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Abstract 

The atomic nucleus is made up of protons and neutrons, which are in turn comprised of 

quarks.  The particles binding the quarks together are known as gluons.  The way that quarks 

and gluons are assembled into physical states is still not entirely understood, specifically how 

they are confined in the nucleus such that lone quarks are never seen.  The nuclear physics 

group at the University of Connecticut is part of the GlueX Experiment, which hopes to probe 

directly the gluon bond between quarks and understand its quantum mechanical properties.  

The probe used by GlueX is a high energy (small wavelength), polarized photon generated by a 

technique known as coherent bremsstrahlung.  This technique involves radiation of photons as 

a high energy electron beam passes through a carefully oriented diamond wafer.  To reduce 

unwanted background from electrons striking materials other than the diamond, it is necessary 

to suspend the diamond wafer on thin wires, rather than on a rigid mount.  The design of the 

wire mount faces conflicting requirements of low mass and high stiffness so that the diamond 

orientation is precisely maintained.  The goal of this project is to design a wire mount with 

minimum mass that meets the stability requirements for GlueX.  An investigation was made 

into the prior existing design based on stretched tungsten wires, showing that this design did 

not meet the requirements. An alternate design based upon carbon fibers was developed and 

tested.  The results obtained demonstrated a significant improvement over the prior design. 
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1. Introduction 

 

      The Thomas Jefferson National Accelerator Facility located in Newport News, Virginia 

is a nuclear physics laboratory funded by the Department of Energy.  Among the many projects 

being conducted at Jefferson Lab is the Gluonic Excitations Experiment (GlueX).  The purpose of 

this experiment is to understand the properties of bound states of quarks and gluons (hadrons) 

in quantum chromodynamics (QCD), the governing theory behind the strong interactions.  

Hadrons come in two flavors, baryons and mesons.  Baryons are bound states of three quarks, 

of which protons and neutrons are the best known, and mesons are bound states of a quark 

and an anti-quark.  The role played by gluons in hadrons is to form the bonds which tie quarks 

together. These bonds are sometimes referred to as “flux tubes.”   

 The GlueX collaboration seeks to gain a quantitative understanding of the principle of 

confinement, the binding of quarks within hadrons, by exciting the flux tube between the quark 

and anti-quark in a meson [1].  By doing this they will be forming a new type of matter known 

as a hybrid meson.  These states have been postulated [2] and some experimental sightings 

have been reported, but no unambiguous identifications have yet been established.  To 

accomplish this, researchers will use a highly polarized photon beam to probe the gluonic bond 

formed between quarks.  Researchers will attempt to excite this bond to study its resonance 

characteristics. 

 To produce this photon beam, a process known as bremsstrahlung (German for 

“breaking radiation”) will be used.  High energy electrons will be passed through a thin diamond 
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wafer.  As the electrons interact with the atoms in the diamond they lose energy in the form of 

electromagnetic radiation.  Because bremsstrahlung occurs when the electrons interact with 

any matter, it is necessary to suspend the diamond wafer, so as to prevent interactions of the 

electron beam with the target mount.  In order to control the polarization of this photon beam 

the diamond must be suspended in such a way that vibrations are severally restricted.  It is the 

goal of this research project to develop a technique for analyzing that vibration and to develop 

an appropriate mounting technique which reduces vibration below maximum permissible 

levels.  There is an intrinsic beam divergence of 15 μrad due to the beam emittance.  The 

mounting will need to ensure that the diamond vibration amplitude is below this specification. 
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2. Background Information 
 

2.1 Particle physics of strong interactions 
  

 All matter is comprised of atoms.  These atoms are comprised of small particles known 

as protons, neutrons, and electrons.  From the time of the discovery of the electron by J.J. 

Thompson in 1897 [3] to the discovery of the atomic nucleus by Ernest Rutherford in 1911 [4] 

until the 1960’s, it was believed that protons and neutrons were elementary particles, that they 

could not be subdivided.  Then, in 1964, two scientists, Murray Gell-Mann and George Zweig, 

independently proposed the quark model.  Both scientists proposed that protons and neutrons 

were composed of quarks and anti-quarks, as depicted in Fig. 1 [5][6]. These original models 

identified three flavors of quarks, today called the up quark, the down quark, and the strange 

quark.  Later research by Sheldon Lee Glashow and James Bjorkin in 1965 and Makoto 

Kobayashi and Toshihide Maskawa in 1970 yielded the discovery of three more quarks, the 

charm quark, the top quark, and the bottom quark.  
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Figure 1: The composition of matter 

 

 

Quarks interact with each other through the strong force.  The particle which mediates 

this force is known as a gluon.  Unlike the electromagnetic force which decreases in strength 

when the distances between the two charges increase, the strong force is asymptotically 

constant at large distance.  This principle is known as confinement.  When scientists attempt to 

separate quarks, in a meson for instance, the energy applied to the system is sufficient to 

spontaneously create two new quarks, leading to two mesons, as opposed to two free quarks.  

In order to quantify the coupling between quarks and gluons via the strong force scientists 

coined the term “color charge.”  

2.1.1 Bound States of Quarks and Gluons 

 

The principle of confinement makes use of a property of particles known as color 

charge.   Quarks take on one of three colors, red, blue, and green, and anti-quarks can take on 
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one of three, anti-colors, anti-red, anti-blue, and anti-green  [7].  Gluons carry both a unit of 

color and one unit of anti-color charge.  QCD demands that all hadrons are color-neutral.   One 

consequence of this is that baryons, protons for instance, must be made of three quarks each, 

with a different color.  Mesons, a quark/anti-quark pair, must have one quark with one color 

and the other with the corresponding anti-color.  When gluons are exchanged between quarks, 

the colors of these quarks change, but the end product must always be color neutral. 

 

 

    

 

 In Fig. 2 the red and blue quarks interact when the red quark emits a red, anti-blue 

gluon.  The end result is that the color of the red quark is now blue and the blue quark is now 

red, conserving the color neutrality.  Unlike quarks, gluons are electromagnetic charge-neutral, 

meaning that they cannot be detected using electromagnetic probes, such as electron 

microscopy.  Researchers must develop other techniques in order to image these gluons.  One 

way to detect their presence would be to excite the flux tubes binding the quarks in normal 

mode oscillations and measure their resonance spectrum. 

  

Figure 2: The conservation of color charge in gluon exchange.  The cartoon proceeds from left to right. 
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2.2 GlueX Experiment 
 

2.2.1 Beam Line 

 

Figure 3: Overview of the GlueX experiment 

In order to produce the high energy electrons necessary to perform this experiment, 

GlueX researchers will use a 12GeV electron accelerator located at Jefferson Lab.  The electrons 

will pass through six passes of the accelerator, gaining 2GeV each pass.  As shown in Fig. 3, once 

the electron beam leaves the accelerator it passes through a diamond wafer, producing a 

photon beam.  These photons will collide with a liquid hydrogen target producing mesons of all 

types.  The various instruments pictured in the figure are used to detect the hybrid meson 

states which researchers are attempting to find.   
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2.2.2 Beam Properties 

 

 The electron beam from the accelerator has an intrinsic beam divergence Δα that 

depends upon the transverse size Δx of the beam.  The Heisenberg uncertainty principle places 

a lower limit on this divergence,  

       
 

  
 

  

(1) 

 

where p is the momentum of the beam.  This limit  is very small.  For the total length of travel L 

of an electron in the JLab accelerator (8400m), the divergence due to the uncertainty principle 

leads to a transverse beam expansion factor of only 1+2.45x10-11 for a beam of radius 

 Δx=10-4m.  The product       shown in Eq. 1 is known in accelerator physics jargon as the 

“beam emittance.”  The minimum emittance required by the Heisenberg uncertainty principle 

assumes that the electrons are emitted from an absolute zero temperature source.  In fact, the 

source temperature is far above absolute zero, and contributes most of the emittance of the 

beam from the JLab accelerator at energies below 6GeV.  

    For the 12GeV electron beam at JLab, the beam emittance growth during acceleration 

comes mainly from two sources, synchrotron radiation and optical aberrations in the magnetic 

field of the beam line magnets.  Synchrotron radiation refers to the acceleration the electrons 

encounter when moving through the curved sections of the accelerator.  As they are 

accelerated through the curved path the electrons experience acceleration and emit photons.  
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The momentum recoil of these emitted photons “kicks” the electrons in both transverse and 

longitudinal directions, broadening its divergence, and increasing its energy spread. 

   There is one final effect which contributes to the overall beam divergence, chromatic 

optical aberrations.  This effect is seen when electrons in the beam are slightly off axis.  Again, 

there is a “kick”, this time by the quadrapole magnets that maintain the beam’s focus.  The kick 

angle, as given by Chao [9], is 

        
 

   
              

     

  

(2) 
 

where K0 is the quadrapole gradient and δ is the uncertainty in energy of the off-axis electron.  

For large magnetic fields this can be significant.  In order to reduce these effects sextupole 

magnets can be installed, which reduce the chromatic aberrations but introduce other non-

linear effects in the horizontal electron position.  As mentioned previously for the 12GeV 

beamline at JLab, the total beam divergence in the horizontal direction at the position of the 

photon radiator will be           .   
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3. Diamond vibration 

3.1 Mechanical vibration 
  

 Every system has some frequency at which it vibrates, called its natural frequency.  

Natural frequency is a consequence of the mechanical characteristics of the system.   Each 

system will have a fundamental natural frequency for each degree of freedom.  Typically only 

the lowest order vibrations are important. When a system is driven at one of its natural 

frequency the vibrational amplitude begins to increase.  It is important to have a firm 

understanding of the vibrational characteristics of our diamond mount system because we 

want to keep amplitude of vibration as low as possible.  Background vibration from other 

systems present near the diamond mount could potentially drive the vibration amplitude up.  

For instance many mechanical components, generators for instance, vibrate at exactly 60Hz.  If 

our diamond system were to have a natural frequency at or near 60Hz it would be disastrous 

for the photon production.  The reason for this is that the energy of the photons emitted in the 

process of coherent bremsstrahlung is sensitive to the angle between the incident electron 

beam direction and the unit normal to the crystal planes.  Any deviation in this angle from the 

desired setting by more than the beam divergence degrades the polarization of the photon 
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beam, as shown in Fig. 4.

 

Figure 4: Degradation of photon polarization due to mechanical vibration above the specification based on beam divergence 
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Figure 5: Geometry of the diamond mount system 

  

 We can determine the theoretical natural frequency by looking at the geometry of the 

mount system.  As shown in Fig. 5 the diamond is mounted on two fibers strung vertically.  

These fibers have some intrinsic vibrational characteristics as does the system of the diamond 

mounted on these fibers.  Given a wire length w and an applied wire tension FT the frequency of 

vibration about the y axis, for instance, can be found to be  

    
        

  
  

  
 

  

(3) 
 

where m is the system mass and v is the speed of a wave traveling on the wires  

    
  

     

 

 
  

(4) 
 

A detailed discussion of this procedure can be seen in a later section.  
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3.2 Effect on the rocking curve 

 

  

Figure 5: Intensity of X-ray diffraction versus rocking angle 

 

 During the fall of 2009, the first commercially produced diamond which met our 

thickness specifications were produced.  In an effort to determine the planarity of these 

diamonds, the first diamond mount was constructed.  This mount was brought to the Cornell 

High Energy Synchrotron Source (CHESS) to analyze the diamonds rocking curve.  When the 

initial mount was constructed it was thought that the tension applied to the mount would be 

sufficient to maintain the diamond in a stable position.  The mosaic spread of the crystal was 

determined to be 20μrad and the thought at the time was that the instrumentation would add 

another 6μrad divergence.  Given these two divergence parameters the ideal lineshape for the 

diamond was produced, shown in blue.  When the rocking curve data was taken, however, 

there was significantly larger width than expected for the rocking curve.  Initially it was believed 
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that the crystal warping was the major contributor to the width of the rocking curve.  After 

further analysis, however, it was determined that mechanical vibration was the most significant 

contribution to the spread in rocking curve.   

  

3.3 Increasing vibrational frequency 

  

As discussed earlier the vibrational frequency of the first mount was too low to allow for 

stability of the diamond within the 15μr specification.  Going back to Eq. 3, it can be shown that 

there are two parameters of the mount which can be changed in order to increase vibrational 

frequency.  To a first order approximation the equation for ω can be rewritten as: 

    
        

  
  

  
 
    

 
  

  
 

  

(5) 
 

 ω2= 
 FT
 m

 ω=  
FT
 m

 

  

(6) 
 

 

By rewriting the equation in this way it is easy to see that the two parameters which are 

tunable are the applied tension FT and the wire length W.  By increasing the applied tension 

and/or decreasing the wire length the vibration frequency will increase.  The vibration 

amplitude is directly dependent on the modes of background noise.  In particular power 

production in the United States has an AC frequency of 60Hz, meaning many electrical 

components (generators for instance) run at 60Hz.  The amplitude of background noise around 
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this frequency high compared to other frequencies, so it is desirable to be well above this 

frequency.   

3.4 Measuring vibration using interferometry 

 

 Before the end of the 19th century there was a commonly held belief that there was a 

luminiferous aether through which light propagated.  In 1887, Albert Michelson and Edward 

Morley sought to quantify the effects that the “aether winds,” the supposed consequence of 

the earth moving rapidly through this aether, had on the speed of light. [8] The results of their 

experiment were inconclusive.  They failed to find the shift in aether winds they were looking 

for, but out of this “failed” experiment came a very accurate device by which small changes in 

position can be detected. 

The interferometer uses a principle known as superposition in order to allow for the 

detection of very small changes in position.  Superposition states that the displacement due to 

a wave at any point is the vector sum of different waves acting at that point.  For instance, if 

two waves are acting with the same amplitude at the same location and one is at peak 

amplitude while the other is a trough, these waves will destructively interfere, resulting in a 

zero amplitude wave at the point in question.  If instead both wave fronts were at their peak, 

the waves would interfere constructively, leading to a wave which is twice as large as the 

original two waves. 
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Figure 6: Michelson interferometer used in our experiment 

 The interferometer uses a coherent light source to make measurements on a sample.  

The beam passes through a pin hole, which removes spherical aberrations and expands the 

beam.  It also causes the beam to become highly divergent.  Once the beam is expanded it is 

passed through a plano-convex lens in order to return the beam to parallel.   

 When light is passed through a small opening a phenomenon known as diffraction 

occurs.   Diffraction is a result of the interference caused by different parts of the wave front 

being different lengths from a reference surface.  As a result some of the waveform is slightly 

shifted, causing destructive interference.  When light is passed through a pin hole, the pattern 

which is formed is known as an Airy Pattern.  Because the end result is to use a coherent beam 

to perform the Interferometry it is necessary to remove the fringe patterns.  As a consequence, 
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the diameter and focal length of the converging mirror need to be chosen so that the lens is 

illuminated by only the central maxima. (A complete analysis of the Airy pattern and its 

consequences on converging lens choice can be found in Appendix A.2)  In particular, for the 

5μm pinhole which is used in this experiment it is necessary to have a converging lens with a 

focal length of f=200mm. 

 

Figure 7: Computer image of an Airy Pattern 

 Once the light is expanded and returned to parallel it is passed through beam splitter 

cube.  This splits the beam into two equal parts.  One part passes through the mirror while the 

other is reflected.  One of these parts travels to an optically flat mirror and is then reflected 

back to the cube.  The other part travels to the sample we are trying to test.  Again this beam is 

reflected off of the test surface and back into the cube.  Once the two beam halves return to 

the cube they are recombined and reflected to a detector.   

 When these beams recombine they will interfere.  If the two surfaces separated by an 

integer number of wavelengths of the source light there will be constructive interference.  If 

they are a half integer separated there will be destructive interference.  Because the test 

surface is not optically flat there will be some section with constructive interference and some 
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with destructive.  This allows for the detection of surface features as small as the wavelength of 

the light source, 532nm in this case.   

 

Figure 6: Interference pattern produced by reflections from a stretched Mylar sheet using the Michelson Interferometer 

 

3.5 Decomposition into normal modes 
 

In order to analyze the frequency of vibration of a system a technique known as a 

Fourier transform is performed.  In essence the Fourier transform takes a data set which is in 

time space and converts it into a function in frequency space.  It is commonly written as  

 

                   
 

  

 

  

(7) 
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where f(x) is the function in time space and f( ) is its corresponding frequency components.  

Fourier transformations are used in this experiment to extract the natural frequency of the 

diamond vibration. 
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4. Development of an Imaging Technique for Vibration Analysis 

 

4.1 Direct Imaging 

 

If either the sample or the reference mirror is moving there is a shift in the recorded 

interference pattern.  This shift can be measured to determine the frequency of vibration.  

Because of the high levels of vibration in the original diamond mounting scheme, 

Interferometry proved to be a difficult task in regards to determining vibrational frequency.  In 

order to analyze the vibration a different technique needed to be developed.  This technique is 

known as a direct imaging technique.  A laser beam is shone off of the surface of the sample 

and the reflected spot is then sent to a detector.  As the plane of the diamond rotates, so does 

the position of the reflected spot on the detector.  This vibration can be analyzed in order to 

determine the vibration frequency of the diamond in the mount.   
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4.1.1 Lens Flare 

 

 Whenever a bright light is imaged across a comparably dark background an artifact 

known as a lens flare can be seen in the captured images from the camera.  Typically these 

artifacts are undesirable.  In this case, however, it was discovered that the lens flare had a very 

predictable behavior.  As the lens flare moves along the front of the camera lens, the spot also 

moves relative to the CCD sensor in the camera, producing an set of images with varying lens 

flare position.  The position is then analyzed to determine the vibration frequency.  Also, after 

careful calibration it was possible to determine vibration amplitude based on the flare spot 

position relative to the mean spot position. 

 

Figure 7: Direct imaging setup with diamond radiator (1), laser (2) and digital camera (3) 
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4.1.2 Calibration 

 

 In order to determine both the amplitude and frequency from a single video it was 

necessary to determine how the lens geometry mapped the lens flare position change on the 

image as a function of change in incident angle of the reflected spot from the sample surface.  

To do this the camera was set up on a 1.4m long rail which was fixed on one end and attached 

to a 1-d linear translation stage on the other.  On the fixed end a mirror was mounted and the 

camera was mounted on the mobile end.  A laser beam was reflected off of the mounted mirror 

and onto the surface of the camera lens.  The camera position was changed in .5mm 

increments and the change in position of the lens flare was recorded for each movement.   

 It was expected that because of the shape of the lenses, there would be a greater 

change in the lens position for each movement on the outer edges and the movement would 

decrease the closer the flair spot got to the edges.  What was found was that over the 

operation range, the realistic area which the moving flair spot sweeps out, the mapping is 

linear.  Once this result was obtained a sweep of the usable area was done, stepping the 

camera .5mm and recording the resulting change in flare spot location.  From this data a 

conversion factor was produced which equates a change in number of pixels into a rotation of 

the diamond surface in mrad.  The calibration found that for a beam splitter to camera length 

of 1.4m there is a change of 23.55 pixels/mm or 32.975pixels/mrad.  In order to measure a 

change in the direction of the normal vector to the diamond plane there must be a change in 

lens flare position of at least 2 pixels.  The consequence of this that that the smallest divergence 

which can be recorded using the direct imaging technique is  



27 
 

 

     
        

      
      
    

                      

 

  

(8) 
 

In order to image a 15μrad divergence using the direct imaging technique it would be 

necessary to have a minimum beam splitter to camera length of x= 

 

  

             
       

     
      
  

  
 

 
 

  

(9) 

 
 

                

  

(10) 

This is the minimum length assuming a lens flare with high enough contrast to be able to 

distinguish changes in 1 pixel.  In reality this would be significantly larger, on the order of 

    .  This analysis shows that given the space constraints of the lab space it will be 

necessary to use interference techniques in order to image the change in the direction of the 

diamond plane below 60μrad.   
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4.2 Video Analysis  

 

As mentioned previously there are two spots which are seen on the video frames.  The 

first is the point to point focus of the beam spot.  The second, fainter spot is the lens flare 

recorded by the camera.  As the angle of the sample relative to the line of the beam changes 

the location of the flare spot also changes.  In order to find the vibration characteristics the 

location of the flare spot for each frame needed to be located.  A Matlab code was written by 

Igor Senderovich in order to perform the iterative process of finding the position of the flare 

spot in each frame.  (The code used in this iterative process can be found in Appendix A.3).  

When the laser spot leaves the pinhole it is in the shape of a Gaussian.  Even with the 

convolution which occurs when light passes through the camera lens system, it is assumed that 

the lens flare will also take on this shape.  

The laser which is used in this interferometer is a 532nm 5mW green diode laser.  

Because the lens flare is produced from green light, the only channel with significant gain is the 

green channel.  This channel is selected out and is made into a false color intensity graph.   A fit 

function is invoked which compares the intensity of each pixel with the ideal peak intensity for 

a Gaussian with particular user defined characteristics.  The program then defines the central 

location of the lens flare as the point with the smallest difference between the ideal intensity 

and the actual intensity.  Because the point to point focus spot is significantly more intense 

than the lens flare the fit would tend to find the peak value for the Gaussian in this region.  To 

prevent this issue from happening, the point to point focus is artificially blocked from these 

images via a mask.   
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Figure 8: False color images of the lens flare as it moves relative to the camera sensor 
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The original intention was to use this code to process video but was ultimately found 

too slow for effective processing.  An open source program, Tracker 4.00 by Dr. Douglas Brown 

of Cabrillo College, was ultimately used for video processing because of its speed and ease of 

use.  This program tracks a user defined object as it moves throughout the video.   The program 

assumes that the acceleration of the object is small from frame to frame, and uses a small 

search area around the object location from the previous frame in order to locate the object.  

This small search area leads to faster video processing times. Once the videos were processed, 

the changes in x and y position versus time were plotted.  The data was then replotted using 

the conversion factor determined in the calibration to give a plot of angular displacement 

versus time.   

 

 

Figure 9: Rotation of diamond about y axis for original mount design 
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Figures 10: Rotation about the x axis for initial mount design 

 These two figures are for the initial mount design which Igor Senderovich had 

constructed several months prior to the beginning of this project.  Analysis of these spectrums 

yields several interesting results.  Most importantly, the frequency of the vibration was 

analyzed in order to determine if the mount was adequately holding the wire tension.   

 

4.3 Determining Vibration Frequency 

  

 As mentioned previously a Fourier analysis is used to extract the frequency data from 

the position versus time graphs.  There is a built in function in excel which allows for this type of 

analysis to be done.  By analyzing the frequency spectrum and comparing it to the derived 

frequency it can be determined if the mount is sufficiently holding the wire tension.  Again, the 

first order approximation for the fundamental frequency is found using Eq. 6.  For this initial 
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for both wires was 5g.  This gives a calculated fundamental frequency of f=22.28Hz.  The Fourier 

spectrum was analyzed and the following spectrum was seen: 

 

Figure 11: Fourier spectrum for initial mount design [2.5g wire applied wire mass, 5mm wires, total system mass(diamond 
plus wires) of .25g] 

 

This spectrum gives a fundamental frequency of 17.57 Hz, below the theoretical value.  This 

indicated that either the fiber bundle was losing tension or there was an error in how the 

tension was being applied.  A test was performed in order to validate the loss of tension 

hypothesis, in which the wires were artificially weighted and the tension determined based on 

the natural frequency of the fiber bundle. 
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4.4  Validation of tension loss hypothesis 

  

 In order to determine if the wires were losing tension it was important to analyze the 

wires separate from the diamond.  The issue with analyzing just the wires is that the 

fundamental frequency of the wires, even at relatively low tensions, is very high, well beyond 

the imaging rate of our camera.  If we assume that the carbon fiber bundle is one fiber with an 

effective linear density of 

                    

  

(11) 
 

where n is the number of fibers then the fundamental frequency is:  

   
 

  
 

 

          
 

  

(12) 
 

 In this equation the L is the wire length and T is the applied tension.  For this mount, 10 fibers 

were used, each with a length of 1.5mm and the total applied tension was .0731N.  For this 

fiber bundle the fundamental frequency would be        .  This is well beyond the imaging 

capacity of the camera used in this experiment which has a video capture rate of 1200Hz.  In 

order to analyze the tension the fiber bundle was artificially loaded with a mass which was 

significantly more massive than the wires themselves.   

 In order to achieve this weighing a small glue ball was added to a mounted 10 fiber 

bundle.  The ideal natural frequency of the mass and fiber bundle system was found to be 

201Hz.  The mount was then vibrated using a stereo speaker at specific frequencies.  Since the 
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wire would have a vibration response when driven at its natural frequency it would be possible 

to determine the vibration frequency if the right tone was selected.  A tone generating 

program, the NCH Tone Generator was used to generate a single frequency tone.  This 

frequency was then changed small amount at regular intervals until vibration was seen in the 

fiber.  Originally a narrow sweep about the theorized natural frequency was taken.  When this 

yielded no results a sweep over a much larger range was taken.  As the vibration response was 

observed this range was narrowed until the natural frequency was found.   

 

 

Figure 12: Image of the fiber bundle driven at resonance (left) and at a frequency just beyond resonance (right) 

 

  The two images show the effect of driving the wire at resonance and away from 

resonance.  In the image on the left the wire was being driven at its natural frequency.  The 

result is a large vibration response.  The image on the right shows the same wire being driven 

.1Hz away from resonance.  There is almost no visible response in the vibration of the wire.  The 

left image was taken at 62.12 Hz, well below the theorized natural frequency.  This analysis 

confirmed that the wires were losing tension.  This analysis, coupled with initial Fourier 
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analysis, indicated that a redesign of the mount and a change in mounting procedure was 

necessary. 

4.5 System redesign 
 

4.5.1 Changing from tungsten to carbon 

 

 One important decision which was made during the beginning stages of this project was 

to change from tungsten fiber to carbon for mounting the diamond.  One of the main concerns 

is the amount of background radiation which the mount will produce.  In order to determine 

the amount of background noise, the bremsstrahlung cross section needed to be determined.  

The research done by Fano, et al. showed a Z2 dependence on the bremsstrahlung cross 

section.  All other things being equal, the number of photon producing events for a particular 

energy k scales at the cross section.  Therefore the number of photon events for a carbon fiber 

is ~90 times less than the number of photon events for a tungsten fiber of the same thickness.  

Also carbon fibers have a higher ultimate tensile strength (~5600MPa versus 1510 MPa) so the 

carbon fiber bundle can actually be smaller than a tungsten fiber bundle of the same tensile 

strength.   
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4.5.2  Mount redesign 

 

 The results of the video analysis for the initial mounting scheme resulted in the need to 

redesign the mount.  The initial design had two brackets, a top and a bottom, which held the 

wires in place.  This necessitated tensioning the wires together because the bottom bracket 

spanned both wires.  The redesigned mount uses a split bottom bracket to allow each fiber to 

be tensioned individually.  Also, each bracket has a second attachment point to the back plate.  

This ensures that the wire tension is sufficiently held. 

                                     

 Figure 13: Cad image of redesigned mount 

  

 

4.5.3 Tensioning apparatus design and construction 

 

 Initially the mount design necessitated that both fibers be tensioned simultaneously 

using the same weight.  Below is an image of the initial tensioning rig.  The 5g weight is located 

in the lower right hand side of the image.   
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Figure 14: Initial wire tensioning device for tungsten fibers 

 

The simultaneous tensioning proved to not only be difficult but ultimately unreliable.  It is 

difficult to determine whether both fibers are receiving an equal share of the applied weight.  

This unequal weight distribution would cause the diamond to rotate about each axis unequally 

making predictions about the vibration frequency unreliable.  To rectify this, a tensioning device 

which tensions an individual fiber was designed and constructed 
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Figure 15: Cad drawing and image of the redesigned tensioning device 

 

The fiber bundle is threaded through the central hub (A) to which several weight plates 

(B) are attached.  These plates are in a carriage (C) which can be raised and lowered using a 

linear translation stage (D).  The fiber bundle is mechanically attached to the central hub.   

When the carriage is lowered, the weights and hub remain stationary, removing the weights 

from the carriage.  The weight tensioning the fiber bundle is then free floating.  This ensures 

that all of the applied weight is being supported by the bundle, giving very accurate tensioning 

of the fiber bundles.   
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Figure 16: Image of the strung diamond mount showing the tensioning process 

Using this newly designed mount and tensioning device the effects of natural frequency versus 

tension were analyzed and compared to the theoretical values based on the first order 

approximation. 
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5. Results of fiber bundle tensioning 
 

 Once the mount was redesigned and the tensioning apparatus built analysis of the 

frequency versus applied mass needed to be done.  Six weight plates with a mass of 5.74±.1g 

were constructed.  The tension was varied by varying the number of plates added, from 5.74g 

to 34.4g.   The position versus time was recorded for each successive plate addition and the 

Fourier spectrum was analyzed.  When analyzing the spectrum it became apparent that the 

vibration about the x axis was not a concern.  Even for these low tensions the vibration 

amplitude was at or near our divergence specification and the belief is that this mode of 

vibration will not be a factor in the final design.  Because of this only the vibration about the y 

axis data is presented.  (The position versus time and Fourier spectrum analysis for the 

vibration about the x axis can be found in appendix A.4) 
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Figure 17: Angular divergence versus time and Fourier spectrum for 34.7g applied mass 
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Figure 18: Angular divergence versus time and Fourier spectrum for 28.9g applied mass 
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 As expected the frequency for this applied mass is lower than the first set.  For this data 

set there is an interesting low frequency component.  Looking at the rotation about the x axis 

versus time and analyzing its spectrum gives a clearer picture of the source of the low 

frequency component.  

 

Figure 19: Rotation about the x axis versus time,  28.9g applied mass 

 Looking at this data it is clear that the camera had moved slowly downward during the talking 

of this data set. Analysis of the Fourier spectrum further emphasizes this point.   
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Figure 20: Fourier spectrum for rotation about the x axis, 28.9g applied mass 

 

There is a very strong frequency component around 2Hz.  This makes sense since the data for 

this spectrum was taken over a .5s interval, and the vertical position of the camera was moving 

the entire time.   
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Figure 21: Angular divergence versus time and Fourier spectrum for 23.12g applied mass 
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Figure 22: Angular divergence versus time and Fourier spectrum for 17.4g applied mass 
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Figure 23: Angular divergence versus time and Fourier spectrum for 11.56g applied mass 
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Figure 24: Angular divergence versus time and Fourier spectrum for 5.78g applied mass 
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Figure 25: Frequency versus applied mass for the first order approximation and the recorded data 

 

 Again, the first order approximation for the frequency versus tension is  
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 shown in blue.  The data points obtained from the Fourier analysis for the various positions 

versus time graphs are shown in red.  The data points fit the graph well for higher tensions so it 

is valid to use the first order approximation to determine the tension needed to make the 

natural frequency over 500Hz.  By extrapolating the theoretical curve it can be shown that the 

required applied mass to reach 500Hz is 1275g.  Each fiber can safely hold 7g.  This means that 

with the current mount it would take 183 fibers to hold the required applied mass. 
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6. Conclusions 
 

The work for this project focused on imaging and quantifying the vibration of a diamond 

radiator in a suspended mount.  The motivation behind this work was the analysis done on the 

rocking curve spectra for a diamond radiator performed at CHESS.  This rocking curve indicated 

that stability in diamond mounting was a significant factor in how the radiator performed.  A 

direct imaging technique was developed for analysis of the diamond vibration.  This involved 

the use of a coherent 532nm laser to view the rocking of the diamond plane.   

Testing on the initial mount design was done, indicating there were several issues with 

the initial design.  Among these were issues with loss of tension of the fibers as well as issues 

with insuring each wire was properly tensioned.  These issues were rectified by redesigning the 

mount, as well as developing a new technique for fiber tensioning.  One the redesign was 

complete a series of tests were performed to analyze the system response at low vibration 

frequency.  The data obtained from these tests was compared to a first order approximation of 

the vibration frequency and was found to match for frequencies in the 60Hz+ range, but 

diverged slightly from the test results for lower frequencies.    Since the first order 

approximation is valid for higher tensions it can be used to estimate the tension necessary to 

reach the desired 500Hz frequency.  For the current mount this value is shown to be 1275g.  

Other techniques, including reducing the fiber length will need to be investigated in order to 

reduce the necessary amount of applied mass.  
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7. Future Work 
  

There are several steps that can be taken in the future to continue this research.  Now 

that the system response is well understood for low frequency vibration, the interferometer 

can be used to analyze higher frequency vibration.  Ideally, the mount would have a natural 

frequency in the 500Hz+ range.  This is near the maximum operating range of the imaging 

device.  Again, for this camera the maximum frequency which can be recorded is 600Hz.  Similar 

to the low frequency analysis, it may be useful to measure frequency versus tension below 

600Hz and interpolate the data to find the tension necessary to give the desired frequency.   

Also the impact of the number of carbon fibers needs to be explored.  It is desirable to 

have a small number of carbon fibers while still being able to adequately hold tension for two 

reasons. First, the generation rate of background photons is directly related to the thickness.  

While the change from tungsten to carbon has significantly lowered this background noise, this 

background can be further reduced by reducing the fiber bundle size.  Second the proportion of 

usable diamond surface (the fraction of diamond at least one σh away from the fiber) increases 

as the fiber size decreases.  This will increase the amount of time which each diamond can be 

used for and will reduce the number of diamonds needed over the lifetime of the project.   

Besides the continued vibration analysis which needs to occur there are other areas 

which the use of the interferometer will be useful for.  One such area is the analysis of the 

ablated diamonds, both through in-house Interferometry and rocking curve analysis at CHESS.  

For the former, a new technique for mounting the diamonds on the carbon fiber bundle needs 

to be developed.  Currently glue is used to hold the simulated diamond on the fibers, but it is 
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believed that this technique will be too damaging to thin diamonds.  Techniques are currently 

being investigated including a modified sintering technique in this the carbon fiber is 

mechanically fused to the diamond. 

For the later a more stable ring mount has been developed.   This mount consists of two 

stretched Mylar sheets between which the diamond rests.  The hope is that the Mylar can be 

stretched sufficiently to create a center section which is optically flat to below our divergence 

specifications.  In order to analyze the flatness of the Mylar sheets, they will be images using 

the interferometer.  The mount will be rastered using a 3-d translation stage which will allow 

for most of the surface to be analyzed.  The interference pattern will be recorded and the 

change in pattern analyzed as the mount moved relative to the laser spot.   

                 

Figure 26: Ring mount for diamond analysis at CHESS 
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Appendix A 

A.1 Parts list for Michelson Interferometer 

Category Item Description 

Beam Splitter Beam Splitter Cube (2cm)3,AR,400-700nm 
 Kinematic Platform Mount (2in)2 
 Prism Clamp Large Clamping arm 
Camera Casio Ex-F1  
Mirrors Protected Silver Mirror 25.4mm Dia., R≈98% 
 Mirror Holder Standard 1” holder 
 Kinematic mirror Mount Adjustable Kinematic Mount for 

1” holder 
Light Source 532nm Green laser Module 5mW, 5mm spot size, <1.4 mrad 

div. 
 Kinematic V-Mount Small mount with attached 

Clamping Arm 
Beam Expander/Spatial Filter Pinhole 5μm, 10 μm, 15 μm and 20μm 

pinholes 
 Pinhole Mount ½” and 1” standard holder 
 Small Plano-Convex Lens f=50mm, 12.7mm Dia., AR 

coating 
 Large Plano-Convex Lens f=200mm, 25.4mm Dia., AR 

Coating 
 Lens Holders Holders for ½” and 1” optics 

lenses 
Translation Stages Small Linear Translation Stage  
 3-Axis Translation Stage  
Common Mechanics Posts ¾” and 1” high posts, ½” Dia. 
 Post Holders  
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A.2 Determining proper converging lens dimension and focal length 
  

 In order to determine the proper converging lens diameter and focal length the pattern 

which the beam makes as it passes through the pinhole needs to be analyzed.  The object of 

this analysis is to give a general equation for the area of the first maxima and then to apply that 

to a special case which matches our experimental set-up.  Through analysis of Maxwell’s 

equation, it can be found that the amplitude as a function of position from the beam line as  
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In our case we consider only terms that drop off as r’.  So  
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 In this case we will consider light passing through a circular disk of radius a.  This will 

ultimately be a function of the Bessel Function of the first kind for order 1.   

Let 
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So that 
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 In this particular case, we are dealing with far-field effects only, so 
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The integral            
        

 
  is the integral representation of the zero order Bessel 

function of the first kind with         as the argument. This gives us the equation: 
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To simplify the math, we make use of the fact that we can represent this Bessel 

functions as the derivative of a Bessel function of a different order. In general, the formula to 

compute this derivative is  
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In this case take 
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This gives the equation: 
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Let             so that: 
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And 

        
     
 

    
      

          
         

   

  

(36) 
 

To find the angle to the diffraction minimum, we must find the zeroes of this amplitude function. This 

will occur when          
     

 

Figure 27: Graph of the Bessel function of the first kind, orders α=0,1,2 

Above is a graph of three Bessel functions of the first order, specifically                        . 

As it is shown, the first zero of       will occur at x=0. This will correspond to the center of the pattern, 

at    . Here, we would expect a bright spot, so A(r’) should be positive and finite. At     the term 
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is positive and finite, so this expression gives the correct amplitude at    . The next zero of 

      corresponds to the first minimum of the diffraction pattern. In this case, this zero occurs at 

x=3.832,  so 
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 Since 
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This relationship allows for the converging lens to be selected based on the wavelength 

of the laser light and the diameter of the pinhole.  For example, with the 5μm pinhole which 

was selected and the 532nm light source, the correct lens so that only the first maxima passes 

through would have a focal length to radius dimension of 
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where d is the diameter of the lens.  The standard size lenses are 25.4mm dia. and 12.7mm dia..  

In this case the larger lens was selected so that the parallel beam would illuminate the entire 

beam splitter cube.   
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From this calculation we can see that a f=200mm is sufficient for our applications. 
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A.3 Matlab code for finding the lens flare location for many frames 
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A.4 Complete collection of angular divergence versus time and Fourier 

spectrum for rotation about the x axis for redesigned mount 
 

 Each of these graphs was obtained using the modified mount design.  The applied mass 

quoted is the mass applied to each fiber bundle.   

 

 

Figure 28: Angular divergence versus time and Fourier spectrum for 34.7g applied mass 
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Figure 29: Angular divergence versus time and Fourier spectrum for 28.9g applied mass 
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Figure 30: Angular divergence versus time and Fourier spectrum for 23.12g applied mass 
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Figure 31: Angular divergence versus time and Fourier spectrum for 17.4g applied mass 
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Figure 32: Angular divergence versus time and Fourier spectrum for 11.54g applied mass 
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Figure 33: Angular divergence versus time and Fourier spectrum for 5.78g applied mass 
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