P + |b| z_Q) \right] \omega^* \left[\alpha(z'_P + |b| z_Q) \right]$$

$$R(W) = I_{h}(W)$$

$$\int_{-\infty}^{+\infty} dz_{o} I_{o}(z_{o}) = \int dW R_{i}(W') \tilde{g}_{o}(W - W')$$

 $\tilde{g}_o(W-W')$: Fourier Transform of the Complex Degree of Coherence $R_i(W')$: Intrinsic Profile

Complex Degree of Coherence

lattice vector is derived from the measured rocking curve and the Complex degree of coherence on a line parallel to the reciprocal calculated intrinsic profile (convolution theorem).

$$g_{o}(\Delta z_{o}) = \frac{\int_{-\infty}^{+\infty} d\theta_{o} R(\theta_{o} - \theta_{B}) \exp\left[-iK(\theta_{o} - \theta_{B})\Delta z_{o} \cos\theta_{B}\right]}{\int_{-\infty}^{+\infty} d\theta_{o} R_{i}(\theta_{o} - \theta_{B}) \exp\left[-iK(\theta_{o} - \theta_{B})\Delta z_{o} \cos\theta_{B}\right]}$$

Rocking curves for various g will give a spatial distribution of the isochronous complex degree of

coherence.

<u>Experimental Determination of Mutual Coherence Function</u>

- Incident Beam: Monochromatic X-Rays from Si 111 or 333 DCM
- $(+n, -n, \pm m)$ rocking curve measurements; n = 111, 333; m = 111, 333, 444, 555, 777, 888 and 999.
- Derive spatial distribution of isochronous complex degree of coherence.
- Free-Space Propagation to Later Time

August 22-23, 2003

Norkshop on X-ray Science with Coherent Radiation @ LBL

Mutual Coherence Function

Concluding Remarks

- X-ray mirrors preserving coherence is readily available.
- We need to clarify the origin of 'mosaicity'
- Bragg crystal optics cannot preserve coherence in a strict sense. •
- An example to determine the magnitude of mutual coherence function was presented.

Acknowledgement X-Ray Mirror Development

Katuyoshi Endo, Yuzo Mori (Osaka Univ.), Kenji Tamasaku (RIKEN/SPring-8), Makina Yabazhi dexei Souvoro (JASRI/SPring-8), Mari Shimura, Yukihito Ishizuka M a a n f you Kazuto Yamauchi, Kazuya Yamamura, Hidekazu Mimura, Akira Saito,

For Prince Markey Color In redeal of the the form of the moment Diamond Crystal

Coherence Propagation in Dynamical Diffraction Hiroshi Yamazaki (JASRI/SPring-8)