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1 Introduction

1.1 Structure

This manual consists of three basic chapters and one reference chapter. Chapter
3 introduces the basic concepts and the theoretical background on which the
parSA library is based. The following chapter 4 regards the parSA library as
a software tool and provides instructions for installation and implementation
of the user application. Chapter 5 describes the structure of the parSA library
and the way it works.

1.2 How to use this Manual

We suppose that the parSA library is requested by users with a number of
different aims. In this chapter we therefore suggest different ways to use this
manual.

Pure Users — If you only want to solve an optimization problem with the parSA
library, or if you want an easy way to parallelize the SA algorithm you
should concentrate on chapter 4. However without any knowledge about
the functionality of the library and the SA algorithm it may be difficult to
find the parameters, which provide the best solution to your very special
problem. If the initial installation of the library is successful it will be
useful to read chapters 3 and 5 also.

Advanced Users — If you already know the SA algorithm and if you are familiar
with its modifications chapter 5 will describe the possibilities that are
provided by the parSA library and how they are used. If the parSA
library suits your needs you may read chapter 4 for further information
about the installation of the library.

Scientist And Developers  Everyone who is interested in a comprehensive
overview is recommended to beginning in the first and ending in the last
chapter. The explanations of chapter 3 concentrate on the theoretical
results, that are important for the functionality of the library and do
not claim to be complete. Nevertheless, this chapter is suited for a first
understanding of the SA algorithm and its modifications. Chapters 4 and
5 will ensure an efficient use of the library.

2 Changes Since the Previous Versions

2.1 Library Version 2.2

SA_TimeScheduler This new scheduler was implemented to examine the
behaviour of the geometric schedule under strong time restrictions.

2.2 Library Version 2.1

Full LINUX Support From this version on we provide an additional LINUX
version of our library.



Restructured Scheduler Parameters The structure of the scheduler pa-
rameters have sleighly changed. Some parameters have been moved from the
derivated classes to the SA_Scheduler base class and one important new param-
eter is introduced. The parameter timelimit causes all of the current schedulers
to freeze if the specified timelimit has elapsed. This enables you to terminate
every annealing process after a defined time. However this time represents pure
annealing time.

Output The output of the parSA has become very flexible but all you have
to keep in mind is that from now on a file named SA_Output.rsc has to be
situated in the starting directory of the annealing program and that you may
specify a so called verbose level for every class that controls the amount of the
output produced.



3 Theoretical Aspects

In this chapter the Simulated Annealing Meta Heuristic (SA) is introduced.
The first section describes the basic method. Different cooling schedules, that
are supported by the parSA library, are introduced in the second section. The
last section discusses the possibilities of parallelizing the basic method.

3.1 Simulated Annealing Meta Heuristic

The Simulated Annealing Meta Heuristic (SA) can be regarded as a variant
of the traditional technique of local neighborhood search. Suppose we have
a minimization problem over a set of feasible solutions S and a cost function
f+S — R, which can be calculated for all s €. S. An optimal solution can be
obtained be calculating f(s) for all s € S and selecting the minimum.

Usually the set S will be far too big and therefore the technique of local
optimization defines a neighborhood structure N on the set S and searches only
a small subset of the solution space by confining the search for an improvement
of the cost function to the neighborhood of the current solution. If no better
neighbor is found the current solution is regarded as an approximation of the
optimum. This technique often results in convergence to a local rather than a
global minimum.

The main idea of SA is to provide a possibility of escaping a local minimum
by accepting even an increase in the cost function. This acceptance depends
on a control parameter (temperature) and the magnitude of the increase. The
algorithm can be stated as follows:

L := GetInitial Solution|()
T := WarmingUp()
do
do
Ly := Neighbor(L)
AC := Cost(Ly) — Cost(L)
if AC <0 or Accept(AC,T)
L:= L]
until Equilibrium()
T := DecrementT()
until Frozen()

Figure 1: The SA algorithm in pseudo code

The algorithm given above is very general and for the solution of a particular
problem two categories of decisions has to be made. Primarily there are generic
decisions which are concerned with parameters of the SA algorithm itself. These
include factors such as the choice of the initial temperature (WarmingUp()),
the cooling schedule (governed by the functions Equilibrium() and DecrementT'())



and the stopping condition (Frozen()). The second class of decisions is prob-
lem specific and involves the space of feasible solutions (representation of L),
the cost function (Cost()) and the neighborhood function (Neighbor()).

3.1.1 Generic Decisions

WarmingUp() — The choice of the initial temperature should guarantee that
almost every change of the solution is accepted at the beginning of the
annealing process.This ensures that the process does not depend on the
initial solution.

Accept() This is the criterion of accepting a worse solution than the actual
one. Normally the Boltzmann-distribution is chosen:

Accept(AC,T) <= r < e fora randomly chosen r € [0, 1].

Equilibrium() — The Equilibrium() function determines the number of itera-
tions that are made before the temperature is reduced.

DecrementT() — The rate at which the temperature is reduced. It can be
determined either in a geometric (T}, := o1, _1) or adaptive way. The
adaptive cooling schedules use a feedback from the annealing process to
find a convenient cooling rate.

Frozen() This is the stopping criterion of the algorithm. One can choose a
certain number of steps or a certain acceptance ratio for example.

These functions characterize a cooling schedule and their parameter settings
can be combined in many ways. However, not every combination provides a
good solution.

3.1.2 Problem Specific Decisions

The problem specific decisions are concerned with the solution space, neigh-
borhood structure and the cost function. Generally, it is not possible to define
best choices for a given problem. Nevertheless, there are three main goals that
have to be achieved. The validity of the algorithm has to be maintained, the
computation time has to be used in the most efficient way and the solution
should be close to the global optimum. It has been shown that every solution
has to be reachable from every other, which is usually easy to verify.

In order to use the computation time most efficiently the frequently-used func-
tions like creating a random neighbor and determining the cost of a solution
should be as fast as possible. For example it is often not necessary to recalculate
the complete cost function. As well it is often not necessary to communicate
by sending whole solutions rather than solution changes when you are working
in parallel. In order to support this more efficient communication strategy the
parSA-library provides the class move which can be additionally implemented
by the user.

It is also suggested that it is prudent to avoid neighborhoods which represent a



spiky topography or deep troughs in the solution space. It is also obvious that
the size of the solution space and neighborhoods should be kept reasonably
small.

3.2 Supported Cooling Schedules

The parSA library provides a number of different cooling schedules which had
shown a good performance on large sized real world problems. Some of these
cooling schedules are adaptive. This means that the reduction of the tempera-
ture depends on the current SA run which leads usually to a better performance
while the determination of the behavior of the algorithm becomes more com-
plex. The MIRScheduler and the AartsScheduler are the adaptive schedules
that have currently be implemented in the parSA library.

3.2.1 Geometric Scheduler

The geometric scheduler is a rather simple and frequently used cooling sched-
ule. It is implemented in the class SA_EasyScheduler which also provides an
improved a more flexible warming up strategy.

WarmingUp(): The initial temperature is set to an user defined value and
the length of a subchain is fixed.

Equilibrium() and DecrementT(): After the required number of iterations
has been made the temperature is reduced by a constant factor o accord-
ing to:

T, :=aT, 1 withd0<a<1

Frozen(): The algorithm terminates when the average acceptance ratio is lower
than a fixed acceptance ratio x,,i, for a fixed number k of temperature
steps.

Since every parameter has to be set by the user some test runs are necessary
to find suitable parameter settings for a given problem.

3.2.2 Aarts Scheduler[1]

WarmingUp(): An initial acceptance ratio xq is set and an initial temperature
Ty is chosen that approximately provides this acceptance ratio. In order
to achieve this, the temperature is set to zero at the beginning and mg
iterations are made where my is the average number of neighbors of a
solution. After each iteration step the temperature is updated according
to the following rule:

o my -1
T = ACTH (m )
maxo — (1 — xo)m

with m, and my being the better or respectively worse neighbors. AC(+)
is the mean value of the differences between the cost function of all worse
solutions. After mg steps the initial temperature T} is set to T'.




Equilibrium() and DecrementT(): The length of a subchain with constant
temperature is set to the number of the local neighborhood. After this
number of iterations the temperature is reduced to

In(1+ 5)Tn1>1

T,=T, 1|1
n n1<+ 30'Tn,1

where o(T),,_1) is the standard deviation of the values of the cost function
at the current temperature and 6 is the so called distanceparameter. The
size of § determines the speed of the reduction of the temperature. Aarts
[1] suggests the value 6 = 0.1.

Because of the constant length of the subchains this cooling schedule is a
suitable choice for the clustering parallelization.

Frozen(): The algorithm terminates when the mean value of the cost func-
tion shows only very small changes or respectively the derivation of the
smoothed mean value is smaller than the set value e.

If the neighborhood size is polynomial in the size of variables of the optimiza-
tion problem it has been shown that the SA algorithm has a polynomial time
complexity with this cooling schedule.

3.2.3 MIRScheduler

The SA_MIRScheduler represents a cooling schedule which is used by the MIR
strategies. Therefore, it has to be used in combination with the SA_MIRSolver.
Fu-Hsieng Allisen Lee [2] introduced the following strategy: The whole SA run
has a fixed length. This leads to an important property: a time limit can be
set after that the algorithm must have calculated a solution.

WarmingUp(): The choice of the initial temperature is similar to Aarts strat-
egy which provides an initial acceptance ratio xg close to 1. Thus, a se-
quence of solutions is generated and differences in their cost values are
recorded. The maximum AC,,,, and the minimum AC,,;, are used to
determine the start and end temperature.

AC,
Tetart - ln:;aa:
0
ACh;
Tend = - ln;n(v)n

DecrementT(): The temperature is reduced by a constant factor a similar to
the reduction used by the geometric schedule.

Equilibrium() and Frozen(): After the calculation of Ty4t, Teng and the
temperature reduction factor it is simple to determine the length of a
subchain from the overall number of available iterations. The parSA
library supports slightly different calculations but the algorithm always
ends after the calculable number of iterations.



3.3 Parallelizing Simulated Annealing

The parallelization strategy of the parSA library is controlled by the class
SA Solver. The SA_ClusteringSolver and the SA_MIRSolver are currently im-
plemented in the library. The SA_ClusteringSolver can be used in combination
with the SA_AartsScheduler and the SA_EasyScheduler while the SA_MIRSolver
requires the SA_MIRScheduler.

3.3.1 Clustering Parallelization

The clustering parallelization is based on the following fact: the number of
neighbors that has to be visited before a move is accepted increases when the
temperature sinks. Therefore, the current solution remains unchanged for many
iterations when the temperature is low. The time that is spend with the same
current solution can then be reduced by using more than one processor. Such a
processor group is called a cluster. Each cluster works on one single subchain.
Every processor particularly has the same actual solution. If a move is accepted
by the cluster the new actual solution has to be broadcasted in the cluster.

It is obvious that the use of several processors is only reasonable if the reduction
of the latency is bigger than the communication overhead. That is why the
clustering moment is essential for this kind of parallelization. The general
strategy for N processors is the following:

1. Every single processor forms a cluster with size 1.

2. Every cluster calculates its own subchain. The length of such a chain
depends on the number of clusters.

3. When the calculation at one temperature step is finished, a new solution is
selected from the actual solutions. This solution becomes the first solution
for the next subchain in every cluster.

4. If necessary the cluster size is increased.

5. The temperature reduction and the termination is similar to the sequential
algorithm.

The reduction of the subchain length in step 2 is fairly important because
otherwise the calculation of a single subchain is independent of the number of
processors. This would slow down the algorithm dramatically. This reduction
is possible because the reaching of the equilibrium at high temperatures is not
disturbed by the fact that the required number of iterations are not made in
one but several subchains.

3.3.2 Multiple Independent Runs

There are two facts that lead to the idea of the multiple independent runs
parallelization.

e The best solution of several SA runs usually provides a better quality of
the solution than the solution of a sequential run with the same length.



e [sis possible to estimate the achieveable solution quality for a given length
of a run.

Our aim is to provide an algorithm that achieves a given solution quality in
the shortest possible time. Therefore, we have to determine the length and the
number of runs. An SA run in which the generated chain has the length n is
called a run of length n. This terminology is used when speaking of a short
run, multiple independent runs or runs with duplicate length.

It has been show that the convergence speed can be calculated according to this
formula:

P(Xo ¢ Costoin) ~ ()

K and a are constants specific to the problem, X,, is the solution of a run
with length n and Cost,,;, is the set of solutions with an appropriate quality.
Empirically a rather similar formula has been found for the relation between
the solution quality and the run length. Only the problem specific constants
differ slightly from the ones above. Therefore, theoretical results concerning the
convergence speed can be used to provide an improved solution quality with the
same run length choice.

There are three different strategies for improving the performance of the algo-
rithm by the choice of independent runs on parallel systems:

1. Improving the convergence speed with the same number of iterations.

2. Maintaining the same convergence speed with a smaller number of itera-
tions.

3. Maintaining the same convergence speed as the sequential algorithm.

The following values can be proven for the mentioned different strategies:

strategy | total iterations | number of runs | run length | convergence
sequential N 1 N (%)
1 N L eK e Nek
N N K
2 eKjlvn e lan eK (g){l
3 r3 K K ()"
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4 Installation Guide

4.1 Instructions for Installation
4.1.1 Conventions

The parSA library can be installed on a large number of different systems and
architectures. Therefore, we make the following conventions to facilitate the
language of this section:

shortcut description

PARSADIR | directory which contains the parSA package
MPIINCDIR | directory which contains the mpi headerfile mpi.h
MPILIBDIR | directory which contains the libraries libmpi.a lib

4.1.2 Requesting the Packages

Since the parSA library is primarily designed for the use on parallel architec-
tures an installation of the MPI library is needed. If it is not installed on your
system you may visit the following webpage for further information:

http://www.mcs.anl.gov/Projects/mpi/index.html

The latest version of the parSA library can be requested on our homepage
at

http://www.uni-paderborn.de/ " parsa
or contact us via email :
parsa@uni.paderborn.de

You have received a zip-file called parsa.zip. Place this file in a new directory.

4.1.3 Installation of the Library

Now unzip the file using the command
unzip parSA.zip

and check if all files specified in section 7.3 have been properly installed. The
structure of the package is very simple:

e The subdirectories lib and include contain the necessary header files and
version of the library itself. The naming convention of the library is
libparSA$(OPERATINGSYSTEM)$(OS_VERSION).a. If you have re-
ceived the developer version an additional subdirectory named src will
exiist where the source files of the parSA reside.
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e The subdirectory example contains the example program which is detailly
described later.

e Some useful configuration file template are situated in the subdirectory
cfg and and doc is the place of this document.

4.2 Compiling the Example Program

Compiling and running the example program should assure you that the parSA
package is fully functional. Altough a simple makefile is included we will de-
scribe the compilation process more detailled because of the amount of different
operating systems and environments on which the parSA meight be used.
First of all change the working directory to:

cd PARSA /example

Now compile and link the sourcefile example.cc to produce an executable called
example. Please take the following instructions into account:

compiler: use a C++-compiler.

include directories: make sure that the directories MPIINCDIR, PARSADIR /example
and PARSADIR/include are searched for headerfiles.

sources: compile both example.cc and SA_Problem.cc (the source file SA_Problem.cc
contains the implementation of the interface between example and the
parSA library).

object files: you will find the object files example.o and SA_Problem.o in the
directory PARSA /example assumed that the compilation was successful.

library directories: make sure that the directories MPILIBDIR, PARSADIR/libs
and the directory of your standard C++ libraries are searched by your
linker.

libraries: apart from the standard C++ Libraries you will have to link the li-
braries libmpi.a, libsocket.a, libnsl.a (supported by the MPI package) and
the library libparSAxxx.a (which can be found in the directory PARSADIR /libs)

Suppose you are working with a Sparc Sun Solaris Microcomputer, then the
following command works properly:

g++ -I. -I../include -IMPIINCDIR SA_Problem.cc example.cc
-LPARSADIR/libs -LMPILIBDIR -L/local/gnu/lib -lparSA _solaris_2_5
-lmpi -lsocket -1nsl -o example

You should now be able to run the created executable with the following com-
mand:

mpirun -np 1 example

12



If the program has terminated without any error messages the installation of
the library files should have been successful. If you want to have a closer look
on the example you have just produced see section 6. Please notice that the
parSA prints its source version and revision number before the SA_Initializer
starts configuring the solver. Please indicate this number when you contact us.

13



5 Design Philosophy of the parSA Library

The parSA library was designed to provide a comfortable and efficient parallel
framework for a simulated annealing optimization system, which can be applied
to many different optimization problems. The MPI message passing interface
and the use of C++ ensures that the library is portable to different parallel
platforms without redesigning the code.

The object oriented design keeps the library expandable. It is fairly easy to
create new solver and scheduler classes to increase the number of parallelization
and cooling strategies of the library.

This section introduces the basic concepts of the parSA library. It gives a brief
overview of the structure of the library and describes the main ideas of the
application interface and the SA configuration file. This configuration file is
used to adapt the parameters of a SA run to the problem.

5.1 Structure

The following figure shows the most important classes, that are currently im-
plemented in the library :

Hierarchy Browser: par SA.shared - taiko PWE:taiko solaris Page: 1
‘SA_Initializer‘
| SA_RUN_TYPE (st} |
SA AartsScheduler‘
5a_ ClusteringScheduler =
54 ParScheduler SB_EasyScheduler‘

& Scheduler

SA_MTRScheduler|

SE_SquasyScheduler‘

53 Solution

SE_ClusteringSulver‘

SA MIRSolwver

SA ParSolwver
5h SeqSolwver

‘SA_S?nchrnnizer‘

Sh_ Solwer

There are two aspects that influence the annealing process. First of all the
problem that must be solved with the library has to be modelled. This mod-
elling has to be done by the parSA user by the implementation of the so called
interface classes SA_Problem, SA_Solution and SA_Move which are all defined
in the files SA_Problem.h and SA_Problem.cc. These classes are more precisely
described in section 5.4. The other aspect is the configuration of the annealing
process itself. A very flexible configuration is the main advantage of the parSA
library, because you can not only change the characteristic parameters of one
single cooling scheme but also choose between many different cooling starte-
gies. Moreover you can simply use simualated annealing on many processors
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just by selecting another solver and so speed up the calculation significantly.
This configuration is done by the settings in the configuration file which will be
introduced in section 5.6 The following section will concentrate on the descrip-
tion of the base classes SA_Solver and SA_Scheduler and their derivated classes.
The classes SA_ParScheduler and SA_ParSolver were used as base classes for
all combinations of solver and scheduler that can work in parallel. In contrast
to this classes the classes SA_SeqScheduler and SA_SeqSolver do not need an
implementation of the MPI. The pure sequential version of the parSA library
does only provide the derivatives of these classes.

5.2 Solver Classes

The solver classes control the organization of the SA algorithm. Currently, the
parSA-library provides the following solver:

SA _Solver: This is an abstract base class used to derivate the base classes
of both the sequnetial and the parallel branch of the solver hierarchy.
Moreover this class is capable of setting up the data interface of the parSA
library by opening streams for reading the datafile and writing outputfiles
which contain information about a single simulated annealing run and
about the best solution found during the optimization.

SA_SeqSolver: This solver is designed to serve as the basic solver from which
any other sequential solver should be derivated. It provides the minimal
functionality for controling sequential SA runs and is able to produce some
statistical information. This Solver can be used in combination with the
SA _SeqEasyScheduler.

SA _ParSolver: This solver is the parallel analogon of the SA_Solver. It ex-
tends the capabilities of the sequential version by providing statistical
methods for a SA run on more than one processor.

SA_MIRSolver: This solver is used for the MIR parallelization of the SA
algorithm. Because of the particularities of the parallelization strategy it
is necessary to use the MIRScheduler in combination with this solver.

SA _ClusteringSolver: This solver uses the clustering parallelization and can
be either used with the SA _EasyScheduler or the adaptive SA_AartsScheduler.

5.3 Scheduler Classes

The class SA_Scheduler is the abstract base class for all cooling schedules, that
are used during the SA process. The different cooling strategies have an impor-
tant influence on the efficiency of the SA algorithm. Currently, the following
schedulers are implemented:

SA _EasyScheduler: This scheduler reduces the temperature according to a
constant factor. It had shown a rather good performance on many differ-
ent problem instances.

15



SA_AartsScheduler: This scheduler tries to adapt the temperature reduction
to a certain problem instance. It also calculates automatically a suitable
start temperature. Its strategy of finding this start temperature is also
used by the GeometricScheduler if a start temperature is not specified.

SA _TimeScheduler: This scheduler was designed to take a given timelimit
into consideration. There are two different startegies implemented in this
scheduler. The first one tries to achieve a given end temperature within
the timelimit. This is done by adapting the subchainlength of the cooling
schedule of the SA_EasyScheduler.

The second strategy which is implemented in this scheduler tries to achieve
a given solution quality in a given time. If the timelimit expires and the
solution quality is not reached than the scheduler freezes otherwise it
freezes at the given solution quality. Up to now this strategy has not
been analysed.

SA_MIRScheduler: This is a specialized scheduler which has to be used when
using the MIR parallelization of the SA algorithm.

5.4 The Application Interface

The class SA_Problem must be used by the application to set up a representa-
tion of the solution space. Every kind of solver uses an instance of SA_Problem
to find an at least locally optimal solution with its own SA strategy. Therefore
this class must provide elementary methods like finding a neighbor of an actual
solution or determining the cost of a solution. The class SA_Solution repre-
sents one single element of the solution space and is mainly used by the class
SA _Problem. Finally the class SA_Move represents just the change between an
solution and its neigbour. In many solution spaces such a move can be rep-
resented more efficiently than a whole solution. When working in parallel the
sending of moves rather than solutions may reduce the communication costs
significantly.

This section describes, how an interface to the parSA library is usually
implemented. It is divided into subsections dealing with the implementation
of the problem specific classes SA_Problem and SA _Solution and also the class
SA _nitializer, which is used to invoke the annealing process.

5.4.1 The Class SA_Solution

The class SA_Solution represents one single point of the solution space. In
most implementations this class contains information about the solutions itself
about the change that was made last and perhaps about the neighborhood of the
solution. Nevertheless the funcionality working on this information especially
the search of a new neighbor and the updating or resetting the solution was
integrated in the class SA_Problem to keep the problem description as flexible
as possible. Therefore only the method SA_Solution.Copy(S) and the iostram
functions are called by the library and must be implemented by the user.

16



5.4.2 The Class SA_Move

During the annealing process the cost of the actual solution is compared very
often to the cost of its neighbors. In many cases neighboring solutions only
slightly differ, and so when working in parallel the communication costs may be
reduced very much by sending only this difference to another node. In the parSA
library the description of such a difference between neighbors is called a move.
As one can even imagine problems where the size of a move remains constant
the advantages of the communication by moves becomes rather obvious. If you
want to use this parSA feature you will not only have to implement the class
SA_Solution but also SA_Move. However SA_Move is only a container and the
implementation of some additional methods of SA_Problem is also required.

5.4.3 The Class SA_Problem

The class SA_Problem is a representation of the solution space of the optimiza-
tion problem. The class has to provide three basic methods which are essential
for the annealing process. They are:

SA _Problem.GetInitialSolution(S): This method creates a primary solu-
tion S, which is the starting point of the optimization process. This
method is supposed to be deterministic. Its non deterministic counter-
part is the method SA_Problem.GetRandomSolution(S).

SA _Problem.GetCost(S): This method calculates the cost of a given solu-
tion S. The cost value is used to compare the quality of a new solution to
an older one.

SA _Problem.GetNeighbor(S): This method determines (small) changes of
a given solution S. This change should be only temporarily, because the
method SA_Problem.ResetSolution() is used to discard the last change.

Moreover the class SA_Problem has to provide some other methods which also
depend on the representation of the solution space:

SA _Problem.ResetSolution(S): retrieves the former solution by discarding
the change made by GetNeighbor().

SA _Problem.UpdateSolution(S): makes the change made by GetNeigh-
bor() permanent.

SA _Problem.CreateSolution(): creates a new instance of the representation
of the solution.

SA _Problem.GetLocalN(): determines an estimation of the average size of
the neighborhood of a point in the solution space. Even if your optimiza-
tion problem is not discrete a value is required because the ratio between
GlobalN and LocalN is used by some cooling schedules.

SA _Problem.GetGlobalN(): determines the approximated number of pos-
sible solutions.
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SA _Problem.ReadProblemData(): should be used to read the information
from a data file which is necessary to build up a problem representation.

SA _Problem.Copy(S,S): is used by the library to copy one solution into
another.

If you want to use the parallelization capabilities of the library you will at least
have to implement the following methods of the class SA_Problem, too:

OutputSolution(ostream,S): writes the solution S to an ostream

InputSolution(istream,S): reads a solution S from an istream

All of the described methods must be implemented to provide a minimal func-
tionality. The additional methods can be divided into three sections. The most
important are the ones which are needed to create moves, extract moves from
solutions and to realise the move communication. This communication methods
are rather similar to the solution communication methods. The second section
of additional methods are special communication methods which may be used
to implement an own MPI based communication. The last section are special
methods which where introduced to support special applications.

5.4.4 The Solution Life Cycle

The following graphic explains how all these methods are used within the an-
nealing process:

GetCost

CreateSolution GetlnitialSolution

empty solution actual solution

GetNeighbor UpdateSolution

ResetSolution

moved solution

GetCost

With CreateSolution a new empty solution is generated. GetlnitialSolution
produces a feasible solution (in a deterministic manner). For each solution, the
value of the cost function may be evaluated and GetNeighbor returns a neighbor
of the actual solution. The cost of this so called moved solution is calculated.
According to the actual annealing situation this new solution is either accepted
or rejected, which is done by the methods UpdateSolution or ResetSolution.
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5.5 The Class SA _Initializer

The class SA_Initializer is used to intialize an special solver and to launch the
annealing process. In order to understand the use of the class SA_Initializer,
have a look at the following simple main program:

#include <SA_Problem.h>
#include <SA_Initializer.h>

main(int argc,char sxargv)

{
SA Problem p;

SA Initializer start;

SA Solver xsp = start.ReadConfigFile(argc,argv,p);
if( sp = NULL )
{

sp—RunAnnealing();

delete sp;

}

After you have declared an instance of the class SA Initializer you will only
have to invoke the method ReadConfigFile. This methods receives the pa-
rameters of the command line and an instance of the class SA_Problem. The
instance of the class SA_Problem will be initialized after the initializer has read
the SA.cfg file by invoking the method SA_Problem.ReadProblemData, with
the filename specified by the keyword datafilename in the configuration file.
The method SA _Initializer.ReadConfigFile() will also automatically initialize
the chosen solver depending on the entries of the SA.cfg file.

After your program has received the initialized solver the annealing process is
simply started by calling its method RunAnnealing() from the recieved SA _Solver
instance.

5.6 The Configuration File

The configuration file, which is usually named SA.cfg, is the main tool to control
the library and to adapt the parameters to special problems. The following
sections describe the concept of the configuration file and explain a rather simple
example. The default name of the configuration file is SA.cfg, but you may alter
the name by using the command line option -cfg ”filename” when starting a
program that uses the parSA library.

5.6.1 The General Structure

The following figure presents the general structure of such a configuration file:
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SA_Solver NAME OF_SOLVER {
SA_Solver {
SETTINGS_OF_SOLVER_BASE_CLASS
}

SA_Scheduler NAME_OF _SCHEDULER {
SA_Scheduler {
SETTINGS_OF_SCHEDULER_BASE_CLASS
}

SETTINGS_OF DERIVED_SCHEDULER_CLASSES

}

SETTINGS_OF _DERIVED_SOLVER_CLASSES

As you can see each block contains all the information needed to create
an instance of the specified kind. The solver selected by NAME_OF_SOLVER
contains information about the settings of its base class, the kind of scheduler
which is to be used and finally its own settings which influence the parameters
of this solver. The scheduler which is used by the solver is selected by the value
of NAME_OF _SCHEDULER and also contains the information about its own
settings and the settings of its base class. The next section describes how such
a configuration file may look like.

5.6.2 A Simple Configuration File

To give a short introduction to the SA.cfg file we will now describe a file that
selects the sequential solver and the geometric scheduler:

{

SA_Solver SA_SeqSolver {
SA_Solver {
datafilename example.data
solutionfilename example.solution
¥
SA_Scheduler SA_SeqEasyScheduler {
SA_Scheduler {
OptType MAX
¥

In this file the solver SA_SeqSolver is selected. In the parameter block of the
SA Solver the name of the data file and the solution file is specified. The name
of the data file will be passed to the method SA_Problem.ReadProblemDatal()
by the SA_Initializer. The solutionfilename will be used to place the solution
of the SA algorithm. As a scheduler the SA_SeqEasyScheduler is choosen and
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in its parameter block the SA algorithm is advised to treat the problem as a
maximization problem. Thus, it will search for the solution with the highest
value of the cost function.

The subdirectory config contains some useful templates of configuration files.
These templates must be renamed to SA.cfg and must be placed in the directory
where the executable is situated. The parameter settings of this files are rather
general and you may probably speed up the algorithm for a given problem. If
you want to know more about the possibilities of the SA.cfg file consult section
7.2.

5.7 The SA_Output.rsc File

With the version 2.1 a new output concept was introduced to the parSA library.
There are some points in every kind of annealing where a output is suitable, for
example after the initialization, when the Equilibrium is reached or when the
scheduler freezes. It may also be useful to be able to specify certain levels of
output. All the output during the annealing process is now set up by the use
of the SA_Output.rsc file in which bocks are specified. These blocks correspond
to certain schedulers and solvers. By leading integer values lines of output are
marked. Only lines with values lower or equal to the level defined by the ver-
boselevel parameter in the configuration file are used. If you take a look at this
file you will recognize other integers with the special literal # in front of them.
Each variable of a scheduler and a solver has a corresponding number and these
structures are substituted by the variable values.

Therefore the new concept does not only make the output more flexible but it
is also possible to adapt the output of the parSA library to a special purpose
or even a different language.

However from the users point of view it is only necessary to ensure that the
SA _Output.rsc file resides in the parSA directory. The output defined in this
file is currently rather similar to the output of previous versions apart from
being better to understand.

6 Solving the QAP with the parSA

From version 2.1 on the parSA is delivered with an example program that solves
the quadratic assignment problem (QAP). The QAP was choosen because it is
a well known optimization problem. As the mathematical description of the
QAP is rather simple it is also very suitable to explain how the parSA has to
be adapted so that it can solve an optimization problem.

6.1 The Quadratic Assignment Problem

The origin of the QAP is the problem how to distribute n fatories on n lo-
cations and minimizing the transporting costs between them. Mathematically
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this problem can be described as follows:
given two n-dimensional quadratic matrices A = (a;;) and B = (b;;) minimize

) =" aijbyini)

i=1j=1

p being a permutation. For the general QAP A and B are not expected to be
symmetric. There are as many possible solutions to this problem as there are
different permutations so n!. As simulated annealing is a local search algorithm
it is necessary to define a neighborhood of a certain feasable solution. We simply
regard every permutation that differs only on two postions from a given one as
one of its neighbors. There are only as many possibilities to choose a neighbor
as there are subsets of two element in a set of n element so:

7; _ n(n2 1) _ 0(n?)
which is much smaller than the whole problem space. The other criterion which
has to be fullfilled is that every solution has to be reachable from another by
using neighborhood operations. Obviously every permution can be constructed
in that way. Given a permutation p,4 and a solution p,., just choose index j
with pg(7) = Prew(l) and apply the neighborhood operation on the indices 1
and n. The result is a permutiation that differs at most n — 1 positions from
the required one and so the construction can be done by recursion.

Therefore the QAP seems to be a rather good canditate for the simulated
annealing approach. The following section will show how easyily the interface
of the parSA library can be adapted to a special problem.

6.2 Transforming the QAP to an user application of the parSA

Only two classes have to be implemented. As we have mentioned the terms of
the QAP can be translated to terms of an optimization problem as follows:

solution space: our solution space is set of all possible solutions. This is
equivalent to all permutations of n numbers

solution : a solution is one single permutation p(z)

cost function: the cost function is defined by the function f(z) according to
its definition in the previous section.

neighborhood of p(z): another permutation that differs only on two postions
from the actual one.

The two files SA_LQAPProblem.h and SA_QAPProblem.cc in the subdirectory
example contain all changes that has to be made to solve all the QAP instances
with the parSA library. We added all instances of the QAP that are accessible
at the QAPLIB home page [3]. For a detailled description of the pecularities of
these instances refer to this page.

The most important problem specific changes to the class SA_Problem are the
following;:
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SA_Problem: the class SA_Problem contains the information about the di-
mension n of the two quadratic matrices A and B and the matrices itself.

SA _Problem.GetInitialSolution(): we simply choose the identity function
Id(z) as an initial solution.

SA _Problem.GetRandomSolution(): choose randomly a permutation.

SA _Problem.GetCost(): Determine the cost function with a given permu-
tation. If the cost of the old permutation and the two changed indices are
known then the calculation can be done in O(n) instead of O(n?) because
only O(n) summands are effected by the change. There are also many
summands like ac— ad — bc+ bd when you calculate the difference between
two neighbors. These are calculated more efficiently by (a — b)(c — d).

SA _Problem.GetNeighbor(): Choose two random indices ij and switch the
values p(i) and p(j). These indices are part of the solution because then
the calculation of the cost function becomes very easy.

SA _Problem.ResetSolution(): reset the indices and the permutation.

SA _Problem.UpdateSolution(): make the change to the permutation per-
manent by deleting the indices.

Beside these changes some other more technical changes have to be done like
implementing input and output methods. These few methods are all an user
must think about. Nevertheless they could remarkably speed up your program
if they are implemented efficiently. As the cost function is calculated thousands
of times saving only a few multipications may result in seconds or even minutes
of saved time.
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7 Reference

7.1 Contact

If you have any questions, remarks or suggestions concerning the parSA library
or this manual please feel free to contact us:

Email: parsa@uni-paderborn.de
or visit our homepage at

http://www.uni-paderborn.de/ " parsa

7.2 The Parameters of the SA-Configuration File

When examining the following sections always keep the gerneral structure of a
configuration file in mind:

{

SA_Solver NAME_OF_SOLVER {

SA_Solver {
SETTINGS_OF_SOLVER_BASE_CLASS

}

SA_Scheduler NAME_OF_SCHEDULER {
SA_Scheduler {

SETTINGS_OF_SCHEDULER_BASE_CLASS

}

SETTINGS_OF DERIVED_SCHEDULER_CLASSES

}

SETTINGS_OF _DERIVED_SOLVER_CLASSES

The terminology of the description of the parameters is the following:

required parameter < possible value 1 | possible value 2 ...> :
required parameters are in normal prints and the possible choices are bracketed
by <> and divided by |.

required parameter type :
if the required parameter is a number, the type is specified.

optional parameter <default value | possible value 2 ... > :

optional parameters are printed with slanted literals. The default value
which is automatically used by the library is underlined and other possible val-
ues are not.
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optional parameter type = xxx :
if the optional parameter is a number, xxx specifies the default value.

Within the sections of the schedulers and solvers the parameters are listed
in alphabetical order.

7.2.1 Solver and Scheduler Selection

Solver and scheduler are selected by using their names for the solver or sched-
uler definition. The following values are valid:

NAME_OF_SOLVER :
< SA_SeqSolver | SA_MIRSolver | SA_ClusteringSolver >

NAME_OF_SCHEDULER :
< SA_SeqEasyScheduler | SA_EasyScheduler | SA_AartsScheduler | SA_MIRScheduler
| SA_TimeScheduler >

7.2.2 Settings of SA_Solver Base Class

The following keywords are accepted in the block SETTINGS OF SOLVER
BASE CLASS:

datafilename PATH :
the name of the datafile has to be specified with its complete path.

outputfilename PATH :
one single line is written to this file for every SA-run.

overwritesolution < never | better | always >:
decision of how the solution file is modified if more than one SA run is made.

solutionfilename < PATH | * > :
this file contains the best solution found during one SA run. If no name is
specified the datafilename with the suffix .solution is used.

Startsolution < Random | Init> :
choice of the initial solution. Either the method SA _Problem::GetInitialSolution
or the method SA_Problem::GetRandomSolution will be called.

verbose < on | off > :
some information is written to the standard output while running.

verboselevel INT = 10
specifies the exent of output. 10 is standard output, greater levels produce
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more detailed information. In the standard implementation of the library the
maximum output level is 30. As the output can be modified by changing the
SA_Output.rsc one can also define higher verboselevels.

writefunction < stream | path >:

the parameter specifies the output function. Stream selects
SA _Problem::OutputSolution(ostream&,SA_Solution&) while path selects
SA _Problem::OutputSolution(char *,SA_Solution&).The first of these methods
is usually used with cout as ostream and the second method is used to write
the solution to a file.

7.2.3 Settings of SA_Scheduler Base Class

The following keywords are accepted in the block SETTINGS OF SCHED-
ULER BASE CLASS:

initaccratio FLOAT = 0.9:

the requested initial acceptance ratio for the Aarts warming up method. If
nothing is specified 0.9 is assumed.
The value has no effect if initialtemperature is set.

initialtemperature FLOAT = determine using Aarts method:
the initial temperature. If no value is specified the adaptive method of Aarts
[1] is used.

OptType < MIN | MAX >
select the goal of the algorithm. MIN means minimize the cost function,
MAX means maximize the cost function.

picturedirectory DIRECTORY :

specifies the directory in which the input files for GNUPIlot will be placed,
which show the progress of the algorithm graphically. The runtime will increase
rapidly if this option is used!

timelimit LONG = -1

Amount of seconds allowed for the annealing process. When set to a positiv
value actual schedulers but the SA_TimeScheduler just freeze after this number
of CPU-seconds.

thresholdvalue FLOAT = 0:
a new solution must be better than the value of thresholdvalue - BestE to
be accepted. If it is set to 0 then the classical SA is used.

verboselevel INT = 10

outputlevel of the scheduler base class. See also verboselevel parameter of
SA Solver base class.
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7.2.4 SA_SeqSolver

The following additional keywords are accepted in the block SETTINGS OF
DERIVED SOLVER CLASSES when the selected solver is SA_SeqSolver:

algorithm < SeqAlg | TestProblem > :
Either the sequential algorithm or a simple test of the implemented user
functions is started.

7.2.5 SA _ClusteringSolver

The following keywords are accepted in the block SETTINGS OF DERIVED
SOLVER CLASSES when the SA_ClusteringSolver is selected:

algorithm < SeqAlg | ClusteredAlg | ComputeLoopFactor | TestProblem>:
selection of the algorithm. SeqAlg starts a pure sequential simulated anneal-

ing run on each processor. ClusteredAlg starts the normal clustering algorithm.

ComputeLoopFuactor tries to compute the necessary subchainlength to solve a

given problem. TestProblem runs a simple test of the user implemented func-

tions.

ChooseMove < best | boltzmann | random | first > :

decides which move is chosen if a cluster finds several acceptable solutions.
The keyword boltzmann means that the boltzmann distribution is used to make
the choice.

CommunicateInCluster < Group | Async > :
selection of the communication mode in a cluster. For better efficiency in
many applications Async is recommended.

CommunicationMode < Solution | Move > :

In a cluster processors communicate either by sending whole solutions or
only incremental by sending moves. If Move is chosen, make sure that the class
SA_Move has been properly implemented.

ConstantSizeMove < yes | no > :
In cases where constant size of moves can be guaranteed, the communica-
tion becomes more efficient.

DistributeSolutionAfterSubchain < best | boltzmann | random | no

>t
specifies if and how an initial solution is chosen for all clusters after one

27



subchain.

Equilibrium < Global | Local > :

decision whether the equilibrium is achieved or not. Global means that one
single chief processor decides about the equilibrium. Local means that every
master of a cluster decides for his own cluster.

ExchangeFunctions < stream | MPI >:

selection of the user implemented exchange functions. Stream selects the
stream functions while MPI selects the MPI based functions. Even the stream
functions internally use MPI for communication, but as most users do allready
know streams these functions should be easy to implement. Nevertheless more
experienced users may choose to implement the MPI communication directly
by adapting the MPI based functions.

MaxCluster INT = -1.0
maximum number of clusterlevels. The maximum number of processors in
a cluster is bounded by 2MaxCluster " Therefore the value has to be in between 0

and [og(numberofprocessors).

MinEff FLOAT = 1.1:

selection of the clustering strategy. If the value is greater than 1.0 then
product of cluster efficiency and cluster speedup is maximized. If the value
is between 0.0 and 1.0 then the clusters are enlarged by cluster efficiency >
MinEff. If the value is set to 0.0 then the speedup is maximized.

7.2.6 SA_MIRSolver

The following keywords are accepted in the block SETTINGS OF DERIVED
SOLVER CLASSES when the SA_MIRSolver is selected:

Betta_Runtime FLOAT = 1.1:
the increase factor for the run lengths must be > 1.0

Ebest FLOAT:
the eastimated cost of the best known solution has to be specified.

Epsilon FLOAT = 0.01 :
the solution quality, which has to be achieved.

Maximum_RunLength FLOAT = RunFactor - GetLocalN():
length of the longest run.

Minimum_RunLength FLOAT = GetLocalN():
the initial length of a run.
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Samples INT = 10:
number of runs

RunFactor FLOAT = 5 :

In the second phase runs with a length out of the interval GetLocalN()
... RunFactor - LocalN(). This value is ignored when Maximum or Minimum-
RunLength is defined.

7.2.7 SA_SeqEasyScheduler

The following keywords are accepted in the block SETTINGS OF DERIVED
SCHEDULER CLASSES when the EasyScheduler is selected:

coolingratio FLOAT = 0.9:
the factor the temperature is reduced by after every temperature step. It
has to be greater than 0 and less than 1.

frozenlimit INT = 5
the number of succsessive temperature steps with an acceptance ratio smaller
than 'minaccratio’ needed to reach the frozen state in the scheduler.

minaccratio FLOAT = 0.01:

decision if the SA algorithm is frozen. A value greater 0 than means cooling
until ’frozenlimit’ subchains have an acceptance ratio < minaccratio.The value
0 means decrement the temperature until the mean value stays almost the same.

subchainfactor FLOAT = 1.0:
chosen subchain length is increased by this factor.

subchainlength INT = GetLocalN:
the length of subchains (number of iterations) on a single temperature level.

verboselevel INT = 10
outputlevel of this scheduler class. See also verboselevel parameter of SA_Solver
base class.

7.2.8 SA_EasyScheduler

The SA_EasyScheduler accepts the same keywords than SA_SeqEasyScheduler.
The following additional keywords are accepted in the block SETTINGS OF
DERIVED SCHEDULER CLASSES when the SA_EasyScheduler is selected:
subchainreduction < linear | sqrt | none > :
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in each cluster, the subchainlength is adapted referring to NPROC. linear
means that the subchainlength is devided by N PROC'. sqrt selects the devision
by vV NPROC and none means no subchain shortening at all.

7.2.9 SA_AartsScheduler
The following keywords are accepted in the block SETTINGS OF DERIVED
SCHEDULER CLASSES when the SA_AartsScheduler is selected:

delta FLOAT = 0.1:
distance parameter.

epsilon FLOAT = 10~ *:
stop parameter.

omega FLOAT = 0.8:
smoothing parameter.

7.2.10 SA_MIRScheduler
The following keywords are accepted in the block SETTINGS OF DERIVED
SCHEDULER CLASSES when the SA_MIRScheduler is selected:

Alpha FLOAT :
a kind of temperature reduction factor. It is used to calculate the number
of temperature steps. It must be a value between 0 and 1.

Betta FLOAT :
chains are this times longer at the next temperature level. This value has
to be > 1.

endtemperature FLOAT :
has to be greater than 0.

Temperature_Reset = 0:
determines whether temperature is resetted or not.

7.2.11 SA_TimeScheduler

The following keywords are accepted in the block SETTINGS OF DERIVED
SCHEDULER CLASSES when the SA_TimeScheduler is selected:
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endtemerature FLOAT = -1.0 :

the endtemperature which should be achieved in a given timelimit. The
temperature steps that are probably needed to reach the frozen state are es-
timated referring to the the start temperature, the end temperature and the
cooling ratio. After that all the iterations, that can be made in the given time-
limit, are distributed constantly on the single steps.

solutionquality FLOAT = 1.0 :

if set, then the scheduler freezes either after the given timelimit or if this
solution quality is reached. It represents the value of the cost function.

7.3 List Of Filenames

This section contains a list of the files that are part of the parSA-package.
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subdirectory ‘ filename

‘ description

version.txt

description of the delivery package

example SA_QAPProblem.h interface between example program and library
example SA_QAPProblem.cc interface between example program and library
example SA_QAP.cc the example program

example SA.cfg configuration file that controls the annealing algorithm
example SA_Output.rsc defines the output

example ofiles.incl a list of all generated object files

example Makefile LINUX/UNIX makefile

example data subdirectory containing QAP instances

include SA _Scheduler.h abstract scheduler base class

include SA_ParScheduler.h abstract base class MPI using schedulers
include SA _SeqEasyScheduler.h geometric scheduler sequential

include SA _EasyScheduler.h geometric scheduler parallel

include SA_AartsScheduler.h Aarts’ adaptive scheduler

include SA _ClusteringScheduler.h | scheduler class used by ClusteringSolver
include SA_MIRScheduler.h scheduler class used by MIRSolver

include SA_TimeScheduler.h EasyScheduler using a given timelimit

include AllSchedulers.h collection of scheduler header files

include SA_Solver.h abstract solver base class

include SA _SeqSolver.h simple sequential solver

include SA_ParSolver.h parallel solver base class

include SA_ClusteringSolver.h clustering parallelization

include SA_MIRSolver.h multipel independent runs parallelization
include SA Initializer.h starts the selected solver

include SA _Synchronizer.h sycronizes the communication in a cluster
include SA_Output.h this class controls the output of the annealing process
include SA_Qutput.rsc in this file the outputlines are specified

include TIntKeyList.h sorted list used by SA_Output

include parrandom.h random number generator for parallel machines
include rngs.h random number generation

include constants.h constants definition

include util_ salib.h mathematical functions

libs libparSAxxx.a the parSA library; xxx specifies the operating system
doc parSALibDoc.ps User Manual (this file)

cfg SA.cfg.xxx.yyy templates for configuration files:

xxx specifies the solver yyy the scheduler
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