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P
Fig. 6.11 Asymmetric Bragg reflection. The surface of the crystal is at an angle @ with respect to the reflecting atomic planes.
The widths of the incident and scattered beams are then different. In this case the parameter b is greater than one.

bandwidth { (which is proportional to x from Eq. (6.45)) is independent of energy, the angular Darwin
width is not.

In Fig. 6.10(c) we provide an example of how the Darwin width depends on the polarization
of the incident beam. Up until now we have mostly assumed that the incident beam is polarized
perpendicular to the scattering plane, so-called & polarization, see Fig. 2.5, for which the polarization
factor P = 1. With the polarization in the scattering plane — # polarization — the scattering amplitude
is reduced by a factor of cos(26). In this latter case the primary beam therefore penetrates more deeply
into the crystal producing a narrower Darwin width, as evidenced in Fig. 6.10(c). Another way of
describing the polarization dependence of the reflectivity curve is to say that in the tails of the Darwin
curve perfect crystals are birefringent, i.e. they exhibit a difference in the refractive index for waves
polarized in orthogonal directions. This birefringence allows the construction of X-ray phase plates for
manipulating the polarization of the beam. For example, a quarter-wave plate can be used to convert
the polarization from linear to circular.

6.4.7 Asymmetric Bragg geometry

In general the surface of a crystal will not be parallel to the atomic planes which reflect the incident
beam, as shown in Fig. 6.11. Let « be the angle between the surface and the reflecting planes. The
‘: incident, 6, and exit, 6,, glancing angles are then given by 6, = 6 + @ and §,=0 — «. For a reflection

geometry it is required that both 6, and 0, are greater than zero, or in other words that o fulfils the

condition 0 < |a| < 6. InFig. 6.11 @ has been chosen to be greater than zero. This implies a compression

(111) plotted as a of the width of the exit beam. The asymmeltry parameter, b, is defined by
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230 Diffraction by perfect crystals

Symmetric Bragg diffraction corresponds to setting b =1. For the particular case shown in the Fig. 6.11,
b > 1. The widths of the incident, H,, and exit, H,, beams are related by the equation

H =DbH,

It turns out that a compression in the width of the exit beam implies an increase in its angular
divergence. This is a consequence of Liouville’s theorem’. By the same reasoning the acceptance
angle of the incident beam must decrease to compensate for the increase in the incident beam width.
Let the angular acceptance of the incident beam be 66, and the reflected beam divergence be 66,. We
now assert that 66, and 66, are given in terms of the asymmetry parameter b and the Darwin width £,
by the equations

66, = Vb (Z, tan ) (6.47)
and i
86, = % (&, tan 6) (6.48)

These formulae are certainly correct in the symmetric case with b = 1 (see Eq. (6.28)). Moreover, since
1
Vb

the product of beam width and divergence is the same for the incident and exit beams, as required by
Liouville’s theorem.

An interesting application of asymmetric crystals is in the measurement of Darwin reflectivity
curves. The angular Darwin width is small, typically of order of ~0.002°, c.f. Fig. 6.10. Measurement
of the reflectivity curve then requires a detector system that has a much better angular resolution
than this value. This follows from the fact that the measured curve is the convolution of the Darwin
reflectivity curve of the crystal and the angular resolution of the detector, or analyser, system. So if the
angular divergence of the analyser is much smaller than that of the first crystal, then the measured curve
is determined solely by the Darwin reflectivity of the first crystal. One way to achieve high angular
resolution in the analyser is to use an asymmetric crystal. From Eq. (6.47), its angular acceptance can
be made arbitrarily small by decreasing the value of b. Double crystal spectrometers with two perfect
crystals are discussed further in the next section on DuMond diagrams.

In Fig. 6.12 we show data from a double crystal diffractometer composed of two perfect asymmetric
silicon crystals. With two asymmetric crystals there are four possible ways of configuring the
diffractometer. The narrowest curve is recorded when the first crystal is arranged with b<1, and the
second with b>1. In this case the diffracted beam from the first crystal has the smallest possible angular
divergence, which is matched to the narrow angular acceptance of the second.

66, H, = — (£, tan ) bH, = Vb (¢, tan6) H, = 66, H,

6.5 DuMond diagrams

An optical element inserted into an X-ray beam is supposed to modify some property of the beam such
as its width, its divergence, or its wavelength band. It is useful to describe the modification of the beam
by a transfer function. The transfer function relates the input parameters of the beam upstream from
the optical element to the output parameters of the beam after the beam has passed the optical element.

Liouville’s theorem states that for beams of particles, here photons, the product of beam width and divergence is a constant.
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Fig. 6.12 Measured rocking curves for a double crystal diffractometer formed from two asymmetric perfect silicon crystals. The
solid lines represent the calculated convolution of two Darwin curves with widths determined by how the asymmetric crystals
were configured.

When the optical element is a perfect crystal the relevant beam parameters are amongst other things
the beam divergence and the wavelength band. The DuMond diagram is a graphical representation of
the transfer function. In the diagram the horizontal axes are the beam divergence, with the input beam
to the left and the output beam to the right. The vertical axis is common and is 1/2d, the wavelength
normalized by twice the lattice spacing d. In the crudest approximation, where the finite width of the
Darwin curve and refraction effects are neglected, only the points of the incident parameter space in
the (6;, /2d) plane which satisfy 1/2d = sin 6; will be reflected. For a white incident beam that falls
within an angular window 6; min < 6; < ;max the output side of the DuMond diagram consists of a line
given by A/2d = sin 8, with 0; min < 6, < 0; max.

One crystal

According to Bragg’s law, constructive interference of waves scattered from an infinite crystal occurs
if the angle of incidence, 8, and the wavelength, A, are related exactly by

mA = 2d sin by
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Fig. 6.13 DuMond diagram for symmetric Bragg geometry. In this case the angles of the incident, 6;, and exit, 6,, beams
relative to the crystal surface are the same. The DuMond diagram is a graphical representation of the Bragg reflection condition,
where the axes are angle, relative to the Bragg angle 6, and A/2d. In (a) the Darwin width has been neglected. The intensity is
non-zero for points on the line only. (b) The finite Darwin width broadens the line into a band with a width along the ordinate of
wo = sin 93(13.

One way to represent this relationship is to plot a graph with 4/2d on the ordinate and 6, on the abscissa.
Any point on the sinusoidal curve gives values of 1/2d and 6y that satisfy Bragg’s law. Perfect crystals
diffract over a small but finite range in angle and wavelength. When dealing with perfect crystals
it is therefore necessary to consider deviations of the incident angle 6, around 6, and deviations of
wavelength around the value given by 2d sin 8. For asymmetric crystals it is also necessary to consider
the exit angle 6, of the reflected beam.

The DuMond diagram is a graphical way to represent diffraction events, and is composed of two
parts: one is a plot of 1/2d against 6, — ,, with 6, increasing to the left; and the other is a plot of A/2d
against 6, — 6, with 6, increasing to the right. For small deviations away from the Bragg condition
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Incident Exit

Fig. 6.14 DuMond diagram for asymmetric Bragg geometry. The ratio of the widths of the incident and exit beams is given by
the parameter b. This implies that the angular acceptance of the incident beam is reduced by a factor of 1/ Vb while that of the
exit beam is increased by the same amount. Thus in the DuMond diagram the incident bandwidth is reduced, and the exit one
increased. Points A and B on the incident side are associated with points A’ and B’ on the exit side. This shows that an incident
beam which is parallel and white acquires a finite angular divergence given by a, when it has been diffracted by a crystal set in
asymmetric Bragg geometry.

the sinusoidal dependence of 1/2d approximates to a straight line with slope cos . The top part of
Fig. 6.13 shows the DuMond diagram for a crystal diffracting according to Bragg’s law in a symmetric
reflection geometry. When neglecting the finite Darwin width, the reflectivity is non-vanishing only
on the line indicated, and the relative change in wavelength A1/A and the deviation A from the Bragg
angle are related by

Al Ad

A tand
For the symmetric Bragg geometry assumed here the surface coincides with the reflecting planes: the
reflection is specular, and the wavelength and exit angle are linked by the same condition as the one
above.

The lower part of Fig. 6.13 shows the DuMond diagram for symmetric Bragg geometry, but now
including the finite Darwin bandwidth: all wavelengths from a perfectly collimated white source within
arelative bandwidth £, have a reflectivity of 100%. Outside of this band, the reflectivity falls off quickly
as we move from the dynamical to the kinematical regimes (see Fig. 6.3 and 6.5). In the latter the
scattering is located along the crystal truncation rods which run parallel to the surface normal (Section
5.3). In terms of the DuMond ordinate 1/2d the width of the central band is

Wwo = % = (%)(%) = (%) 4, =sinby¢, (6.49)
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where £, = AA/A is the Darwin width given by Eq. (6.25). As indicated, symmetry implies that a
perfectly collimated incident beam is reflected to a perfectly collimated exit beam.

This is not the case for an asymmetric crystal, where the surface does not coincide with the reflecting
planes, as is shown in Fig. 6.14. The exit beam width is now smaller than that of the incident beam. In
Section 6.4.7 it has been shown that this implies that the bandwidth of the incident beam is reduced by
a factor of 1/ \/5, while the bandwidth of the exit beam is increased by a factor of Vb. It is important
to note that the crystal truncation rod is no longer parallel to the reciprocal lattice vector, since it runs
perpendicular to the surface. The consequences of these considerations are illustrated in the lower part
of Fig. 6.14. A perfectly collimated incident beam is reflected in the band AB. The scattering is elastic,
so the point A(B) is transferred to point A’(B’) on the exit part of the DuMond diagram. Since the
points A’ and B’ have different abscissa, displaced by the amount «,, a perfectly collimated incident
beam acquires a finite divergence after Bragg reflection.

In the examples of the symmetric and asymmetric Bragg geometries there is an ambiguity left to
resolve. This concerns the question of how to relate points on the DuMond diagram of the incident
beam with those of the exit beam. For the asymmetric Bragg case, shown in the lower part Fig. 6.14,
the point A on top of the incident band is shown connected to the point A’ on top of the exit band.
(The line runs at right angles to the 1/2d axis since the scattering is elastic.) The reason for this is
illustrated in Fig. 6.15, which should be compared with Fig. 6.1. The transition from the dynamical
to the kinematical regimes must be continuous. In the kinematical regime the scattering lies along the
crystal truncation rods (CTR’s). If the incident beam is white and parallel then the crystal reflects a band
Ak out of the incident beam. A given wavevector in the incident beam, k; say, is scattered to a final
wavevector k’l, with |k;|= Ik'll. The direction of k’I is found from where the Ewald sphere, indicated
by the circular arc, crosses the CTR. For the asymmetric Bragg case the truncation rod does not lie
along the direction of the wavevector transfer: it runs perpendicular to the physical surface. From Fig.
6.15(b) this implies that the scattering angle of the exit beam must increase as |k’| increases. This is
consistent with the choice of associating B with B’. Continuity between the dynamical and kinematical
regime also implies that the central band of the former does not lie along the wavevector transfer. In
other words the reflection is not specular.

The same construction is shown for symmetric Laue geometry in Fig. 6.15(c). From this it is
clear that a crystal diffracting in symmetric Laue geometry will impart a finite angular divergence to a
parallel, white incident beam.

Two crystals in symmetric Bragg geometry

In Fig. 6.16 a white beam is incident on a crystal at a certain Bragg angle. To simplify the discussion it
is assumed, as in the previous section, that the Darwin reflectivity curve may be approximated by a box
function. The beam incident on the first crystal is thus the vertical, light shaded band with an angular
width 2A6, in the DuMond diagrams in the lower part of the figure. A second crystal is set to reflect
the central ray. This can be done in two ways.

If the Bragg planes in the second crystal are parallel to those in the first crystal, a ray deviating
(dotted line) from the central ray by A6, will be reflected at the same setting as the central ray. In
a DuMond diagram this means that the response band of the second crystal is parallel to that of the
first crystal. In scanning the angle of the second crystal there is no overlap with the intensity provided
by the first crystal for any of the four settings shown. Only when the angular setting of the second
crystal is in between those labelled 2 and 3 will there be scattered intensity after the second crystal.
Since the bands are assumed to be box-like, the intensity versus angle will be triangular with a FWHM
equal to the angular Darwin width w; of one crystal, independent of the incident angular bandwidth.

Al

(b

Ak

(c)

Ak

Fig. 6.15 Scatterin
Symmetric Laue geo
with the darker shade
points A, Band A’, B’
way. 2



implies that a

1the reflecting
ident beam. In
L is reduced by
It is important
1, since it runs
the lower part
ring is elastic,
am. Since the
nated incident

biguity left to
of the incident
part Fig. 6.14,
the exit band.
son for this is
the dynamical
lies along the
reflects a band
ered to a final
1ere, indicated
d does not lie
ce. From Fig.
eases. This is
1d kinematical
or transfer. In

“rom this it is
livergence to a

e discussion it
nated by a box
ith an angular
s set to reflect

 ray deviating
entral ray. In
| to that of the
nsity provided
of the second
econd crystal.
with a FWHM
lar bandwidth.

6.5 DuMond diagrams 235

(a) symmetric Bragg
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Fig. 6.15 Scattering triangles (left) and DuMond diagrams (right) for (a) symmetric Bragg, (b) asymmetric Bragg and (c)
symmetric Laue geometries. In the scattering triangles the crystal truncation rod (CTR) is represented by the rectangular box,
with the darker shaded part being the central dynamical band. Continuity between the kinematical and dynamical regimes allows
points A, B and A’, B’ in the DuMond diagrams of the incident and exit beams to be associated with each other in an unambiguous
way.




236 Diffraction by perfect crystals

Non-dispersive Dispersive

Fig. 6.16 Non-dispersive geometry (left): X-rays from a white source are incident on two crystals aligned in the same
orientation. The central ray (full line) will be Bragg reflected by both crystals and will emerge parallel to the original ray.
A ray incident at a higher angle than that of the central ray will only be Bragg reflected if it has a longer wavelength. The angle
of incidence this ray makes with the second crystal is the same as that it made with the first, and will be Bragg reflected. The
DuMond diagram in the lower part shows that a scan of the second crystal has a width equal to the convolution of the Darwin
widths of the two crystals, independent of the incident angular divergence. Dispersive geometry (right): A ray incident at a higher
angle than the central ray at the first crystal will be incident at a lower angle at the second crystal. The second crystal must be
rotated by the amount 2A6;, for Bragg’s law to be fulfilled. The geometry is therefore wavelength dispersive.

Furthermore, the reflected wavelength band from the second crystal equals that after the first crystal
and is determined by the angular spread 2A6,, . This orientation is therefore termed non-dispersive.

On the other hand, in the alternative orientation, the response band of the second crystal has the
opposite slope to that of the first crystal. The angular width is now dependent of the incident width:
in the limit of a very small Darwin width w it is actually equal to that of the incident width. In the
DuMond diagram there will be scattering after the second crystal in all of the positions 2 through 4. The
wavelength bandwidth after the second crystal in position 3 is now much smaller than the wavelength
bandwidth after the first crystal, and the orientation is termed dispersive. It is clear that this qualitative
discussion of the dispersive setting can be sharpened to a quantitative estimate of both the angular and
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