
Parallel Simulated Annealing Library (parSA)User ManualGeorg Kliewer, Karsten KlohsVersion 2.2Contents1 Introdution 31.1 Struture . 31.2 How to use this Manual . 32 Changes Sine the Previous Versions 32.1 Library Version 2.2 . 32.2 Library Version 2.1 . 33 Theoretial Aspets 53.1 Simulated Annealing Meta Heuristi 53.1.1 Generi Deisions . 63.1.2 Problem Spei� Deisions 63.2 Supported Cooling Shedules . 73.2.1 Geometri Sheduler . 73.2.2 Aarts Sheduler[1℄ . 73.2.3 MIRSheduler . 83.3 Parallelizing Simulated Annealing 93.3.1 Clustering Parallelization 93.3.2 Multiple Independent Runs 94 Installation Guide 114.1 Instrutions for Installation . 114.1.1 Conventions . 114.1.2 Requesting the Pakages 114.1.3 Installation of the Library 114.2 Compiling the Example Program 125 Design Philosophy of the parSA Library 145.1 Struture . 145.2 Solver Classes . 155.3 Sheduler Classes . 155.4 The Appliation Interfae . 165.4.1 The Class SA Solution . 161

5.4.2 The Class SA Move . 175.4.3 The Class SA Problem . 175.4.4 The Solution Life Cyle 185.5 The Class SA Initializer . 195.6 The Con�guration File . 195.6.1 The General Struture . 195.6.2 A Simple Con�guration File 205.7 The SA Output.rs File . 216 Solving the QAP with the parSA 216.1 The Quadrati Assignment Problem 216.2 Transforming the QAP to an user appliation of the parSA . . . 227 Referene 247.1 Contat . 247.2 The Parameters of the SA-Con�guration File 247.2.1 Solver and Sheduler Seletion 257.2.2 Settings of SA Solver Base Class 257.2.3 Settings of SA Sheduler Base Class 267.2.4 SA SeqSolver . 277.2.5 SA ClusteringSolver . 277.2.6 SA MIRSolver . 287.2.7 SA SeqEasySheduler . 297.2.8 SA EasySheduler . 297.2.9 SA AartsSheduler . 307.2.10 SA MIRSheduler . 307.2.11 SA TimeSheduler . 307.3 List Of Filenames . 31

2

1 Introdution1.1 StrutureThis manual onsists of three basi hapters and one referene hapter. Chapter3 introdues the basi onepts and the theoretial bakground on whih theparSA library is based. The following hapter 4 regards the parSA library asa software tool and provides instrutions for installation and implementationof the user appliation. Chapter 5 desribes the struture of the parSA libraryand the way it works.1.2 How to use this ManualWe suppose that the parSA library is requested by users with a number ofdi�erent aims. In this hapter we therefore suggest di�erent ways to use thismanual.Pure Users { If you only want to solve an optimization problem with the parSAlibrary, or if you want an easy way to parallelize the SA algorithm youshould onentrate on hapter 4. However without any knowledge aboutthe funtionality of the library and the SA algorithm it may be diÆult to�nd the parameters, whih provide the best solution to your very speialproblem. If the initial installation of the library is suessful it will beuseful to read hapters 3 and 5 also.Advaned Users { If you already know the SA algorithm and if you are familiarwith its modi�ations hapter 5 will desribe the possibilities that areprovided by the parSA library and how they are used. If the parSAlibrary suits your needs you may read hapter 4 for further informationabout the installation of the library.Sientist And Developers { Everyone who is interested in a omprehensiveoverview is reommended to beginning in the �rst and ending in the lasthapter. The explanations of hapter 3 onentrate on the theoretialresults, that are important for the funtionality of the library and donot laim to be omplete. Nevertheless, this hapter is suited for a �rstunderstanding of the SA algorithm and its modi�ations. Chapters 4 and5 will ensure an eÆient use of the library.2 Changes Sine the Previous Versions2.1 Library Version 2.2SA TimeSheduler This new sheduler was implemented to examine thebehaviour of the geometri shedule under strong time restritions.2.2 Library Version 2.1Full LINUX Support From this version on we provide an additional LINUXversion of our library. 3

Restrutured Sheduler Parameters The struture of the sheduler pa-rameters have sleighly hanged. Some parameters have been moved from thederivated lasses to the SA Sheduler base lass and one important new param-eter is introdued. The parameter timelimit auses all of the urrent shedulersto freeze if the spei�ed timelimit has elapsed. This enables you to terminateevery annealing proess after a de�ned time. However this time represents pureannealing time.Output The output of the parSA has beome very exible but all you haveto keep in mind is that from now on a �le named SA Output.rs has to besituated in the starting diretory of the annealing program and that you mayspeify a so alled verbose level for every lass that ontrols the amount of theoutput produed.

4

3 Theoretial AspetsIn this hapter the Simulated Annealing Meta Heuristi (SA) is introdued.The �rst setion desribes the basi method. Di�erent ooling shedules, thatare supported by the parSA library, are introdued in the seond setion. Thelast setion disusses the possibilities of parallelizing the basi method.3.1 Simulated Annealing Meta HeuristiThe Simulated Annealing Meta Heuristi (SA) an be regarded as a variantof the traditional tehnique of loal neighborhood searh. Suppose we havea minimization problem over a set of feasible solutions S and a ost funtionf : S �! R, whih an be alulated for all s 2 S. An optimal solution an beobtained be alulating f(s) for all s 2 S and seleting the minimum.Usually the set S will be far too big and therefore the tehnique of loaloptimization de�nes a neighborhood struture N on the set S and searhes onlya small subset of the solution spae by on�ning the searh for an improvementof the ost funtion to the neighborhood of the urrent solution. If no betterneighbor is found the urrent solution is regarded as an approximation of theoptimum. This tehnique often results in onvergene to a loal rather than aglobal minimum.The main idea of SA is to provide a possibility of esaping a loal minimumby aepting even an inrease in the ost funtion. This aeptane dependson a ontrol parameter (temperature) and the magnitude of the inrease. Thealgorithm an be stated as follows:L := GetInitialSolution()T :=WarmingUp()do do L1 := Neighbor(L)�C := Cost(L1)� Cost(L)if �C < 0 or Aept(�C; T)L := L1until Equilibrium()T := DerementT ()until Frozen()Figure 1: The SA algorithm in pseudo odeThe algorithm given above is very general and for the solution of a partiularproblem two ategories of deisions has to be made. Primarily there are generideisions whih are onerned with parameters of the SA algorithm itself. Theseinlude fators suh as the hoie of the initial temperature (WarmingUp()),the ooling shedule (governed by the funtionsEquilibrium() andDerementT ())5

and the stopping ondition (Frozen()). The seond lass of deisions is prob-lem spei� and involves the spae of feasible solutions (representation of L),the ost funtion (Cost()) and the neighborhood funtion (Neighbor()).3.1.1 Generi DeisionsWarmingUp() { The hoie of the initial temperature should guarantee thatalmost every hange of the solution is aepted at the beginning of theannealing proess.This ensures that the proess does not depend on theinitial solution.Aept() { This is the riterion of aepting a worse solution than the atualone. Normally the Boltzmann-distribution is hosen:Aept(�C; T) () r < e��CT for a randomly hosen r 2 [0; 1℄:Equilibrium() { The Equilibrium() funtion determines the number of itera-tions that are made before the temperature is redued.DerementT () { The rate at whih the temperature is redued. It an bedetermined either in a geometri (Tn := �Tn�1) or adaptive way. Theadaptive ooling shedules use a feedbak from the annealing proess to�nd a onvenient ooling rate.Frozen() { This is the stopping riterion of the algorithm. One an hoose aertain number of steps or a ertain aeptane ratio for example.These funtions haraterize a ooling shedule and their parameter settingsan be ombined in many ways. However, not every ombination provides agood solution.3.1.2 Problem Spei� DeisionsThe problem spei� deisions are onerned with the solution spae, neigh-borhood struture and the ost funtion. Generally, it is not possible to de�nebest hoies for a given problem. Nevertheless, there are three main goals thathave to be ahieved. The validity of the algorithm has to be maintained, theomputation time has to be used in the most eÆient way and the solutionshould be lose to the global optimum. It has been shown that every solutionhas to be reahable from every other, whih is usually easy to verify.In order to use the omputation time most eÆiently the frequently-used fun-tions like reating a random neighbor and determining the ost of a solutionshould be as fast as possible. For example it is often not neessary to realulatethe omplete ost funtion. As well it is often not neessary to ommuniateby sending whole solutions rather than solution hanges when you are workingin parallel. In order to support this more eÆient ommuniation strategy theparSA-library provides the lass move whih an be additionally implementedby the user.It is also suggested that it is prudent to avoid neighborhoods whih represent a6

spiky topography or deep troughs in the solution spae. It is also obvious thatthe size of the solution spae and neighborhoods should be kept reasonablysmall.3.2 Supported Cooling ShedulesThe parSA library provides a number of di�erent ooling shedules whih hadshown a good performane on large sized real world problems. Some of theseooling shedules are adaptive. This means that the redution of the tempera-ture depends on the urrent SA run whih leads usually to a better performanewhile the determination of the behavior of the algorithm beomes more om-plex. The MIRSheduler and the AartsSheduler are the adaptive shedulesthat have urrently be implemented in the parSA library.3.2.1 Geometri ShedulerThe geometri sheduler is a rather simple and frequently used ooling shed-ule. It is implemented in the lass SA EasySheduler whih also provides animproved a more exible warming up strategy.WarmingUp(): The initial temperature is set to an user de�ned value andthe length of a subhain is �xed.Equilibrium() and DerementT(): After the required number of iterationshas been made the temperature is redued by a onstant fator � aord-ing to: Tn := �Tn�1 with 0 < � < 1Frozen(): The algorithm terminates when the average aeptane ratio is lowerthan a �xed aeptane ratio �min for a �xed number k of temperaturesteps.Sine every parameter has to be set by the user some test runs are neessaryto �nd suitable parameter settings for a given problem.3.2.2 Aarts Sheduler[1℄WarmingUp(): An initial aeptane ratio �0 is set and an initial temperatureT0 is hosen that approximately provides this aeptane ratio. In orderto ahieve this, the temperature is set to zero at the beginning and m0iterations are made where m0 is the average number of neighbors of asolution. After eah iteration step the temperature is updated aordingto the following rule:T = �C(+) �ln m2m2�0 � (1� �0)m1��1with m1 and m2 being the better or respetively worse neighbors. �C(+)is the mean value of the di�erenes between the ost funtion of all worsesolutions. After m0 steps the initial temperature T0 is set to T .7

Equilibrium() and DerementT(): The length of a subhain with onstanttemperature is set to the number of the loal neighborhood. After thisnumber of iterations the temperature is redued toTn = Tn�1 �1 + ln (1 + Æ)Tn�13�Tn�1 ��1where �(Tn�1) is the standard deviation of the values of the ost funtionat the urrent temperature and Æ is the so alled distaneparameter. Thesize of Æ determines the speed of the redution of the temperature. Aarts[1℄ suggests the value Æ = 0:1.Beause of the onstant length of the subhains this ooling shedule is asuitable hoie for the lustering parallelization.Frozen(): The algorithm terminates when the mean value of the ost fun-tion shows only very small hanges or respetively the derivation of thesmoothed mean value is smaller than the set value �.If the neighborhood size is polynomial in the size of variables of the optimiza-tion problem it has been shown that the SA algorithm has a polynomial timeomplexity with this ooling shedule.3.2.3 MIRShedulerThe SA MIRSheduler represents a ooling shedule whih is used by the MIRstrategies. Therefore, it has to be used in ombination with the SA MIRSolver.Fu-Hsieng Allisen Lee [2℄ introdued the following strategy: The whole SA runhas a �xed length. This leads to an important property: a time limit an beset after that the algorithm must have alulated a solution.WarmingUp(): The hoie of the initial temperature is similar to Aarts strat-egy whih provides an initial aeptane ratio �0 lose to 1. Thus, a se-quene of solutions is generated and di�erenes in their ost values arereorded. The maximum �Cmax and the minimum �Cmin are used todetermine the start and end temperature.Tstart = ��Cmaxln�0Tend = ��Cminln�0DerementT(): The temperature is redued by a onstant fator � similar tothe redution used by the geometri shedule.Equilibrium() and Frozen(): After the alulation of Tstart, Tend and thetemperature redution fator it is simple to determine the length of asubhain from the overall number of available iterations. The parSAlibrary supports slightly di�erent alulations but the algorithm alwaysends after the alulable number of iterations.8

3.3 Parallelizing Simulated AnnealingThe parallelization strategy of the parSA library is ontrolled by the lassSA Solver. The SA ClusteringSolver and the SA MIRSolver are urrently im-plemented in the library. The SA ClusteringSolver an be used in ombinationwith the SA AartsSheduler and the SA EasySheduler while the SA MIRSolverrequires the SA MIRSheduler.3.3.1 Clustering ParallelizationThe lustering parallelization is based on the following fat: the number ofneighbors that has to be visited before a move is aepted inreases when thetemperature sinks. Therefore, the urrent solution remains unhanged for manyiterations when the temperature is low. The time that is spend with the sameurrent solution an then be redued by using more than one proessor. Suh aproessor group is alled a luster. Eah luster works on one single subhain.Every proessor partiularly has the same atual solution. If a move is aeptedby the luster the new atual solution has to be broadasted in the luster.It is obvious that the use of several proessors is only reasonable if the redutionof the lateny is bigger than the ommuniation overhead. That is why thelustering moment is essential for this kind of parallelization. The generalstrategy for N proessors is the following:1. Every single proessor forms a luster with size 1.2. Every luster alulates its own subhain. The length of suh a haindepends on the number of lusters.3. When the alulation at one temperature step is �nished, a new solution isseleted from the atual solutions. This solution beomes the �rst solutionfor the next subhain in every luster.4. If neessary the luster size is inreased.5. The temperature redution and the termination is similar to the sequentialalgorithm.The redution of the subhain length in step 2 is fairly important beauseotherwise the alulation of a single subhain is independent of the number ofproessors. This would slow down the algorithm dramatially. This redutionis possible beause the reahing of the equilibrium at high temperatures is notdisturbed by the fat that the required number of iterations are not made inone but several subhains.3.3.2 Multiple Independent RunsThere are two fats that lead to the idea of the multiple independent runsparallelization.� The best solution of several SA runs usually provides a better quality ofthe solution than the solution of a sequential run with the same length.9

� Is is possible to estimate the ahieveable solution quality for a given lengthof a run.Our aim is to provide an algorithm that ahieves a given solution quality inthe shortest possible time. Therefore, we have to determine the length and thenumber of runs. An SA run in whih the generated hain has the length n isalled a run of length n. This terminology is used when speaking of a shortrun, multiple independent runs or runs with dupliate length.It has been show that the onvergene speed an be alulated aording to thisformula: P (Xn 62 Costmin) � �Kn ��K and � are onstants spei� to the problem, Xn is the solution of a runwith length n and Costmin is the set of solutions with an appropriate quality.Empirially a rather similar formula has been found for the relation betweenthe solution quality and the run length. Only the problem spei� onstantsdi�er slightly from the ones above. Therefore, theoretial results onerning theonvergene speed an be used to provide an improved solution quality with thesame run length hoie.There are three di�erent strategies for improving the performane of the algo-rithm by the hoie of independent runs on parallel systems:1. Improving the onvergene speed with the same number of iterations.2. Maintaining the same onvergene speed with a smaller number of itera-tions.3. Maintaining the same onvergene speed as the sequential algorithm.The following values an be proven for the mentioned di�erent strategies:strategy total iterations number of runs run length onvergenesequential N 1 N (KN)�1 N NeK eK e�N �eK2 eK ln NK ln NK eK (KN)�3 Ne NeK K (KN)�

10

4 Installation Guide4.1 Instrutions for Installation4.1.1 ConventionsThe parSA library an be installed on a large number of di�erent systems andarhitetures. Therefore, we make the following onventions to failitate thelanguage of this setion:shortut desriptionPARSADIR diretory whih ontains the parSA pakageMPIINCDIR diretory whih ontains the mpi header�le mpi.hMPILIBDIR diretory whih ontains the libraries libmpi.a lib4.1.2 Requesting the PakagesSine the parSA library is primarily designed for the use on parallel arhite-tures an installation of the MPI library is needed. If it is not installed on yoursystem you may visit the following webpage for further information:http://www.ms.anl.gov/Projets/mpi/index.htmlThe latest version of the parSA library an be requested on our homepageathttp://www.uni-paderborn.de/~parsaor ontat us via email :parsa�uni.paderborn.deYou have reeived a zip-�le alled parsa.zip. Plae this �le in a new diretory.4.1.3 Installation of the LibraryNow unzip the �le using the ommandunzip parSA.zipand hek if all �les spei�ed in setion 7.3 have been properly installed. Thestruture of the pakage is very simple:� The subdiretories lib and inlude ontain the neessary header �les andversion of the library itself. The naming onvention of the library islibparSA$(OPERATINGSYSTEM)$(OS VERSION).a. If you have re-eived the developer version an additional subdiretory named sr willexiist where the soure �les of the parSA reside.11

� The subdiretory example ontains the example program whih is detaillydesribed later.� Some useful on�guration �le template are situated in the subdiretoryfg and and do is the plae of this doument.4.2 Compiling the Example ProgramCompiling and running the example program should assure you that the parSApakage is fully funtional. Altough a simple make�le is inluded we will de-sribe the ompilation proess more detailled beause of the amount of di�erentoperating systems and environments on whih the parSA meight be used.First of all hange the working diretory to:d PARSA/exampleNow ompile and link the soure�le example. to produe an exeutable alledexample. Please take the following instrutions into aount:ompiler: use a C++-ompiler.inlude diretories: make sure that the diretories MPIINCDIR, PARSADIR/exampleand PARSADIR/inlude are searhed for header�les.soures: ompile both example. and SA Problem. (the soure �le SA Problem.ontains the implementation of the interfae between example and theparSA library).objet �les: you will �nd the objet �les example.o and SA Problem.o in thediretory PARSA/example assumed that the ompilation was suessful.library diretories: make sure that the diretories MPILIBDIR, PARSADIR/libsand the diretory of your standard C++ libraries are searhed by yourlinker.libraries: apart from the standard C++ Libraries you will have to link the li-braries libmpi.a, libsoket.a, libnsl.a (supported by the MPI pakage) andthe library libparSAxxx.a (whih an be found in the diretory PARSADIR/libs)Suppose you are working with a Spar Sun Solaris Miroomputer, then thefollowing ommand works properly:g++ -I. -I../inlude -IMPIINCDIR SA Problem. example.-LPARSADIR/libs -LMPILIBDIR -L/loal/gnu/lib -lparSA solaris 2 5-lmpi -lsoket -lnsl -o exampleYou should now be able to run the reated exeutable with the following om-mand:mpirun -np 1 example 12

If the program has terminated without any error messages the installation ofthe library �les should have been suessful. If you want to have a loser lookon the example you have just produed see setion 6. Please notie that theparSA prints its soure version and revision number before the SA Initializerstarts on�guring the solver. Please indiate this number when you ontat us.

13

5 Design Philosophy of the parSA LibraryThe parSA library was designed to provide a omfortable and eÆient parallelframework for a simulated annealing optimization system, whih an be appliedto many di�erent optimization problems. The MPI message passing interfaeand the use of C++ ensures that the library is portable to di�erent parallelplatforms without redesigning the ode.The objet oriented design keeps the library expandable. It is fairly easy toreate new solver and sheduler lasses to inrease the number of parallelizationand ooling strategies of the library.This setion introdues the basi onepts of the parSA library. It gives a briefoverview of the struture of the library and desribes the main ideas of theappliation interfae and the SA on�guration �le. This on�guration �le isused to adapt the parameters of a SA run to the problem.5.1 StrutureThe following �gure shows the most important lasses, that are urrently im-plemented in the library :
Hierarchy Browser: parSA.shared - taiko PWE:taiko solaris Page: 1

SA_ParScheduler
SA_AartsScheduler

SA_MIRScheduler

SA_Synchronizer

SA_ParSolver

SA_Scheduler

SA_Solution

SA_MIRSolver
SA_ClusteringSolver

SA_SeqEasyScheduler

SA_Initializer

SA_Solver

SA_Move

SA_RUN_TYPE (st)
SA_ClusteringScheduler SA_EasyScheduler

SA_SeqSolver

SA_Problem

There are two aspets that inuene the annealing proess. First of all theproblem that must be solved with the library has to be modelled. This mod-elling has to be done by the parSA user by the implementation of the so alledinterfae lasses SA Problem, SA Solution and SA Move whih are all de�nedin the �les SA Problem.h and SA Problem.. These lasses are more preiselydesribed in setion 5.4. The other aspet is the on�guration of the annealingproess itself. A very exible on�guration is the main advantage of the parSAlibrary, beause you an not only hange the harateristi parameters of onesingle ooling sheme but also hoose between many di�erent ooling starte-gies. Moreover you an simply use simualated annealing on many proessors14

just by seleting another solver and so speed up the alulation signi�antly.This on�guration is done by the settings in the on�guration �le whih will beintrodued in setion 5.6 The following setion will onentrate on the desrip-tion of the base lasses SA Solver and SA Sheduler and their derivated lasses.The lasses SA ParSheduler and SA ParSolver were used as base lasses forall ombinations of solver and sheduler that an work in parallel. In ontrastto this lasses the lasses SA SeqSheduler and SA SeqSolver do not need animplementation of the MPI. The pure sequential version of the parSA librarydoes only provide the derivatives of these lasses.5.2 Solver ClassesThe solver lasses ontrol the organization of the SA algorithm. Currently, theparSA-library provides the following solver:SA Solver: This is an abstrat base lass used to derivate the base lassesof both the sequnetial and the parallel branh of the solver hierarhy.Moreover this lass is apable of setting up the data interfae of the parSAlibrary by opening streams for reading the data�le and writing output�leswhih ontain information about a single simulated annealing run andabout the best solution found during the optimization.SA SeqSolver: This solver is designed to serve as the basi solver from whihany other sequential solver should be derivated. It provides the minimalfuntionality for ontroling sequential SA runs and is able to produe somestatistial information. This Solver an be used in ombination with theSA SeqEasySheduler.SA ParSolver: This solver is the parallel analogon of the SA Solver. It ex-tends the apabilities of the sequential version by providing statistialmethods for a SA run on more than one proessor.SA MIRSolver: This solver is used for the MIR parallelization of the SAalgorithm. Beause of the partiularities of the parallelization strategy itis neessary to use the MIRSheduler in ombination with this solver.SA ClusteringSolver: This solver uses the lustering parallelization and anbe either used with the SA EasySheduler or the adaptive SA AartsSheduler.5.3 Sheduler ClassesThe lass SA Sheduler is the abstrat base lass for all ooling shedules, thatare used during the SA proess. The di�erent ooling strategies have an impor-tant inuene on the eÆieny of the SA algorithm. Currently, the followingshedulers are implemented:SA EasySheduler: This sheduler redues the temperature aording to aonstant fator. It had shown a rather good performane on many di�er-ent problem instanes. 15

SA AartsSheduler: This sheduler tries to adapt the temperature redutionto a ertain problem instane. It also alulates automatially a suitablestart temperature. Its strategy of �nding this start temperature is alsoused by the GeometriSheduler if a start temperature is not spei�ed.SA TimeSheduler: This sheduler was designed to take a given timelimitinto onsideration. There are two di�erent startegies implemented in thissheduler. The �rst one tries to ahieve a given end temperature withinthe timelimit. This is done by adapting the subhainlength of the oolingshedule of the SA EasySheduler.The seond strategy whih is implemented in this sheduler tries to ahievea given solution quality in a given time. If the timelimit expires and thesolution quality is not reahed than the sheduler freezes otherwise itfreezes at the given solution quality. Up to now this strategy has notbeen analysed.SA MIRSheduler: This is a speialized sheduler whih has to be used whenusing the MIR parallelization of the SA algorithm.5.4 The Appliation InterfaeThe lass SA Problem must be used by the appliation to set up a representa-tion of the solution spae. Every kind of solver uses an instane of SA Problemto �nd an at least loally optimal solution with its own SA strategy. Thereforethis lass must provide elementary methods like �nding a neighbor of an atualsolution or determining the ost of a solution. The lass SA Solution repre-sents one single element of the solution spae and is mainly used by the lassSA Problem. Finally the lass SA Move represents just the hange between ansolution and its neigbour. In many solution spaes suh a move an be rep-resented more eÆiently than a whole solution. When working in parallel thesending of moves rather than solutions may redue the ommuniation ostssigni�antly.This setion desribes, how an interfae to the parSA library is usuallyimplemented. It is divided into subsetions dealing with the implementationof the problem spei� lasses SA Problem and SA Solution and also the lassSA Initializer, whih is used to invoke the annealing proess.5.4.1 The Class SA SolutionThe lass SA Solution represents one single point of the solution spae. Inmost implementations this lass ontains information about the solutions itselfabout the hange that was made last and perhaps about the neighborhood of thesolution. Nevertheless the funionality working on this information espeiallythe searh of a new neighbor and the updating or resetting the solution wasintegrated in the lass SA Problem to keep the problem desription as exibleas possible. Therefore only the method SA Solution.Copy(S) and the iostramfuntions are alled by the library and must be implemented by the user.16

5.4.2 The Class SA MoveDuring the annealing proess the ost of the atual solution is ompared veryoften to the ost of its neighbors. In many ases neighboring solutions onlyslightly di�er, and so when working in parallel the ommuniation osts may beredued very muh by sending only this di�erene to another node. In the parSAlibrary the desription of suh a di�erene between neighbors is alled a move.As one an even imagine problems where the size of a move remains onstantthe advantages of the ommuniation by moves beomes rather obvious. If youwant to use this parSA feature you will not only have to implement the lassSA Solution but also SA Move. However SA Move is only a ontainer and theimplementation of some additional methods of SA Problem is also required.5.4.3 The Class SA ProblemThe lass SA Problem is a representation of the solution spae of the optimiza-tion problem. The lass has to provide three basi methods whih are essentialfor the annealing proess. They are:SA Problem.GetInitialSolution(S): This method reates a primary solu-tion S, whih is the starting point of the optimization proess. Thismethod is supposed to be deterministi. Its non deterministi ounter-part is the method SA Problem.GetRandomSolution(S).SA Problem.GetCost(S): This method alulates the ost of a given solu-tion S. The ost value is used to ompare the quality of a new solution toan older one.SA Problem.GetNeighbor(S): This method determines (small) hanges ofa given solution S. This hange should be only temporarily, beause themethod SA Problem.ResetSolution() is used to disard the last hange.Moreover the lass SA Problem has to provide some other methods whih alsodepend on the representation of the solution spae:SA Problem.ResetSolution(S): retrieves the former solution by disardingthe hange made by GetNeighbor().SA Problem.UpdateSolution(S): makes the hange made by GetNeigh-bor() permanent.SA Problem.CreateSolution(): reates a new instane of the representationof the solution.SA Problem.GetLoalN(): determines an estimation of the average size ofthe neighborhood of a point in the solution spae. Even if your optimiza-tion problem is not disrete a value is required beause the ratio betweenGlobalN and LoalN is used by some ooling shedules.SA Problem.GetGlobalN(): determines the approximated number of pos-sible solutions. 17

SA Problem.ReadProblemData(): should be used to read the informationfrom a data �le whih is neessary to build up a problem representation.SA Problem.Copy(S,S): is used by the library to opy one solution intoanother.If you want to use the parallelization apabilities of the library you will at leasthave to implement the following methods of the lass SA Problem, too:OutputSolution(ostream,S): writes the solution S to an ostreamInputSolution(istream,S): reads a solution S from an istreamAll of the desribed methods must be implemented to provide a minimal fun-tionality. The additional methods an be divided into three setions. The mostimportant are the ones whih are needed to reate moves, extrat moves fromsolutions and to realise the move ommuniation. This ommuniation methodsare rather similar to the solution ommuniation methods. The seond setionof additional methods are speial ommuniation methods whih may be usedto implement an own MPI based ommuniation. The last setion are speialmethods whih where introdued to support speial appliations.5.4.4 The Solution Life CyleThe following graphi explains how all these methods are used within the an-nealing proess:

moved solution

actual solution
GetInitialSolution

empty solution

GetCost

GetCost

ResetSolution

UpdateSolution

CreateSolution

GetNeighbor

With CreateSolution a new empty solution is generated. GetInitialSolutionprodues a feasible solution (in a deterministi manner). For eah solution, thevalue of the ost funtion may be evaluated and GetNeighbor returns a neighborof the atual solution. The ost of this so alled moved solution is alulated.Aording to the atual annealing situation this new solution is either aeptedor rejeted, whih is done by the methods UpdateSolution or ResetSolution.18

5.5 The Class SA InitializerThe lass SA Initializer is used to intialize an speial solver and to launh theannealing proess. In order to understand the use of the lass SA Initializer,have a look at the following simple main program:#inlude <SA Problem.h>#inlude <SA Initializer.h>main(int arg,har ��argv)f SA Problem p;SA Initializer start;SA Solver �sp = start.ReadCon�gFile(arg,argv,p);if (sp != NULL)f sp!RunAnnealing();delete sp;ggAfter you have delared an instane of the lass SA Initializer you will onlyhave to invoke the method ReadCon�gFile. This methods reeives the pa-rameters of the ommand line and an instane of the lass SA Problem. Theinstane of the lass SA Problem will be initialized after the initializer has readthe SA.fg �le by invoking the method SA Problem.ReadProblemData, withthe �lename spei�ed by the keyword data�lename in the on�guration �le.The method SA Initializer.ReadCon�gFile() will also automatially initializethe hosen solver depending on the entries of the SA.fg �le.After your program has reeived the initialized solver the annealing proess issimply started by alling its method RunAnnealing() from the reieved SA Solverinstane.5.6 The Con�guration FileThe on�guration �le, whih is usually named SA.fg, is the main tool to ontrolthe library and to adapt the parameters to speial problems. The followingsetions desribe the onept of the on�guration �le and explain a rather simpleexample. The default name of the on�guration �le is SA.fg, but you may alterthe name by using the ommand line option -fg "�lename" when starting aprogram that uses the parSA library.5.6.1 The General StrutureThe following �gure presents the general struture of suh a on�guration �le:19

f SA Solver NAME OF SOLVER fSA Solver fSETTINGS OF SOLVER BASE CLASSgSA Sheduler NAME OF SCHEDULER fSA Sheduler fSETTINGS OF SCHEDULER BASE CLASSgSETTINGS OF DERIVED SCHEDULER CLASSESgSETTINGS OF DERIVED SOLVER CLASSESgg As you an see eah blok ontains all the information needed to reatean instane of the spei�ed kind. The solver seleted by NAME OF SOLVERontains information about the settings of its base lass, the kind of shedulerwhih is to be used and �nally its own settings whih inuene the parametersof this solver. The sheduler whih is used by the solver is seleted by the valueof NAME OF SCHEDULER and also ontains the information about its ownsettings and the settings of its base lass. The next setion desribes how suha on�guration �le may look like.5.6.2 A Simple Con�guration FileTo give a short introdution to the SA.fg �le we will now desribe a �le thatselets the sequential solver and the geometri sheduler:f SA Solver SA SeqSolver fSA Solver fdatafilename example.datasolutionfilename example.solutiongSA Sheduler SA SeqEasySheduler fSA Sheduler fOptType MAXgggg In this �le the solver SA SeqSolver is seleted. In the parameter blok of theSA Solver the name of the data �le and the solution �le is spei�ed. The nameof the data �le will be passed to the method SA Problem.ReadProblemData()by the SA Initializer. The solution�lename will be used to plae the solutionof the SA algorithm. As a sheduler the SA SeqEasySheduler is hoosen and20

in its parameter blok the SA algorithm is advised to treat the problem as amaximization problem. Thus, it will searh for the solution with the highestvalue of the ost funtion.The subdiretory on�g ontains some useful templates of on�guration �les.These templates must be renamed to SA.fg and must be plaed in the diretorywhere the exeutable is situated. The parameter settings of this �les are rathergeneral and you may probably speed up the algorithm for a given problem. Ifyou want to know more about the possibilities of the SA.fg �le onsult setion7.2.5.7 The SA Output.rs FileWith the version 2.1 a new output onept was introdued to the parSA library.There are some points in every kind of annealing where a output is suitable, forexample after the initialization, when the Equilibrium is reahed or when thesheduler freezes. It may also be useful to be able to speify ertain levels ofoutput. All the output during the annealing proess is now set up by the useof the SA Output.rs �le in whih boks are spei�ed. These bloks orrespondto ertain shedulers and solvers. By leading integer values lines of output aremarked. Only lines with values lower or equal to the level de�ned by the ver-boselevel parameter in the on�guration �le are used. If you take a look at this�le you will reognize other integers with the speial literal # in front of them.Eah variable of a sheduler and a solver has a orresponding number and thesestrutures are substituted by the variable values.Therefore the new onept does not only make the output more exible but itis also possible to adapt the output of the parSA library to a speial purposeor even a di�erent language.However from the users point of view it is only neessary to ensure that theSA Output.rs �le resides in the parSA diretory. The output de�ned in this�le is urrently rather similar to the output of previous versions apart frombeing better to understand.6 Solving the QAP with the parSAFrom version 2.1 on the parSA is delivered with an example program that solvesthe quadrati assignment problem (QAP). The QAP was hoosen beause it isa well known optimization problem. As the mathematial desription of theQAP is rather simple it is also very suitable to explain how the parSA has tobe adapted so that it an solve an optimization problem.6.1 The Quadrati Assignment ProblemThe origin of the QAP is the problem how to distribute n fatories on n lo-ations and minimizing the transporting osts between them. Mathematially21

this problem an be desribed as follows:given two n-dimensional quadrati matries A = (aij) and B = (bij) minimizef(p) = nXi=1 nXj=1 aij _bp(i)p(j)p being a permutation. For the general QAP A and B are not expeted to besymmetri. There are as many possible solutions to this problem as there aredi�erent permutations so n!. As simulated annealing is a loal searh algorithmit is neessary to de�ne a neighborhood of a ertain feasable solution. We simplyregard every permutation that di�ers only on two postions from a given one asone of its neighbors. There are only as many possibilities to hoose a neighboras there are subsets of two element in a set of n element so:n2 = n(n� 1)2 = O(n2)whih is muh smaller than the whole problem spae. The other riterion whihhas to be full�lled is that every solution has to be reahable from another byusing neighborhood operations. Obviously every permution an be onstrutedin that way. Given a permutation pold and a solution pnew just hoose index jwith pold(j) = pnew(1) and apply the neighborhood operation on the indies 1and n. The result is a permutiation that di�ers at most n � 1 positions fromthe required one and so the onstrution an be done by reursion.Therefore the QAP seems to be a rather good anditate for the simulatedannealing approah. The following setion will show how easyily the interfaeof the parSA library an be adapted to a speial problem.6.2 Transforming the QAP to an user appliation of the parSAOnly two lasses have to be implemented. As we have mentioned the terms ofthe QAP an be translated to terms of an optimization problem as follows:solution spae: our solution spae is set of all possible solutions. This isequivalent to all permutations of n numberssolution : a solution is one single permutation p(x)ost funtion: the ost funtion is de�ned by the funtion f(x) aording toits de�nition in the previous setion.neighborhood of p(x): another permutation that di�ers only on two postionsfrom the atual one.The two �les SA QAPProblem.h and SA QAPProblem. in the subdiretoryexample ontain all hanges that has to be made to solve all the QAP instaneswith the parSA library. We added all instanes of the QAP that are aessibleat the QAPLIB home page [3℄. For a detailled desription of the peularities ofthese instanes refer to this page.The most important problem spei� hanges to the lass SA Problem are thefollowing: 22

SA Problem: the lass SA Problem ontains the information about the di-mension n of the two quadrati matries A and B and the matries itself.SA Problem.GetInitialSolution(): we simply hoose the identity funtionId(x) as an initial solution.SA Problem.GetRandomSolution(): hoose randomly a permutation.SA Problem.GetCost(): Determine the ost funtion with a given permu-tation. If the ost of the old permutation and the two hanged indies areknown then the alulation an be done in O(n) instead of O(n2) beauseonly O(n) summands are e�eted by the hange. There are also manysummands like a�ad�b+bd when you alulate the di�erene betweentwo neighbors. These are alulated more eÆiently by (a� b)(� d).SA Problem.GetNeighbor(): Choose two random indies ij and swith thevalues p(i) and p(j). These indies are part of the solution beause thenthe alulation of the ost funtion beomes very easy.SA Problem.ResetSolution(): reset the indies and the permutation.SA Problem.UpdateSolution(): make the hange to the permutation per-manent by deleting the indies.Beside these hanges some other more tehnial hanges have to be done likeimplementing input and output methods. These few methods are all an usermust think about. Nevertheless they ould remarkably speed up your programif they are implemented eÆiently. As the ost funtion is alulated thousandsof times saving only a few multipiations may result in seonds or even minutesof saved time.

23

7 Referene7.1 ContatIf you have any questions, remarks or suggestions onerning the parSA libraryor this manual please feel free to ontat us:Email: parsa�uni-paderborn.deor visit our homepage athttp://www.uni-paderborn.de/~parsa7.2 The Parameters of the SA-Con�guration FileWhen examining the following setions always keep the gerneral struture of aon�guration �le in mind:f SA Solver NAME OF SOLVER fSA Solver fSETTINGS OF SOLVER BASE CLASSgSA Sheduler NAME OF SCHEDULER fSA Sheduler fSETTINGS OF SCHEDULER BASE CLASSgSETTINGS OF DERIVED SCHEDULER CLASSESgSETTINGS OF DERIVED SOLVER CLASSESgg The terminology of the desription of the parameters is the following:required parameter < possible value 1 j possible value 2 ...> :required parameters are in normal prints and the possible hoies are braketedby <> and divided by j.required parameter type :if the required parameter is a number, the type is spei�ed.optional parameter <default value j possible value 2 ... > :optional parameters are printed with slanted literals. The default valuewhih is automatially used by the library is underlined and other possible val-ues are not. 24

optional parameter type = xxx :if the optional parameter is a number, xxx spei�es the default value.Within the setions of the shedulers and solvers the parameters are listedin alphabetial order.7.2.1 Solver and Sheduler SeletionSolver and sheduler are seleted by using their names for the solver or shed-uler de�nition. The following values are valid:NAME OF SOLVER :< SA SeqSolver j SA MIRSolver j SA ClusteringSolver >NAME OF SCHEDULER :< SA SeqEasySheduler j SA EasySheduler j SA AartsSheduler j SA MIRShedulerj SA TimeSheduler >7.2.2 Settings of SA Solver Base ClassThe following keywords are aepted in the blok SETTINGS OF SOLVERBASE CLASS:data�lename PATH :the name of the data�le has to be spei�ed with its omplete path.output�lename PATH :one single line is written to this �le for every SA-run.overwritesolution < never j better j always >:deision of how the solution �le is modi�ed if more than one SA run is made.solution�lename < PATH j * > :this �le ontains the best solution found during one SA run. If no name isspei�ed the data�lename with the suÆx .solution is used.Startsolution < Random j Init> :hoie of the initial solution. Either the method SA Problem::GetInitialSolutionor the method SA Problem::GetRandomSolution will be alled.verbose < on j o� > :some information is written to the standard output while running.verboselevel INT = 10spei�es the exent of output. 10 is standard output, greater levels produe25

more detailed information. In the standard implementation of the library themaximum output level is 30. As the output an be modi�ed by hanging theSA Output.rs one an also de�ne higher verboselevels.writefuntion < stream j path >:the parameter spei�es the output funtion. Stream seletsSA Problem::OutputSolution(ostream&,SA Solution&) while path seletsSA Problem::OutputSolution(har *,SA Solution&).The �rst of these methodsis usually used with out as ostream and the seond method is used to writethe solution to a �le.7.2.3 Settings of SA Sheduler Base ClassThe following keywords are aepted in the blok SETTINGS OF SCHED-ULER BASE CLASS:initaratio FLOAT = 0.9:the requested initial aeptane ratio for the Aarts warming up method. Ifnothing is spei�ed 0.9 is assumed.The value has no e�et if initialtemperature is set.initialtemperature FLOAT = determine using Aarts method:the initial temperature. If no value is spei�ed the adaptive method of Aarts[1℄ is used.OptType < MIN j MAX > :selet the goal of the algorithm. MIN means minimize the ost funtion,MAX means maximize the ost funtion.piturediretory DIRECTORY :spei�es the diretory in whih the input �les for GNUPlot will be plaed,whih show the progress of the algorithm graphially. The runtime will inreaserapidly if this option is used!timelimit LONG = -1Amount of seonds allowed for the annealing proess. When set to a positivvalue atual shedulers but the SA TimeSheduler just freeze after this numberof CPU-seonds.thresholdvalue FLOAT = 0:a new solution must be better than the value of thresholdvalue � BestE tobe aepted. If it is set to 0 then the lassial SA is used.verboselevel INT = 10outputlevel of the sheduler base lass. See also verboselevel parameter ofSA Solver base lass. 26

7.2.4 SA SeqSolverThe following additional keywords are aepted in the blok SETTINGS OFDERIVED SOLVER CLASSES when the seleted solver is SA SeqSolver:algorithm < SeqAlg j TestProblem > :Either the sequential algorithm or a simple test of the implemented userfuntions is started.7.2.5 SA ClusteringSolverThe following keywords are aepted in the blok SETTINGS OF DERIVEDSOLVER CLASSES when the SA ClusteringSolver is seleted:algorithm < SeqAlg j ClusteredAlg j ComputeLoopFator j TestProblem>:seletion of the algorithm. SeqAlg starts a pure sequential simulated anneal-ing run on eah proessor. ClusteredAlg starts the normal lustering algorithm.ComputeLoopFator tries to ompute the neessary subhainlength to solve agiven problem. TestProblem runs a simple test of the user implemented fun-tions.ChooseMove < best j boltzmann j random j �rst > :deides whih move is hosen if a luster �nds several aeptable solutions.The keyword boltzmann means that the boltzmann distribution is used to makethe hoie.CommuniateInCluster < Group j Asyn > :seletion of the ommuniation mode in a luster. For better eÆieny inmany appliations Asyn is reommended.CommuniationMode < Solution j Move > :In a luster proessors ommuniate either by sending whole solutions oronly inremental by sending moves. If Move is hosen, make sure that the lassSA Move has been properly implemented.ConstantSizeMove < yes j no > :In ases where onstant size of moves an be guaranteed, the ommunia-tion beomes more eÆient.DistributeSolutionAfterSubhain < best j boltzmann j random j no>: spei�es if and how an initial solution is hosen for all lusters after one27

subhain.Equilibrium < Global j Loal > :deision whether the equilibrium is ahieved or not. Global means that onesingle hief proessor deides about the equilibrium. Loal means that everymaster of a luster deides for his own luster.ExhangeFuntions < stream j MPI >:seletion of the user implemented exhange funtions. Stream selets thestream funtions while MPI selets the MPI based funtions. Even the streamfuntions internally use MPI for ommuniation, but as most users do allreadyknow streams these funtions should be easy to implement. Nevertheless moreexperiened users may hoose to implement the MPI ommuniation diretlyby adapting the MPI based funtions.MaxCluster INT = -1.0maximum number of lusterlevels. The maximum number of proessors ina luster is bounded by 2MaxCluster. Therefore the value has to be in between 0and log(numberofproessors).MinE� FLOAT = 1.1:seletion of the lustering strategy. If the value is greater than 1.0 thenprodut of luster eÆieny and luster speedup is maximized. If the valueis between 0.0 and 1.0 then the lusters are enlarged by luster eÆieny >MinE�. If the value is set to 0.0 then the speedup is maximized.7.2.6 SA MIRSolverThe following keywords are aepted in the blok SETTINGS OF DERIVEDSOLVER CLASSES when the SA MIRSolver is seleted:Betta Runtime FLOAT = 1.1:the inrease fator for the run lengths must be � 1:0Ebest FLOAT:the eastimated ost of the best known solution has to be spei�ed.Epsilon FLOAT = 0.01 :the solution quality, whih has to be ahieved.Maximum RunLength FLOAT = RunFator � GetLoalN():length of the longest run.Minimum RunLength FLOAT = GetLoalN():the initial length of a run. 28

Samples INT = 10:number of runsRunFator FLOAT = 5 :In the seond phase runs with a length out of the interval GetLoalN(). . . RunFator � LoalN(). This value is ignored when Maximum or Minimum-RunLength is de�ned.7.2.7 SA SeqEasyShedulerThe following keywords are aepted in the blok SETTINGS OF DERIVEDSCHEDULER CLASSES when the EasySheduler is seleted:oolingratio FLOAT = 0.9:the fator the temperature is redued by after every temperature step. Ithas to be greater than 0 and less than 1.frozenlimit INT = 5the number of susessive temperature steps with an aeptane ratio smallerthan 'minaratio' needed to reah the frozen state in the sheduler.minaratio FLOAT = 0.01:deision if the SA algorithm is frozen. A value greater 0 than means oolinguntil 'frozenlimit' subhains have an aeptane ratio < minaratio.The value0 means derement the temperature until the mean value stays almost the same.subhainfator FLOAT = 1.0:hosen subhain length is inreased by this fator.subhainlength INT = GetLoalN:the length of subhains (number of iterations) on a single temperature level.verboselevel INT = 10outputlevel of this sheduler lass. See also verboselevel parameter of SA Solverbase lass.7.2.8 SA EasyShedulerThe SA EasySheduler aepts the same keywords than SA SeqEasySheduler.The following additional keywords are aepted in the blok SETTINGS OFDERIVED SCHEDULER CLASSES when the SA EasySheduler is seleted:subhainredution < linear j sqrt j none > :29

in eah luster, the subhainlength is adapted referring to NPROC. linearmeans that the subhainlength is devided by NPROC. sqrt selets the devisionby pNPROC and none means no subhain shortening at all.7.2.9 SA AartsShedulerThe following keywords are aepted in the blok SETTINGS OF DERIVEDSCHEDULER CLASSES when the SA AartsSheduler is seleted:delta FLOAT = 0.1:distane parameter.epsilon FLOAT = 10�4:stop parameter.omega FLOAT = 0.8:smoothing parameter.7.2.10 SA MIRShedulerThe following keywords are aepted in the blok SETTINGS OF DERIVEDSCHEDULER CLASSES when the SA MIRSheduler is seleted:Alpha FLOAT :a kind of temperature redution fator. It is used to alulate the numberof temperature steps. It must be a value between 0 and 1.Betta FLOAT :hains are this times longer at the next temperature level. This value hasto be � 1.endtemperature FLOAT :has to be greater than 0.Temperature Reset = 0:determines whether temperature is resetted or not.7.2.11 SA TimeShedulerThe following keywords are aepted in the blok SETTINGS OF DERIVEDSCHEDULER CLASSES when the SA TimeSheduler is seleted:30

endtemerature FLOAT = -1.0 :the endtemperature whih should be ahieved in a given timelimit. Thetemperature steps that are probably needed to reah the frozen state are es-timated referring to the the start temperature, the end temperature and theooling ratio. After that all the iterations, that an be made in the given time-limit, are distributed onstantly on the single steps.solutionquality FLOAT = 1.0 :if set, then the sheduler freezes either after the given timelimit or if thissolution quality is reahed. It represents the value of the ost funtion.7.3 List Of FilenamesThis setion ontains a list of the �les that are part of the parSA-pakage.

31

subdiretory �lename desription. version.txt desription of the delivery pakageexample SA QAPProblem.h interfae between example program and libraryexample SA QAPProblem. interfae between example program and libraryexample SA QAP. the example programexample SA.fg on�guration �le that ontrols the annealing algorithmexample SA Output.rs de�nes the outputexample o�les.inl a list of all generated objet �lesexample Make�le LINUX/UNIX make�leexample data subdiretory ontaining QAP instanesinlude SA Sheduler.h abstrat sheduler base lassinlude SA ParSheduler.h abstrat base lass MPI using shedulersinlude SA SeqEasySheduler.h geometri sheduler sequentialinlude SA EasySheduler.h geometri sheduler parallelinlude SA AartsSheduler.h Aarts' adaptive shedulerinlude SA ClusteringSheduler.h sheduler lass used by ClusteringSolverinlude SA MIRSheduler.h sheduler lass used by MIRSolverinlude SA TimeSheduler.h EasySheduler using a given timelimitinlude AllShedulers.h olletion of sheduler header �lesinlude SA Solver.h abstrat solver base lassinlude SA SeqSolver.h simple sequential solverinlude SA ParSolver.h parallel solver base lassinlude SA ClusteringSolver.h lustering parallelizationinlude SA MIRSolver.h multipel independent runs parallelizationinlude SA Initializer.h starts the seleted solverinlude SA Synhronizer.h syronizes the ommuniation in a lusterinlude SA Output.h this lass ontrols the output of the annealing proessinlude SA Output.rs in this �le the outputlines are spei�edinlude TIntKeyList.h sorted list used by SA Outputinlude parrandom.h random number generator for parallel mahinesinlude rngs.h random number generationinlude onstants.h onstants de�nitioninlude util salib.h mathematial funtionslibs libparSAxxx.a the parSA library; xxx spei�es the operating systemdo parSALibDo.ps User Manual (this �le)fg SA.fg.xxx.yyy templates for on�guration �les:xxx spei�es the solver yyy the sheduler

32

Referenes[1℄ Aarts, E.H.L. et alParallel implementations of the Statistial Cooling Algorithm,INTEGRATION, the VLSI journal 4 (1986), 209{238.[2℄ Lee, S.Y., K.G. LeeSynhronous and Asynhronous Parallel Simulated Annealing with Multi-ple Markov Chains,IEEE Transations on Parallel and Distributed Systems, Vol. 7, Nr. 10(1996) 993{1008.[3℄ The QAP home page:http://www.imm.dtu.dk/ sk/qaplib/

33

