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A method has been developed by means of coherent bremsstrahlung from a single crystal for the
determination of atomic form factors. This method employs a precise measurement of energy spectra of
v rays in the several-hundred-MeV region produced by 1.2-GeV electrons from single crystals as a func-
tion of the relative angle between a definite crystal axis and the incident-electron beam. It is shown that
the spectra contain the electron-screening effect around the target nuclei and give information on the
atomic form factor mainly at small momentum transfers. Possible problems with this method have been
examined with this experiment using a silicon crystal. A method to analyze the experimental results has
been established and with this method the deviation of atomic form factor from theoretical calculation is
detectable at a level of down to a few percent. The present experimental data for a silicon crystal are
consistent with the form factor obtained by the Pendellosung method, which shows small deviations
from the Hartree-Fock model at small momentum transfers. The accuracy attained in this method has
been shown not to be too much affected by the imperfections of the crystal, at least for dislocation densi-
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ties of up to 10* cm 2.

I. INTRODUCTION

The atomic form factor is one of the most fundamental
physical quantities in solid-state physics. It is the Fourier
transform of an electron distribution around a nucleus
and carries information on the electron wave function.
Precise knowledge of the atomic form factor also has
practical significance, as may be exemplified by the prob-
lem associated with the computation of x-ray attenuation
coefficients.! It is in general impossible to calculate the
atomic form factor exactly, because it needs an exact
solution for a complicated many-body problem. There
are some calculations®® using approximate methods
which are believed to be accurate enough in practical use
for some materials. The adequacy of these theoretical
treatments, however, should be verified experimentally.
Furthermore, it should be noted that the atomic form
factor in aggregate may be slightly different from that of
an isolated atom. The quality of existing data is inade-
quate for answering these problems and more detailed
measurements are desirable.
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Most measurements to determine the atomic form fac-
tor performed up to now are mainly by means of x rays*
or low-energy electrons.’ The x-ray experiments may be
classified into two groups; kinematical and dynamical
methods. In the former method, integrated intensities of
diffraction images from a single crystal or powder are
measured. This method has been applied to many kinds
of materials. The most serious problem in the method is
that absolute measurement is not possible and that ab-
sorption or extinction corrections are necessary. On the
other hand, the absolute value of the form factor is ob-
tainable by use of the dynamical method. Nevertheless,
as the method needs a crystal which is perfect with rela-
tively large physical dimensions, there are few kinds of
crystal which are appropriate for use with the method. It
is therefore highly desirable to develop a method which is
not sensitive to the imperfections in the target crystal.

The photon spectra of coherent bremsstrahlung from
high-energy electrons have been found to be very sensi-
tive to the atomic form factor of the target material.%’
This means that a precise measurement of such photon
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spectra may give us new information on atomic form fac-
tors. In addition, the information obtained in this way is
complementary to that obtained from x-ray measure-
ments in a sense that the former information reflects the
electron screening around nuclei, while the latter directly
reflects the electron distribution around nuclei.

In the coherent bremsstrahlung experiment stated
above, all the real particles such as the incident and recoil
electron and the emitted photon have their momentum of
the order of several hundred MeV or higher. As the cor-
responding wavelength is far smaller than the size of
atomic structure and rather closer to the nuclear size,
they may be regarded to interact only with the nuclear
field. The momentum transfer from incident electron to
nucleus, on the other hand, ranges from keV to several
hundred MeV. The phonon associated with the atomic
vibration can interact with slow electrons surrounding
nucleus but not with such high-energy electrons as in the
present case. As a result, the phenomenon of our interest
is free from any complexity inherent to dynamical treat-
ment of keV electrons® and the plane-wave approxima-
tion is well valid.

Possible problems in the method using coherent brems-
strahlung are as follows.

(i) It is generally difficult to measure the energy spectra
of high-energy y rays precisely enough to discuss the
small deviation of the spectral shape.

(ii) The method requires considerably complicated ex-
perimental technique and long time consumption. More-
over, there may be no guarantee of the reproducibility for
the experimental system in some cases.

(iii) By a radiation damage, the target crystal may be
broken to some extent.

(iv) The dislocation of the target crystal may heavily
affect the result obtained in the method.

We have already tested the feasibility of the coherent
bremsstrahlung method and reported that we could
reproduce the shape of the photon spectra for the perfect
silicon crystal.® As most precise experiments were made
for silicon by measuring Pendellosung fringes using
wedge-shaped crystal,'°"1? a silicon crystal may be the
most suitable for checking a method to determine the
atomic form factor.

We have performed the present experiment to clarify
the possible problems stated above. We have constructed
a detector with improved control system. In order to
check the reliability of this kind of measurements, we
have prepared two kinds of silicon crystal; one is a per-
fect crystal which is the same one as in the previous ex-
periment and the other is a crystal in which a heavy
dislocation has been intentionally introduced.

Firstly, we briefly describe a theoretical background
for coherent bremsstrahlung in Sec. II. Secondly, in Sec.
III, we give an explanation of the present experimental
set-up. Section IV is devoted to a description of our ex-
perimental procedure, data analysis, and experimental re-
sults. In Sec. V, the present results are compared with
the results of x-ray experiments and also given are the
discussions on the validity of the present method and on
other related problems. Finally our conclusion is summa-
rized in Sec. VI.

9249
II. COHERENT BREMSSTRAHLUNG
A. Theoretical foundation
A bremsstrahlung process is diagrammatically

represented in Fig. 1, where an electron with energy E,
and momentum p, is deflected by the potential shown by
a blob and emits a photon with momentum k. Let the en-
ergy and momentum of the final-state electron be denoted
by E and p, respectively, the energy and momentum con-
servation law read

po=ptk+q, (1)
E,=E +k , )

where q is the recoil momentum of the nucleus. The
recoil energy corresponding to q can be neglected because
of the large mass of the recoiling nucleus. Here, and
henceforth, we wuse the natural unit in which
m,=c =#=1, where m, is the electron mass. Conver-
sion of the momentum transfer q in this natural unit to
the [A(A) !sin(6/2)] unit is accomplished by multiply-
ing a factor 20.607 44, which is convenient to represent
the momentum transfer in the Rayleigh scattering for the
wavelength A and the deflection angle 6.

At very high energies where the bremsstrahlung is
strongly collimated in the forward direction, 6, S1/E,
the longitudinal and transverse momentum transfer g
and gq,, respectively, with respect to the incident-electron
direction are restricted by the relations

6§=¢q; 3526, (3)
0=gq,=2x, (4)

where 6 is the minimum recoil momentum given by

X

8= B, (1—x)

(5)

with x =k /E, the relative photon energy. Outside the
region defined above, the bremsstrahlung is either inhibit-
ed or negligibly small.

Though 8 grows rapidly when x approaches unity, it is
usually a very small quantity compared to the other mo-
menta involved. Thus, the kinematically allowed region
for momentum transfer forms a very thin disc of which
the thickness is about 8 and the radius is of the order of

Ey po

FIG. 1. Momentum and angular relations in electron brems-
strahlung. The incident-electron momentum, scattered electron
momentum, photon momentum, and momentum transfer are
denoted by py, p, k and q, respectively.
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unity. It is axially symmetric with respect to the initial
electron momentum p, and it stands at the distance &
from the origin of the interaction as visualized in Fig. 2.

Using the first-order Born approximation, we obtain
the Bethe-Heitler expression!® for the differential cross
section for an isolated atom. According to the Bethe-
Heitler formalism, the atomic electrons surrounding the
nucleus make partial screening of the nuclear charge.
This screening effect is represented in terms of the atomic
form factor F (qz), which is the Fourier transform of the
charge distribution p(r) around the nucleus;

F(g®)= [e'9p(r)d>r . 6)

For an ideal crystal at zero temperature, the momen-
tum transfer is not permitted except at the reciprocal lat-
tice points due to the periodic nature of the potential.
From the conditions (3) and (4), only the reciprocal-
lattice points which enter the thin disc region can con-
tribute to the bremsstrahlung process in this case.

At finite temperature, however, we must take into ac-
count the effect of thermal oscillation, and the differential
cross section is expressed by the sum of the coherent con-
tributions and the incoherent ones; '

k do

=[14+(1—x)2 ) +95)— 2(1—x)P5+95) ,
oy dk

¢))

where
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FIG. 2. The thin disc region (shaded area). Its thickness § is
far smaller than x or q. The upper kinematical boundary for q
is drawn only schematically.
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with a being the lattice constant. The superscripts i and ¢
denote the incoherent part and coherent part, respective-
ly. We used 4 for the thermal oscillation constant

3m2c?

_3mee” T
4= Mk, 0,

0y

®p
T

1+4 r , (8)

where M is the atomic mass of the crystal, kg is the
Boltzmann constant, ®, and T are the Debye tempera-
ture and the absolute temperature of the crystal, respec-
tively. We also introduced the structure factor S(q).
The summation in the coherent part should be done over
the reciprocal lattice points g kinematically allowed, i.e.,
mainly those in the thin disc region.

B. Dip-bump structures

We show in the following the qualitative behavior of
the differential cross section. For most conditions, the in-
coherent part depends weakly on x and is a slowly vary-
ing function of k. On the other hand, the coherent part
depends strongly on both x and the direction of the crys-
tal.

We first investigate the case where the incident elec-
tron enters parallel to one of the crystal axes, [110]*. For
the lower boundary of the thin disc to reach the first row
of reciprocal lattice points, 8 is equal to V2X2w/
a=9.6X10"3 in the case of a silicon crystal. Choosing
E;=12 GeV=2.3X 10% in the present unit, we find that
the corresponding x is 0.98. This is very close to the end
of the spectrum, where the momentum transfer is so large
that the intensity of coherent contribution is very small
with respect to the incoherent one. The cross section has
therefore no appreciable enhancement in the coherent
part.

Next, we consider the case where the incident electron
enters the crystal with a small angle 6 with respect to the
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axis [110]* as seen in Fig. 3(a). Now, for a certain pho-
ton energy k,, the thin disc intersects the (110) plane, as
shown in Fig. 3(b). This gives a large enhancement in the
cross section. While rotating the crystal in the (110)
plane to decrease 0, it happens that the lower boundary
of the thin disc moves away from the first row. Then, the
contributions from the first row suddenly disappear and
the cross section drops accordingly. With decreasing 6
further, the cross section again increases and reaches the
maximum when the lower boundary is just on the third
row. Thereafter the cross section decreases with decreas-
ing angle, thus, resulting in a dip-bump structure in angu-
lar dependence.

A similar argument is applicable to the case where we
vary the photon energy for a fixed incident angle; we first
assume that the thin disc intersects the (110) plane as
shown in Fig. 3(a). With increasing photon energy from
ko, the lower boundary of the thin disc proceeds away
from the origin. The cross section grows with the photon
energy and has the maximum when the lower boundary
of the thin disc reaches the first row. The cross section
suddenly drops when the lower boundary crosses the row.

The above mechanism gives a specific dip-bump struc-
ture in the coherent bremsstrahlung spectrum which is to
be observed in the present experiment.

L
o i O i o # [1T0}*

7 T |

FIG. 3 (a) The direction of the incident-electron momentum
Po is directed through a small angle 6 in the plane (110). (b) The
thin disc now includes the reciprocal-lattice points in the (110)
plane.

9251

C. Effect of the atomic form factor

In ordinary x-ray experiments, the intensity of the
diffraction image is proportional to |F(g?)|?, while the
coherent part of the bremsstrahlung spectrum is propor-
tional to the factor [1—F(g2)]*/q*.

The discussion of the previous section shows that the
specific dip-bump structure of the coherent bremsstrah-
lung comes from the lattice structure of the crystalline
target and that the intensity of the spectrum is inversely
proportional to the fourth power of the momentum
transfer which corresponds to the distance in the
reciprocal-lattice space. Now, it is clear that a possible
small deviation in the atomic form factor at small
momentum transfer may result in a large deviation in the
coherent bremsstrahlung intensity.

III. EXPERIMENTAL SET-UP

A. General consideration

We have a few methods to determine the energy of
photons emitted in the bremsstrahlung process. The first
one is to measure the momenta of e "-e ~ pair which is
converted from a photon, which is known as pair spec-
trometry. In this method, though a good energy resolu-
tion can be achieved, the time needed to get the photon
spectrum is huge. Another direct-measurement method
is to convert the photon to an electromagnetic cascade
shower. To get a good accuracy, we must keep the inten-
sity of the photon beam low so that only one photon will
enter the detector in one trigger signal. The data amount
to a large magnitude and the time needed to get one pho-
ton spectrum is accordingly long.

Instead of these direct measurements, we adopt the fol-
lowing indirect method: if we know both the energy of
the incident electron, E;, and that of the final electron, E,
we can determine the photon energy k by the relation
k=E,—E. We place an analyzer magnet downstream
from the target. The electron which emits a photon has a
smaller curvature in the magnetic field compared with
the electrons which do not emit any photon and therefore
appears at different exit point of the analyzer magnet.
We place a counter hodoscope downstream from the
analyzer magnet and measure the momentum of a recoil
electron by its hit position on the hodoscope. This
method is called the tagging method because the energy
of all the photons is tagged by the momentum of the
recoil electron. As we do not need to identify the indivi-
dual photons, we only count the number of the recoil
electrons which hit any of counter elements of the hodo-
scope. The counting rate in this case can be increased
until it reaches limiting counting rate for single electrons.

As the characteristic feature of the coherent brems-
strahlung appears in the lower photon energy region, we
mainly confine ourselves to employ a hodoscope which
can measure high-energy recoil electrons.

Since we had to remove the error due to the differences
in the energy acceptances for different counter elements
of the hodoscopes, we took the ratio of each spectrum to
the standard one which was obtained for the polycrystal-
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line aluminum target under the standard conditions.
Hereafter, this ratio is referred to as the normalized spec-
trum.

As it is difficult to extract beam with high enough sta-
bility and to make a direct measurement of beam intensi-
ty upstream from the target without disturbing the beam
properties, we count the number of electrons of 1.2 GeV
by a thick-walled ionization chamber placed downstream
from the analyzer magnet.

To vary the direction of the crystalline target relative
to the incident-electron beam, we use a high-precision
goniometer which is controlled by a personal computer at
the counting room.

B. Electron synchrotron

The electron synchrotron and the tagging system at the
Institute for Nuclear Study, University of Tokyo, was
used’® in this experiment. The circulating electrons lose
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FIG. 4. The layout of the electron extraction beam line. BM:
bending magnet. KM: pulsed kicker magnet. BPM: beam
profile monitor.
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their energy in an absorber and are kicked out to the
external beam line by two fast kickers. The beam line is
schematically shown in Fig. 4. It has two lead slits that
can collimate the electron beam in both vertical and hor-
izontal directions.

At the first collimator, the beam is scraped to =1 mm
in both vertical and horizontal directions. The secondary
electrons which are created at the first collimator are
scraped out by the second collimator. The quadrupole
magnets are tuned to make the beam divergence at the
target position as small as possible.

C. Tagging system and electron monitor

The tagging system consists of the analyzer magnet
and two counter hodoscopes as shown in Fig. 5. The
magnet supplies a magnetic field of 1.17 T and an
effective field length of 0.8 m. The high-energy electrons
from the accelerator, after hitting a target material, enter
this magnetic field and give their trajectories according to
their momenta.

There are two kinds of counter hodoscopes of plastic
scintillators. One is for low-energy electrons, the other is
for high-energy ones. The spread of the electron beam
due to the multiple scattering in the target material is not

btd Goniometer
6=‘ oniometer j]
amber
B Low-energy
/ Counter Hodoscope
| ! , |~
Analyzer Magnet /
0 -/
-/
Ve, | %

Electron Monito

FIG. 5. The layout of the tagging system. The electron beam
comes from the upper side of the figure and enters the crystal-
line target on the goniometer. Electrons are analyzed according
to their momenta by an analyzer magnet. There are two sets of
counter hodoscope. Downstream from the analyzer magnet,
there is a thick-walled ionization chamber which counts the
number of extracted electrons.
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negligible because the analyzer magnet is horizontally de-
focusing. In the case of 0.5-mm silicon target, the spread
of the beam at the hodoscope is calculated to have a
width corresponding to the energy spread of 20 MeV.
We designed the energy acceptance of each bin to be 20
MeV. The corresponding horizontal size of the scintilla-
tors ranged from 10.6 to 19.0 mm.

An energy calibration using an electron beam has
shown that the hodoscope covers the energy range from
975 to 600 MeV with bin width ranging from 15 to 20
MeV. The nonuniformity in the acceptance is irrelevant
to our experimental results because we are concerned
only with the ratio of coherent spectrum to incoherent
one.

The low-energy hodoscope has a resolution of 10 MeV,
covering an energy range between 100 and 370 MeV. We
use this hodoscope for calibration and monitoring of the
electron beam.

The thick-walled ionization chamber is made of one 2-
cm-thick copper wall, and twenty-three 1-mm-thick
copper plates. The extracted beam intensity was about
2X10% e /s.

D. Target and goniometer

Two kinds of high-purity silicon single crystal were
used to observe the effect of crystal imperfection. One is
a dislocation-free, perfect crystal and the other is a crys-
tal which has dislocation with a density of ~10* cm ™2,
They have been provided by Shin-etsu Handoutai Co.
Ltd. It is hard to introduce dislocations heavier than in
the present case into a silicon crystal without making
cracks.

The crystals used in the experiment were wafers with a
thickness of 0.5 mm and dimensions of 20 mm X 20 mm.
The surface of the target crystal is (110) and the edges are

Electron beam

38° 30°
. 0.005°
125 mm
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parallel to [111] and [112] within an accuracy of 0.5° The
orientation of the target crystal was determined by the
back reflection Laue method.

The goniometer has three axes which cross at one
point and one translational moving axis as shown in Fig.
6. Around each axis, rotation is made by a stepping
motor in vacua and the position is informed through
rotary encoders. The possible range of rotation is
—30.000°~210.000° for the ¥ axis, —30.000°~ 30.000°
for the ¢ axis and 0.000°~ 180.000° for the 0 axis with a
common precision of 0.005°. The crystalline target is
mounted on a holder which has a circular opening win-
dow of 20 mm in diameter for the beam. The crystal
must therefore be larger than 20 mm at least in one direc-
tion to be mounted on the holder.

Sliding the goniometer transversal to a beam line, we
can use a polycrystalline material as the target. The
polycrystalline radiators used are a 0.5-mm-thick alumi-
num strip, an aluminum wire of 0.5 mm in diameter and
a 50-um platinum strip. The frame of these targets is far
from the beam and has no appreciable contribution to the
spectrum.

E. Data acquisition methods

We counted the number of electrons by using the full
range of the high-energy hodoscope, eight elements of the
low-energy hodoscope and the electron monitor. We
used a special TAG module which can convert the signal
from photomultipliers to NIM level signals through the
discriminators and the coincidences. The CAMAC 24-
bit scalars are used. The CAMAC system and the
goniometer are controlled by a personal computer PC-
9801RA4 with use of the on-line code programmed with
Turbo PASCAL Version 4. The goniometer and the scaler
were computer controlled. The temperature of the crys-

1 axis
-3Q° — 210°
) 0%805" 2per step

Crystalline Target

146 mm

Polycrystalline
radiators

¢ axis

§ axis_l0
.00}) mm"p]er step

FIG. 6. Whole view of the goniometer. It has three axes which cross at one point with each other. It is placed in a vacuum

chamber.
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tal holder of the goniometer was monitored by three
thermistors.

IV. EXPERIMENTAL PROCEDURE

A. Check runs

The number of data sets obtained in this experiment is
summarized in Table I. To estimate the contribution of
the secondary electrons produced in the beam line to the
main spectrum, we measured the energy spectrum of
electrons with the target removed. Two types of empty
runs were carried out occasionally. The first type is com-
pletely empty runs whose data are taken at the transverse
position of the goniometer completely far away from the
beam line. The obtained ratio of the spectrum for the
completely empty to that for Al target ranged from 0.6%
to 1% for the high-energy hodoscope and 1.5% to 4%
for the low-energy hodoscope.

The other is empty-holder run for which we set the
goniometer at the normal position but without target
crystal. Because the opening window of the holder is not
large enough to avoid the contribution from the beam
halo, the obtained empty ratio is larger than that in the
completely empty case. The ratio in this case to the Al
spectrum amounted to 3-4.5% and 9-11% for high-
and low-energy hodoscopes, respectively. We performed
completely empty runs and empty-holder runs seven times
each.

We used the incoherent bremsstrahlung spectra for a
calibration of the energy acceptance of the tagging chan-
nels and for the checking of the reliability of the system.
The polycrystalline target of 0.5-mm aluminum strip with
a thickness of 0.5 mm was used for this purpose. Since
the beam condition might change in time, the incoherent
bremsstrahlung runs were performed from time to time,
seven times in total. The spectra of two adjacent in-
coherent runs were found to be the same within a devia-
tion less than 0.1%. The incoherent bremsstrahlung
spectra from an aluminum strip measured in 10 s is
shown in Fig. 7.

TABLE I. The number of all data obtained in this experi-
ment.

Run name Y axis Number of data
Completely empty 15
Empty holder 200
Normalization run 20
Perfect Si crystal Check run 910

[001]* search 850
[001]* high statistics 330
[T10]* search 720
[T10]* high statistics 70
Imperfect Si crystal Check run 340
[001]* search 270
[001]* high statistics 60
[T10]* search 770
[T10]* high statistics 90

M. TOBIYAMA et al.
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FIG. 7. The incoherent bremsstrahlung spectrum measured
in 10 s from the Al polycrystalline radiator. The errors are due
to statistics only. The dashed curve is the fitted 1/k curve.

B. Silicon runs

We mounted the crystalline target on the holder in
such a way that the (110) plane of the crystal faced the in-
cident beam with one edge of [111] directed to the verti-
cal when both of the goniometer angles ¢ and 6 were 0°.
By rotating the target around the 6 axis, the symmetry
axis was made to be parallel to the ¥ axis. The symmetry
axes we have chosen were [221]*, [110]*, and [001]*.

First, rotating one axis while leaving the others un-
changed, we observed the orientational dependence of the
spectrum and searched for the symmetry center. Next,
fixing this temporary symmetry center, we rotated the
target around the other axis and searched for another
symmetry center. We repeated this process until we
confirmed the two symmetry axes. For example, in order
to align a [110]* axis vertically, it took five survey runs
to establish the required symmetry. Each set of runs in-
cludes about 80 sets of data. At the angular position
where the coherent enhancement at the low photon-
energy counter reaches its maximum, the counting rate
increases to 80 k counts/s. To take one data set at any
angular position, it took about 10 s.

After having established the relation between the angle
of the goniometer and the direction of the crystal target
relative to the extracted electron beam, we rotated one
axis and made a precise measurement of the spectrum,
which needed about 2 min to get one set of data.

The spectrum from the imperfect silicon crystal is ob-
tained in a manner completely similar to the perfect-
silicon-crystal case.

C. Data reduction and results

Since the crystal holder of crystalline target partially
intercepts the beam halo, we correct the data for the
crystalline target by using the empty-holder data. In the
case of the data for polycrystalline target, the contribu-
tion from the target holder is negligible. We compensat-
ed the data for the polycrystalline target using the results
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of completely empty runs.

We show the orientational dependence of the normal-
ized spectrum on several selected counters of the hodo-
scopes in Fig. 8(a) for the perfect silicon crystal where the
¢ axis is set at the symmetry center, ¢=—1.756°. The
abscissa is the angle ¥ of horizontal rotation, while
the ordinate is the ratio of counts I(crystalline
silicon)/I(polycrystalline aluminum) normalized to the
same count of the electron monitor. The error bars are
due to statistical effects only. We clearly see the sym-
metric behavior with respect to the crystal axis [110]*
and this behavior has a good reproducibility. The
farthest peaks from the symmetry center correspond to
the enhancements when the thin disc region intercepts
the reciprocal lattice points on the line defined by 111
and 111. The second and the highest peaks correspond to
the line of 113 and 113, and so on. The peaks move with
photon energy, being consistent with the theoretical pre-
diction in Sec. II.

Figure 8(b) shows the orientational dependence of the
normalized spectrum for the imperfect silicon crystal

2.25
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o
~
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FIG. 8. The orientational dependence of the normalized
spectra of (a) perfect Si crystal and (b) imperfect Si crystal. The
abscissa is the horizontal rotation ¥. The symmetry axis is
[110]. The photon energies are 300 (solid curve), 300 (dashed),
510 (dotted) and 600 MeV (dot dashed). The error bars are due
to statistics only.

9255

where the ¢ axis set at the symmetry center = —0.978".
Almost the same structure as in the case of perfect silicon
crystal can be seen.

Very close to the symmetry center, ¥, =2.299° for the
perfect silicon crystal in Fig. 8(a), 0.5° for the imperfect
one in Fig. 8(b), the curve of the normalized spectrum has
a small peak which is not predicted by theory as reported
earlier.'® In such a region, however, the approximation
used in the theory of coherent bremsstrahlung is not val-
id.

To see the effect of the atomic form factor to the spec-
trum, let us examine the normalized spectrum when the
thin disc is near the line of 111 and 111 mentioned above.
Figure 9 shows the normalized spectrum of the perfect
silicon crystal where 1=2.299°. The solid curve shows
the calculated spectrum for the Hartree-Fock form fac-
tor? and there is a good agreement between the experi-
mental and the theoretical curves besides a slight
difference near the peak of the normalized spectrum,
where the theoretical curve lies below the experimental
data. This behavior is kept unchanged during the experi-
ment and hence not due to the radiation damage effect.

V. DISCUSSION

A. Theoretical calculation

We compare the present experimental results with the
theoretical calculations which employ Eq. (7) and various
types of form factors. Since the differential cross section
for the coherent spectrum is quite sensitive to the direc-
tion of the crystal axis, we need to know the degree of the
goniometer misalignment and of the beam divergence for
more precise discussion. The misalignment of the
goniometer is determined from the measured differences
between two positions of symmetry axes where |AQ| is
about 90°. The electrons undergo the multiple elastic
scattering in the target. As the scattering does not de-
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FIG. 9. Normalized spectrum of perfect Si crystal where the
thin disc is near the [111] line, $=2.299°, AYy=1— Y.encer is 1.8°.
A theoretical calculation based on the Hartree-Fock model are
also shown by the dashed curve.
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pend on the periodicity of the crystal, we adopt the ordi-
nary formula for average angular deviation 6, for amor-
phous materials:

_14.1 MeV/c
pB

where p and B are the momentum (in MeV/c¢) and veloci-
ty of the incident particle, respectively, and L /Ly is the
thickness, in units of radiation length of the scatterer.
Since the scattering effect has azimuthal symmetry, we
get the same multiple scattering divergence &6,,
=0.0368° in both horizontal and vertical directions.
With the beam divergence of 68, =0.009° in both direc-
tion, we finally get the total directional divergence of the
beam using the following relation:

(80)*=(86,)*+(86,,) ,

8% V/L/Lg[1+ Hog,o(L/Lg)], (9)

which leads to 86=0.0379° for both ¥ and ¢ directions.
In the calculation, we summed spectra from the 10 angu-
lar values for both vertical and horizontal directions with
the Gaussian-type weight whose standard deviation is
given by 66.

In order to take into account the effect of the energy
acceptances of the counter hodoscope, we calculate the
differential cross section for the three photon energies
AE=E —E_ =—17,0,and +7 MeV for each energy bin,
and then took the mean of the results for these three
points.

We make an ellipsoid of revolution that contains nor-
mal thin disc region completely to choose the reciprocal
lattice points which contribute to the spectrum in the cal-
culation. It is insufficient to count the reciprocal lattice
points only in the normal thin disc region to attain an ac-
curacy high enough to distinguish the difference between
the form factors because the longitudinal momentum
transfer has no upper limit. We added a few more points
out of the ellipsoid and checked the magnitude of their
contribution. The upper-limit point we adopted has a
contribution of at most 5X 107> of that of the boundary
points in the ellipsoid.

The measured temperature near the crystal holder was
from 30°C to 40°C due to the heat transfer from the step-
ping motors of the goniometer. As the Debye tempera-
ture of silicon is high enough, the variation of the tem-
perature contributes very little in the present case. We
have chosen a temperature of 40 °C in the calculation.

The incoherent bremsstrahlung spectrum for the
aluminum target is given in a published table.* We final-
ly obtain the result in a form of (spectrum from the crys-
talline target)/(spectrum from the polycrystalline target).

M. TOBIYAMA et al.
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B. Comparison with other x-ray experiments

The experimental results for the perfect silicon crystal
are compared with the calculations which employ the
Hartree-Fock (HF) form factor.? In order to simplify our
calculation, we expand the form factor in the following
form by means of the least-squares method:

;
F(g®)= 3 a;exp(—b,q*)+c . (10)
i=1
The fitted coefficients are shown in Table II.

The calculated normalized spectrum is given in Fig. 9
by the dashed curve, which is to be compared with the
experimental data for the angular divergence being
Ay=1.8° and A¢p=0° with respect to the symmetry axis.
The experimental data lie somewhat lower than the HF
curve near the peak of the spectrum. It is, however,
difficult to regard the difference observed between experi-
mental data and the calculation as due to the inadequacy
of the form factor used because the theoretical treatments
we have adopted have uncertainties of the order
a=1/137, the fine-structure constant, whereas the ob-
served difference is also of this order. It may be a sys-
tematic error in the theoretical calculation. On the other
hand, if we assume that the difference is due to the devia-
tion in the atomic form factor, the resulting form factor
should be slightly increased in comparison with the HF
form factor.

The form factor of Si crystal is known to an accuracy
of 0.05% from the measurement with the Pendellosung
method by Saka and Kato.!° They showed that the form
factor of 111 reflection, the lowest reflection, has the larg-
est deviation from the HF form factor. In our case, since
the calculated curve is the sum of the contribution from
many reciprocal lattice points, it is generally impossible
to uniquely determine which part of F(g?) is to be
modified. We first follow the result from Saka and Kato.
We have tried to fit our results adding the following extra
Gaussian term:

gL 1 (x—p)?
V2o 2 g?
of which standard deviation is 0=0.02 A~!. We first
fixed the center of the extra Gaussian to the 111 (£ =0.16
A7) and varied the height a to reproduce our experi-
mental result. Figure 10(a) shows the result in the case of
a=0.02 whose form factor differs from the HF form fac-
tor by about 3.3% at 111. The original HF form factor
and the modified one are compared in Fig. 11 as func-
tions of the momentum transfer. This modified form fac-
tor can reproduce the present experimental results very

exp , (11)

TABLE II. The atomic form factor of Si expressed in the form of F(g?)
=[37_, a;exp(—b;q?)+0.018 712]/14.

a, a, a; a, as ag a;
7.4456 3.3509 1.6818 1.5049 1.3791X107* 1.5653x107* 1.3791x10~*

b, b, bs b, bs b b,
1.9520 28.745 0.069 804 89.377 9114.2 51.779 9994.0
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well.

If we change the center of the extra Gaussian to 220
point (£=0.26 A™!) keeping its height unchanged, the fit
becomes worse as shown in Fig. 10(b), implying that the
111 reflection mainly contributes to the enhancement.
Both of the present analyses and that by the Pendellosung
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FIG. 11. The atomic form factor of the HF model (solid
curvez ;ar;d a modified one whose center of extra Gaussian is
0.16 A ~ (111 reflection) (dashed). The marks are the results
from the Pendellésung method. '°
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method suggest the same trend of deviation from the HF
form factor at 111, but the deviation in our case is larger
than the latter; in our case, the deviation from the HF
form factor is 3.3% whereas that for the latter is 1.9%.
This difference may be regarded as a consequence of a
systematic error in our theoretical calculation.

C. Effect of the imperfection of crystal

If the target silicon crystal has dislocations, the
reciprocal-lattice points become fuzzy. This is equivalent
to increase the beam divergence for the perfect silicon
crystal. This effect will reduce the normalized spectrum
to some extent.

The spectrum obtained from the imperfect silicon tar-
get is analyzed by employing the same method as that for
the perfect one. The symmetry center was ¥=0.55° and
¢=—0.978°, as shown in Fig. 8(b). The structure of the
orientational dependence of the spectra is almost the
same as that for the perfect ones. The calculated normal-
ized spectrum and the experimental data for AY=1.759°
and A¢=0"° are shown in Fig. 12, where the HF form fac-
tor is used in the calculation. The difference between the
theoretical curve and the experimental data in the vicini-
ty of the peak is slightly larger than that for the perfect
silicon crystal. The difference between perfect and imper-
fect silicon crystals is found to be so small that our
method is applicable to such a metal crystal that has its
dislocation density of the order of magnitude similar to
that of the present imperfect silicon crystal.

D. Possible improvement of experimental methods

As discussed in the earlier section, the present set-up
and the theory are enough to determine the atomic form
factor of silicon to the level of few percents. Though this
accuracy is insufficient for silicon but is readily useful for
obtaining information of form factors for certain crystals,
such as Ni, Al and Zn, to which we cannot apply the
Pendellosung method.
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FIG. 12. Normalized spectrum of imperfect Si crystal under
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The shortcoming of the present method is in the
theoretical treatment which includes uncertainties of the
order of a, the fine-structure constant, implying that the
comparison between calculated and experimental results
is valid only to a few percent level. We need the terms of
the second order in a to discuss the results within an ac-
curacy of 0.5%.

In this experimental set-up, the beam cannot have the
shape optimized for our experiment. As a result, the
crystal must be thin and large in its perfect area. These
constraints confine the kind of crystals to be measured in
the present set-up, but are not essential since use of more
dedicated beam line can easily get rid of them.

VI. CONCLUSION

We have developed a new method to determine the
atomic form factor by means of precise measurement of
the coherent bremsstrahlung. Counting the recoil elec-
trons of Ubeall effect, we obtained photon-energy spectra
easily in a short time with strict reproducibility. The
form factor was determined by modifying the HF form
factor around the lowest reflection point so as to repro-
duce the experimental spectra. The change of experimen-
tal result due to the radiation damage of the target crys-
tal was not observed. The shape of the coherent spectra
from the silicon crystal has been reproduced excellently
by a theoretical calculation which uses the HF form fac-
tor modified by about 3.3% at 111 reflection. This

M. TOBIYAMA et al. 44

change qualitatively supports experimental results from
Pendellosung method by Saka and Kato,!® although
quantitatively the deviation from the HF form factor in
our case disagreed with that in the latter case by about
1.3%, which is just of the order of ambiguity in the
theoretical calculations to be compared with our experi-
mental results. From these observations, if properly im-
proved, the present method is very promising for high-
precision determination of atomic form factor.

For the imperfect silicon crystal, we obtained a spec-
trum very similar to that for the perfect one. The
difference is so small that we can apply the method to
such a crystal that the dislocation density is of the order
of 10* cm ™2 We conclude that our procedure has a good
reliability and will be valid for many crystals. In addi-
tion, our final emphasis is that the present method en-
ables us to obtain information complementary to that ob-
tained from ordinary x-ray measurements.
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