
Parallel Simulated Annealing Library (parSA)User ManualGeorg Kliewer, Karsten KlohsVersion 2.2Contents1 Introdu
tion 31.1 Stru
ture . 31.2 How to use this Manual . 32 Changes Sin
e the Previous Versions 32.1 Library Version 2.2 . 32.2 Library Version 2.1 . 33 Theoreti
al Aspe
ts 53.1 Simulated Annealing Meta Heuristi
 53.1.1 Generi
 De
isions . 63.1.2 Problem Spe
i�
 De
isions 63.2 Supported Cooling S
hedules . 73.2.1 Geometri
 S
heduler . 73.2.2 Aarts S
heduler[1℄ . 73.2.3 MIRS
heduler . 83.3 Parallelizing Simulated Annealing 93.3.1 Clustering Parallelization 93.3.2 Multiple Independent Runs 94 Installation Guide 114.1 Instru
tions for Installation . 114.1.1 Conventions . 114.1.2 Requesting the Pa
kages 114.1.3 Installation of the Library 114.2 Compiling the Example Program 125 Design Philosophy of the parSA Library 145.1 Stru
ture . 145.2 Solver Classes . 155.3 S
heduler Classes . 155.4 The Appli
ation Interfa
e . 165.4.1 The Class SA Solution . 161

5.4.2 The Class SA Move . 175.4.3 The Class SA Problem . 175.4.4 The Solution Life Cy
le 185.5 The Class SA Initializer . 195.6 The Con�guration File . 195.6.1 The General Stru
ture . 195.6.2 A Simple Con�guration File 205.7 The SA Output.rs
 File . 216 Solving the QAP with the parSA 216.1 The Quadrati
 Assignment Problem 216.2 Transforming the QAP to an user appli
ation of the parSA . . . 227 Referen
e 247.1 Conta
t . 247.2 The Parameters of the SA-Con�guration File 247.2.1 Solver and S
heduler Sele
tion 257.2.2 Settings of SA Solver Base Class 257.2.3 Settings of SA S
heduler Base Class 267.2.4 SA SeqSolver . 277.2.5 SA ClusteringSolver . 277.2.6 SA MIRSolver . 287.2.7 SA SeqEasyS
heduler . 297.2.8 SA EasyS
heduler . 297.2.9 SA AartsS
heduler . 307.2.10 SA MIRS
heduler . 307.2.11 SA TimeS
heduler . 307.3 List Of Filenames . 31

2

1 Introdu
tion1.1 Stru
tureThis manual
onsists of three basi

hapters and one referen
e
hapter. Chapter3 introdu
es the basi

on
epts and the theoreti
al ba
kground on whi
h theparSA library is based. The following
hapter 4 regards the parSA library asa software tool and provides instru
tions for installation and implementationof the user appli
ation. Chapter 5 des
ribes the stru
ture of the parSA libraryand the way it works.1.2 How to use this ManualWe suppose that the parSA library is requested by users with a number ofdi�erent aims. In this
hapter we therefore suggest di�erent ways to use thismanual.Pure Users { If you only want to solve an optimization problem with the parSAlibrary, or if you want an easy way to parallelize the SA algorithm youshould
on
entrate on
hapter 4. However without any knowledge aboutthe fun
tionality of the library and the SA algorithm it may be diÆ
ult to�nd the parameters, whi
h provide the best solution to your very spe
ialproblem. If the initial installation of the library is su

essful it will beuseful to read
hapters 3 and 5 also.Advan
ed Users { If you already know the SA algorithm and if you are familiarwith its modi�
ations
hapter 5 will des
ribe the possibilities that areprovided by the parSA library and how they are used. If the parSAlibrary suits your needs you may read
hapter 4 for further informationabout the installation of the library.S
ientist And Developers { Everyone who is interested in a
omprehensiveoverview is re
ommended to beginning in the �rst and ending in the last
hapter. The explanations of
hapter 3
on
entrate on the theoreti
alresults, that are important for the fun
tionality of the library and donot
laim to be
omplete. Nevertheless, this
hapter is suited for a �rstunderstanding of the SA algorithm and its modi�
ations. Chapters 4 and5 will ensure an eÆ
ient use of the library.2 Changes Sin
e the Previous Versions2.1 Library Version 2.2SA TimeS
heduler This new s
heduler was implemented to examine thebehaviour of the geometri
 s
hedule under strong time restri
tions.2.2 Library Version 2.1Full LINUX Support From this version on we provide an additional LINUXversion of our library. 3

Restru
tured S
heduler Parameters The stru
ture of the s
heduler pa-rameters have sleighly
hanged. Some parameters have been moved from thederivated
lasses to the SA S
heduler base
lass and one important new param-eter is introdu
ed. The parameter timelimit
auses all of the
urrent s
hedulersto freeze if the spe
i�ed timelimit has elapsed. This enables you to terminateevery annealing pro
ess after a de�ned time. However this time represents pureannealing time.Output The output of the parSA has be
ome very
exible but all you haveto keep in mind is that from now on a �le named SA Output.rs
 has to besituated in the starting dire
tory of the annealing program and that you mayspe
ify a so
alled verbose level for every
lass that
ontrols the amount of theoutput produ
ed.

4

3 Theoreti
al Aspe
tsIn this
hapter the Simulated Annealing Meta Heuristi
 (SA) is introdu
ed.The �rst se
tion des
ribes the basi
 method. Di�erent
ooling s
hedules, thatare supported by the parSA library, are introdu
ed in the se
ond se
tion. Thelast se
tion dis
usses the possibilities of parallelizing the basi
 method.3.1 Simulated Annealing Meta Heuristi
The Simulated Annealing Meta Heuristi
 (SA)
an be regarded as a variantof the traditional te
hnique of lo
al neighborhood sear
h. Suppose we havea minimization problem over a set of feasible solutions S and a
ost fun
tionf : S �! R, whi
h
an be
al
ulated for all s 2 S. An optimal solution
an beobtained be
al
ulating f(s) for all s 2 S and sele
ting the minimum.Usually the set S will be far too big and therefore the te
hnique of lo
aloptimization de�nes a neighborhood stru
ture N on the set S and sear
hes onlya small subset of the solution spa
e by
on�ning the sear
h for an improvementof the
ost fun
tion to the neighborhood of the
urrent solution. If no betterneighbor is found the
urrent solution is regarded as an approximation of theoptimum. This te
hnique often results in
onvergen
e to a lo
al rather than aglobal minimum.The main idea of SA is to provide a possibility of es
aping a lo
al minimumby a

epting even an in
rease in the
ost fun
tion. This a

eptan
e dependson a
ontrol parameter (temperature) and the magnitude of the in
rease. Thealgorithm
an be stated as follows:L := GetInitialSolution()T :=WarmingUp()do do L1 := Neighbor(L)�C := Cost(L1)� Cost(L)if �C < 0 or A

ept(�C; T)L := L1until Equilibrium()T := De
rementT ()until Frozen()Figure 1: The SA algorithm in pseudo
odeThe algorithm given above is very general and for the solution of a parti
ularproblem two
ategories of de
isions has to be made. Primarily there are generi
de
isions whi
h are
on
erned with parameters of the SA algorithm itself. Thesein
lude fa
tors su
h as the
hoi
e of the initial temperature (WarmingUp()),the
ooling s
hedule (governed by the fun
tionsEquilibrium() andDe
rementT ())5

and the stopping
ondition (Frozen()). The se
ond
lass of de
isions is prob-lem spe
i�
 and involves the spa
e of feasible solutions (representation of L),the
ost fun
tion (Cost()) and the neighborhood fun
tion (Neighbor()).3.1.1 Generi
 De
isionsWarmingUp() { The
hoi
e of the initial temperature should guarantee thatalmost every
hange of the solution is a

epted at the beginning of theannealing pro
ess.This ensures that the pro
ess does not depend on theinitial solution.A

ept() { This is the
riterion of a

epting a worse solution than the a
tualone. Normally the Boltzmann-distribution is
hosen:A

ept(�C; T) () r < e��CT for a randomly
hosen r 2 [0; 1℄:Equilibrium() { The Equilibrium() fun
tion determines the number of itera-tions that are made before the temperature is redu
ed.De
rementT () { The rate at whi
h the temperature is redu
ed. It
an bedetermined either in a geometri
 (Tn := �Tn�1) or adaptive way. Theadaptive
ooling s
hedules use a feedba
k from the annealing pro
ess to�nd a
onvenient
ooling rate.Frozen() { This is the stopping
riterion of the algorithm. One
an
hoose a
ertain number of steps or a
ertain a

eptan
e ratio for example.These fun
tions
hara
terize a
ooling s
hedule and their parameter settings
an be
ombined in many ways. However, not every
ombination provides agood solution.3.1.2 Problem Spe
i�
 De
isionsThe problem spe
i�
 de
isions are
on
erned with the solution spa
e, neigh-borhood stru
ture and the
ost fun
tion. Generally, it is not possible to de�nebest
hoi
es for a given problem. Nevertheless, there are three main goals thathave to be a
hieved. The validity of the algorithm has to be maintained, the
omputation time has to be used in the most eÆ
ient way and the solutionshould be
lose to the global optimum. It has been shown that every solutionhas to be rea
hable from every other, whi
h is usually easy to verify.In order to use the
omputation time most eÆ
iently the frequently-used fun
-tions like
reating a random neighbor and determining the
ost of a solutionshould be as fast as possible. For example it is often not ne
essary to re
al
ulatethe
omplete
ost fun
tion. As well it is often not ne
essary to
ommuni
ateby sending whole solutions rather than solution
hanges when you are workingin parallel. In order to support this more eÆ
ient
ommuni
ation strategy theparSA-library provides the
lass move whi
h
an be additionally implementedby the user.It is also suggested that it is prudent to avoid neighborhoods whi
h represent a6

spiky topography or deep troughs in the solution spa
e. It is also obvious thatthe size of the solution spa
e and neighborhoods should be kept reasonablysmall.3.2 Supported Cooling S
hedulesThe parSA library provides a number of di�erent
ooling s
hedules whi
h hadshown a good performan
e on large sized real world problems. Some of these
ooling s
hedules are adaptive. This means that the redu
tion of the tempera-ture depends on the
urrent SA run whi
h leads usually to a better performan
ewhile the determination of the behavior of the algorithm be
omes more
om-plex. The MIRS
heduler and the AartsS
heduler are the adaptive s
hedulesthat have
urrently be implemented in the parSA library.3.2.1 Geometri
 S
hedulerThe geometri
 s
heduler is a rather simple and frequently used
ooling s
hed-ule. It is implemented in the
lass SA EasyS
heduler whi
h also provides animproved a more
exible warming up strategy.WarmingUp(): The initial temperature is set to an user de�ned value andthe length of a sub
hain is �xed.Equilibrium() and De
rementT(): After the required number of iterationshas been made the temperature is redu
ed by a
onstant fa
tor � a

ord-ing to: Tn := �Tn�1 with 0 < � < 1Frozen(): The algorithm terminates when the average a

eptan
e ratio is lowerthan a �xed a

eptan
e ratio �min for a �xed number k of temperaturesteps.Sin
e every parameter has to be set by the user some test runs are ne
essaryto �nd suitable parameter settings for a given problem.3.2.2 Aarts S
heduler[1℄WarmingUp(): An initial a

eptan
e ratio �0 is set and an initial temperatureT0 is
hosen that approximately provides this a

eptan
e ratio. In orderto a
hieve this, the temperature is set to zero at the beginning and m0iterations are made where m0 is the average number of neighbors of asolution. After ea
h iteration step the temperature is updated a

ordingto the following rule:T = �C(+) �ln m2m2�0 � (1� �0)m1��1with m1 and m2 being the better or respe
tively worse neighbors. �C(+)is the mean value of the di�eren
es between the
ost fun
tion of all worsesolutions. After m0 steps the initial temperature T0 is set to T .7

Equilibrium() and De
rementT(): The length of a sub
hain with
onstanttemperature is set to the number of the lo
al neighborhood. After thisnumber of iterations the temperature is redu
ed toTn = Tn�1 �1 + ln (1 + Æ)Tn�13�Tn�1 ��1where �(Tn�1) is the standard deviation of the values of the
ost fun
tionat the
urrent temperature and Æ is the so
alled distan
eparameter. Thesize of Æ determines the speed of the redu
tion of the temperature. Aarts[1℄ suggests the value Æ = 0:1.Be
ause of the
onstant length of the sub
hains this
ooling s
hedule is asuitable
hoi
e for the
lustering parallelization.Frozen(): The algorithm terminates when the mean value of the
ost fun
-tion shows only very small
hanges or respe
tively the derivation of thesmoothed mean value is smaller than the set value �.If the neighborhood size is polynomial in the size of variables of the optimiza-tion problem it has been shown that the SA algorithm has a polynomial time
omplexity with this
ooling s
hedule.3.2.3 MIRS
hedulerThe SA MIRS
heduler represents a
ooling s
hedule whi
h is used by the MIRstrategies. Therefore, it has to be used in
ombination with the SA MIRSolver.Fu-Hsieng Allisen Lee [2℄ introdu
ed the following strategy: The whole SA runhas a �xed length. This leads to an important property: a time limit
an beset after that the algorithm must have
al
ulated a solution.WarmingUp(): The
hoi
e of the initial temperature is similar to Aarts strat-egy whi
h provides an initial a

eptan
e ratio �0
lose to 1. Thus, a se-quen
e of solutions is generated and di�eren
es in their
ost values arere
orded. The maximum �Cmax and the minimum �Cmin are used todetermine the start and end temperature.Tstart = ��Cmaxln�0Tend = ��Cminln�0De
rementT(): The temperature is redu
ed by a
onstant fa
tor � similar tothe redu
tion used by the geometri
 s
hedule.Equilibrium() and Frozen(): After the
al
ulation of Tstart, Tend and thetemperature redu
tion fa
tor it is simple to determine the length of asub
hain from the overall number of available iterations. The parSAlibrary supports slightly di�erent
al
ulations but the algorithm alwaysends after the
al
ulable number of iterations.8

3.3 Parallelizing Simulated AnnealingThe parallelization strategy of the parSA library is
ontrolled by the
lassSA Solver. The SA ClusteringSolver and the SA MIRSolver are
urrently im-plemented in the library. The SA ClusteringSolver
an be used in
ombinationwith the SA AartsS
heduler and the SA EasyS
heduler while the SA MIRSolverrequires the SA MIRS
heduler.3.3.1 Clustering ParallelizationThe
lustering parallelization is based on the following fa
t: the number ofneighbors that has to be visited before a move is a

epted in
reases when thetemperature sinks. Therefore, the
urrent solution remains un
hanged for manyiterations when the temperature is low. The time that is spend with the same
urrent solution
an then be redu
ed by using more than one pro
essor. Su
h apro
essor group is
alled a
luster. Ea
h
luster works on one single sub
hain.Every pro
essor parti
ularly has the same a
tual solution. If a move is a

eptedby the
luster the new a
tual solution has to be broad
asted in the
luster.It is obvious that the use of several pro
essors is only reasonable if the redu
tionof the laten
y is bigger than the
ommuni
ation overhead. That is why the
lustering moment is essential for this kind of parallelization. The generalstrategy for N pro
essors is the following:1. Every single pro
essor forms a
luster with size 1.2. Every
luster
al
ulates its own sub
hain. The length of su
h a
haindepends on the number of
lusters.3. When the
al
ulation at one temperature step is �nished, a new solution issele
ted from the a
tual solutions. This solution be
omes the �rst solutionfor the next sub
hain in every
luster.4. If ne
essary the
luster size is in
reased.5. The temperature redu
tion and the termination is similar to the sequentialalgorithm.The redu
tion of the sub
hain length in step 2 is fairly important be
auseotherwise the
al
ulation of a single sub
hain is independent of the number ofpro
essors. This would slow down the algorithm dramati
ally. This redu
tionis possible be
ause the rea
hing of the equilibrium at high temperatures is notdisturbed by the fa
t that the required number of iterations are not made inone but several sub
hains.3.3.2 Multiple Independent RunsThere are two fa
ts that lead to the idea of the multiple independent runsparallelization.� The best solution of several SA runs usually provides a better quality ofthe solution than the solution of a sequential run with the same length.9

� Is is possible to estimate the a
hieveable solution quality for a given lengthof a run.Our aim is to provide an algorithm that a
hieves a given solution quality inthe shortest possible time. Therefore, we have to determine the length and thenumber of runs. An SA run in whi
h the generated
hain has the length n is
alled a run of length n. This terminology is used when speaking of a shortrun, multiple independent runs or runs with dupli
ate length.It has been show that the
onvergen
e speed
an be
al
ulated a

ording to thisformula: P (Xn 62 Costmin) � �Kn ��K and � are
onstants spe
i�
 to the problem, Xn is the solution of a runwith length n and Costmin is the set of solutions with an appropriate quality.Empiri
ally a rather similar formula has been found for the relation betweenthe solution quality and the run length. Only the problem spe
i�

onstantsdi�er slightly from the ones above. Therefore, theoreti
al results
on
erning the
onvergen
e speed
an be used to provide an improved solution quality with thesame run length
hoi
e.There are three di�erent strategies for improving the performan
e of the algo-rithm by the
hoi
e of independent runs on parallel systems:1. Improving the
onvergen
e speed with the same number of iterations.2. Maintaining the same
onvergen
e speed with a smaller number of itera-tions.3. Maintaining the same
onvergen
e speed as the sequential algorithm.The following values
an be proven for the mentioned di�erent strategies:strategy total iterations number of runs run length
onvergen
esequential N 1 N (KN)�1 N NeK eK e�N �eK2 eK ln NK ln NK eK (KN)�3 Ne NeK K (KN)�

10

4 Installation Guide4.1 Instru
tions for Installation4.1.1 ConventionsThe parSA library
an be installed on a large number of di�erent systems andar
hite
tures. Therefore, we make the following
onventions to fa
ilitate thelanguage of this se
tion:short
ut des
riptionPARSADIR dire
tory whi
h
ontains the parSA pa
kageMPIINCDIR dire
tory whi
h
ontains the mpi header�le mpi.hMPILIBDIR dire
tory whi
h
ontains the libraries libmpi.a lib4.1.2 Requesting the Pa
kagesSin
e the parSA library is primarily designed for the use on parallel ar
hite
-tures an installation of the MPI library is needed. If it is not installed on yoursystem you may visit the following webpage for further information:http://www.m
s.anl.gov/Proje
ts/mpi/index.htmlThe latest version of the parSA library
an be requested on our homepageathttp://www.uni-paderborn.de/~parsaor
onta
t us via email :parsa�uni.paderborn.deYou have re
eived a zip-�le
alled parsa.zip. Pla
e this �le in a new dire
tory.4.1.3 Installation of the LibraryNow unzip the �le using the
ommandunzip parSA.zipand
he
k if all �les spe
i�ed in se
tion 7.3 have been properly installed. Thestru
ture of the pa
kage is very simple:� The subdire
tories lib and in
lude
ontain the ne
essary header �les andversion of the library itself. The naming
onvention of the library islibparSA$(OPERATINGSYSTEM)$(OS VERSION).a. If you have re-
eived the developer version an additional subdire
tory named sr
 willexiist where the sour
e �les of the parSA reside.11

� The subdire
tory example
ontains the example program whi
h is detaillydes
ribed later.� Some useful
on�guration �le template are situated in the subdire
tory
fg and and do
 is the pla
e of this do
ument.4.2 Compiling the Example ProgramCompiling and running the example program should assure you that the parSApa
kage is fully fun
tional. Altough a simple make�le is in
luded we will de-s
ribe the
ompilation pro
ess more detailled be
ause of the amount of di�erentoperating systems and environments on whi
h the parSA meight be used.First of all
hange the working dire
tory to:
d PARSA/exampleNow
ompile and link the sour
e�le example.

 to produ
e an exe
utable
alledexample. Please take the following instru
tions into a

ount:
ompiler: use a C++-
ompiler.in
lude dire
tories: make sure that the dire
tories MPIINCDIR, PARSADIR/exampleand PARSADIR/in
lude are sear
hed for header�les.sour
es:
ompile both example.

 and SA Problem.

 (the sour
e �le SA Problem.

ontains the implementation of the interfa
e between example and theparSA library).obje
t �les: you will �nd the obje
t �les example.o and SA Problem.o in thedire
tory PARSA/example assumed that the
ompilation was su

essful.library dire
tories: make sure that the dire
tories MPILIBDIR, PARSADIR/libsand the dire
tory of your standard C++ libraries are sear
hed by yourlinker.libraries: apart from the standard C++ Libraries you will have to link the li-braries libmpi.a, libso
ket.a, libnsl.a (supported by the MPI pa
kage) andthe library libparSAxxx.a (whi
h
an be found in the dire
tory PARSADIR/libs)Suppose you are working with a Spar
 Sun Solaris Mi
ro
omputer, then thefollowing
ommand works properly:g++ -I. -I../in
lude -IMPIINCDIR SA Problem.

 example.

-LPARSADIR/libs -LMPILIBDIR -L/lo
al/gnu/lib -lparSA solaris 2 5-lmpi -lso
ket -lnsl -o exampleYou should now be able to run the
reated exe
utable with the following
om-mand:mpirun -np 1 example 12

If the program has terminated without any error messages the installation ofthe library �les should have been su

essful. If you want to have a
loser lookon the example you have just produ
ed see se
tion 6. Please noti
e that theparSA prints its sour
e version and revision number before the SA Initializerstarts
on�guring the solver. Please indi
ate this number when you
onta
t us.

13

5 Design Philosophy of the parSA LibraryThe parSA library was designed to provide a
omfortable and eÆ
ient parallelframework for a simulated annealing optimization system, whi
h
an be appliedto many di�erent optimization problems. The MPI message passing interfa
eand the use of C++ ensures that the library is portable to di�erent parallelplatforms without redesigning the
ode.The obje
t oriented design keeps the library expandable. It is fairly easy to
reate new solver and s
heduler
lasses to in
rease the number of parallelizationand
ooling strategies of the library.This se
tion introdu
es the basi

on
epts of the parSA library. It gives a briefoverview of the stru
ture of the library and des
ribes the main ideas of theappli
ation interfa
e and the SA
on�guration �le. This
on�guration �le isused to adapt the parameters of a SA run to the problem.5.1 Stru
tureThe following �gure shows the most important
lasses, that are
urrently im-plemented in the library :
Hierarchy Browser: parSA.shared - taiko PWE:taiko solaris Page: 1

SA_ParScheduler
SA_AartsScheduler

SA_MIRScheduler

SA_Synchronizer

SA_ParSolver

SA_Scheduler

SA_Solution

SA_MIRSolver
SA_ClusteringSolver

SA_SeqEasyScheduler

SA_Initializer

SA_Solver

SA_Move

SA_RUN_TYPE (st)
SA_ClusteringScheduler SA_EasyScheduler

SA_SeqSolver

SA_Problem

There are two aspe
ts that in
uen
e the annealing pro
ess. First of all theproblem that must be solved with the library has to be modelled. This mod-elling has to be done by the parSA user by the implementation of the so
alledinterfa
e
lasses SA Problem, SA Solution and SA Move whi
h are all de�nedin the �les SA Problem.h and SA Problem.

. These
lasses are more pre
iselydes
ribed in se
tion 5.4. The other aspe
t is the
on�guration of the annealingpro
ess itself. A very
exible
on�guration is the main advantage of the parSAlibrary, be
ause you
an not only
hange the
hara
teristi
 parameters of onesingle
ooling s
heme but also
hoose between many di�erent
ooling starte-gies. Moreover you
an simply use simualated annealing on many pro
essors14

just by sele
ting another solver and so speed up the
al
ulation signi�
antly.This
on�guration is done by the settings in the
on�guration �le whi
h will beintrodu
ed in se
tion 5.6 The following se
tion will
on
entrate on the des
rip-tion of the base
lasses SA Solver and SA S
heduler and their derivated
lasses.The
lasses SA ParS
heduler and SA ParSolver were used as base
lasses forall
ombinations of solver and s
heduler that
an work in parallel. In
ontrastto this
lasses the
lasses SA SeqS
heduler and SA SeqSolver do not need animplementation of the MPI. The pure sequential version of the parSA librarydoes only provide the derivatives of these
lasses.5.2 Solver ClassesThe solver
lasses
ontrol the organization of the SA algorithm. Currently, theparSA-library provides the following solver:SA Solver: This is an abstra
t base
lass used to derivate the base
lassesof both the sequnetial and the parallel bran
h of the solver hierar
hy.Moreover this
lass is
apable of setting up the data interfa
e of the parSAlibrary by opening streams for reading the data�le and writing output�leswhi
h
ontain information about a single simulated annealing run andabout the best solution found during the optimization.SA SeqSolver: This solver is designed to serve as the basi
 solver from whi
hany other sequential solver should be derivated. It provides the minimalfun
tionality for
ontroling sequential SA runs and is able to produ
e somestatisti
al information. This Solver
an be used in
ombination with theSA SeqEasyS
heduler.SA ParSolver: This solver is the parallel analogon of the SA Solver. It ex-tends the
apabilities of the sequential version by providing statisti
almethods for a SA run on more than one pro
essor.SA MIRSolver: This solver is used for the MIR parallelization of the SAalgorithm. Be
ause of the parti
ularities of the parallelization strategy itis ne
essary to use the MIRS
heduler in
ombination with this solver.SA ClusteringSolver: This solver uses the
lustering parallelization and
anbe either used with the SA EasyS
heduler or the adaptive SA AartsS
heduler.5.3 S
heduler ClassesThe
lass SA S
heduler is the abstra
t base
lass for all
ooling s
hedules, thatare used during the SA pro
ess. The di�erent
ooling strategies have an impor-tant in
uen
e on the eÆ
ien
y of the SA algorithm. Currently, the followings
hedulers are implemented:SA EasyS
heduler: This s
heduler redu
es the temperature a

ording to a
onstant fa
tor. It had shown a rather good performan
e on many di�er-ent problem instan
es. 15

SA AartsS
heduler: This s
heduler tries to adapt the temperature redu
tionto a
ertain problem instan
e. It also
al
ulates automati
ally a suitablestart temperature. Its strategy of �nding this start temperature is alsoused by the Geometri
S
heduler if a start temperature is not spe
i�ed.SA TimeS
heduler: This s
heduler was designed to take a given timelimitinto
onsideration. There are two di�erent startegies implemented in thiss
heduler. The �rst one tries to a
hieve a given end temperature withinthe timelimit. This is done by adapting the sub
hainlength of the
oolings
hedule of the SA EasyS
heduler.The se
ond strategy whi
h is implemented in this s
heduler tries to a
hievea given solution quality in a given time. If the timelimit expires and thesolution quality is not rea
hed than the s
heduler freezes otherwise itfreezes at the given solution quality. Up to now this strategy has notbeen analysed.SA MIRS
heduler: This is a spe
ialized s
heduler whi
h has to be used whenusing the MIR parallelization of the SA algorithm.5.4 The Appli
ation Interfa
eThe
lass SA Problem must be used by the appli
ation to set up a representa-tion of the solution spa
e. Every kind of solver uses an instan
e of SA Problemto �nd an at least lo
ally optimal solution with its own SA strategy. Thereforethis
lass must provide elementary methods like �nding a neighbor of an a
tualsolution or determining the
ost of a solution. The
lass SA Solution repre-sents one single element of the solution spa
e and is mainly used by the
lassSA Problem. Finally the
lass SA Move represents just the
hange between ansolution and its neigbour. In many solution spa
es su
h a move
an be rep-resented more eÆ
iently than a whole solution. When working in parallel thesending of moves rather than solutions may redu
e the
ommuni
ation
ostssigni�
antly.This se
tion des
ribes, how an interfa
e to the parSA library is usuallyimplemented. It is divided into subse
tions dealing with the implementationof the problem spe
i�

lasses SA Problem and SA Solution and also the
lassSA Initializer, whi
h is used to invoke the annealing pro
ess.5.4.1 The Class SA SolutionThe
lass SA Solution represents one single point of the solution spa
e. Inmost implementations this
lass
ontains information about the solutions itselfabout the
hange that was made last and perhaps about the neighborhood of thesolution. Nevertheless the fun
ionality working on this information espe
iallythe sear
h of a new neighbor and the updating or resetting the solution wasintegrated in the
lass SA Problem to keep the problem des
ription as
exibleas possible. Therefore only the method SA Solution.Copy(S) and the iostramfun
tions are
alled by the library and must be implemented by the user.16

5.4.2 The Class SA MoveDuring the annealing pro
ess the
ost of the a
tual solution is
ompared veryoften to the
ost of its neighbors. In many
ases neighboring solutions onlyslightly di�er, and so when working in parallel the
ommuni
ation
osts may beredu
ed very mu
h by sending only this di�eren
e to another node. In the parSAlibrary the des
ription of su
h a di�eren
e between neighbors is
alled a move.As one
an even imagine problems where the size of a move remains
onstantthe advantages of the
ommuni
ation by moves be
omes rather obvious. If youwant to use this parSA feature you will not only have to implement the
lassSA Solution but also SA Move. However SA Move is only a
ontainer and theimplementation of some additional methods of SA Problem is also required.5.4.3 The Class SA ProblemThe
lass SA Problem is a representation of the solution spa
e of the optimiza-tion problem. The
lass has to provide three basi
 methods whi
h are essentialfor the annealing pro
ess. They are:SA Problem.GetInitialSolution(S): This method
reates a primary solu-tion S, whi
h is the starting point of the optimization pro
ess. Thismethod is supposed to be deterministi
. Its non deterministi

ounter-part is the method SA Problem.GetRandomSolution(S).SA Problem.GetCost(S): This method
al
ulates the
ost of a given solu-tion S. The
ost value is used to
ompare the quality of a new solution toan older one.SA Problem.GetNeighbor(S): This method determines (small)
hanges ofa given solution S. This
hange should be only temporarily, be
ause themethod SA Problem.ResetSolution() is used to dis
ard the last
hange.Moreover the
lass SA Problem has to provide some other methods whi
h alsodepend on the representation of the solution spa
e:SA Problem.ResetSolution(S): retrieves the former solution by dis
ardingthe
hange made by GetNeighbor().SA Problem.UpdateSolution(S): makes the
hange made by GetNeigh-bor() permanent.SA Problem.CreateSolution():
reates a new instan
e of the representationof the solution.SA Problem.GetLo
alN(): determines an estimation of the average size ofthe neighborhood of a point in the solution spa
e. Even if your optimiza-tion problem is not dis
rete a value is required be
ause the ratio betweenGlobalN and Lo
alN is used by some
ooling s
hedules.SA Problem.GetGlobalN(): determines the approximated number of pos-sible solutions. 17

SA Problem.ReadProblemData(): should be used to read the informationfrom a data �le whi
h is ne
essary to build up a problem representation.SA Problem.Copy(S,S): is used by the library to
opy one solution intoanother.If you want to use the parallelization
apabilities of the library you will at leasthave to implement the following methods of the
lass SA Problem, too:OutputSolution(ostream,S): writes the solution S to an ostreamInputSolution(istream,S): reads a solution S from an istreamAll of the des
ribed methods must be implemented to provide a minimal fun
-tionality. The additional methods
an be divided into three se
tions. The mostimportant are the ones whi
h are needed to
reate moves, extra
t moves fromsolutions and to realise the move
ommuni
ation. This
ommuni
ation methodsare rather similar to the solution
ommuni
ation methods. The se
ond se
tionof additional methods are spe
ial
ommuni
ation methods whi
h may be usedto implement an own MPI based
ommuni
ation. The last se
tion are spe
ialmethods whi
h where introdu
ed to support spe
ial appli
ations.5.4.4 The Solution Life Cy
leThe following graphi
 explains how all these methods are used within the an-nealing pro
ess:

moved solution

actual solution
GetInitialSolution

empty solution

GetCost

GetCost

ResetSolution

UpdateSolution

CreateSolution

GetNeighbor

With CreateSolution a new empty solution is generated. GetInitialSolutionprodu
es a feasible solution (in a deterministi
 manner). For ea
h solution, thevalue of the
ost fun
tion may be evaluated and GetNeighbor returns a neighborof the a
tual solution. The
ost of this so
alled moved solution is
al
ulated.A

ording to the a
tual annealing situation this new solution is either a

eptedor reje
ted, whi
h is done by the methods UpdateSolution or ResetSolution.18

5.5 The Class SA InitializerThe
lass SA Initializer is used to intialize an spe
ial solver and to laun
h theannealing pro
ess. In order to understand the use of the
lass SA Initializer,have a look at the following simple main program:#in
lude <SA Problem.h>#in
lude <SA Initializer.h>main(int arg
,
har ��argv)f SA Problem p;SA Initializer start;SA Solver �sp = start.ReadCon�gFile(arg
,argv,p);if (sp != NULL)f sp!RunAnnealing();delete sp;ggAfter you have de
lared an instan
e of the
lass SA Initializer you will onlyhave to invoke the method ReadCon�gFile. This methods re
eives the pa-rameters of the
ommand line and an instan
e of the
lass SA Problem. Theinstan
e of the
lass SA Problem will be initialized after the initializer has readthe SA.
fg �le by invoking the method SA Problem.ReadProblemData, withthe �lename spe
i�ed by the keyword data�lename in the
on�guration �le.The method SA Initializer.ReadCon�gFile() will also automati
ally initializethe
hosen solver depending on the entries of the SA.
fg �le.After your program has re
eived the initialized solver the annealing pro
ess issimply started by
alling its method RunAnnealing() from the re
ieved SA Solverinstan
e.5.6 The Con�guration FileThe
on�guration �le, whi
h is usually named SA.
fg, is the main tool to
ontrolthe library and to adapt the parameters to spe
ial problems. The followingse
tions des
ribe the
on
ept of the
on�guration �le and explain a rather simpleexample. The default name of the
on�guration �le is SA.
fg, but you may alterthe name by using the
ommand line option -
fg "�lename" when starting aprogram that uses the parSA library.5.6.1 The General Stru
tureThe following �gure presents the general stru
ture of su
h a
on�guration �le:19

f SA Solver NAME OF SOLVER fSA Solver fSETTINGS OF SOLVER BASE CLASSgSA S
heduler NAME OF SCHEDULER fSA S
heduler fSETTINGS OF SCHEDULER BASE CLASSgSETTINGS OF DERIVED SCHEDULER CLASSESgSETTINGS OF DERIVED SOLVER CLASSESgg As you
an see ea
h blo
k
ontains all the information needed to
reatean instan
e of the spe
i�ed kind. The solver sele
ted by NAME OF SOLVER
ontains information about the settings of its base
lass, the kind of s
hedulerwhi
h is to be used and �nally its own settings whi
h in
uen
e the parametersof this solver. The s
heduler whi
h is used by the solver is sele
ted by the valueof NAME OF SCHEDULER and also
ontains the information about its ownsettings and the settings of its base
lass. The next se
tion des
ribes how su
ha
on�guration �le may look like.5.6.2 A Simple Con�guration FileTo give a short introdu
tion to the SA.
fg �le we will now des
ribe a �le thatsele
ts the sequential solver and the geometri
 s
heduler:f SA Solver SA SeqSolver fSA Solver fdatafilename example.datasolutionfilename example.solutiongSA S
heduler SA SeqEasyS
heduler fSA S
heduler fOptType MAXgggg In this �le the solver SA SeqSolver is sele
ted. In the parameter blo
k of theSA Solver the name of the data �le and the solution �le is spe
i�ed. The nameof the data �le will be passed to the method SA Problem.ReadProblemData()by the SA Initializer. The solution�lename will be used to pla
e the solutionof the SA algorithm. As a s
heduler the SA SeqEasyS
heduler is
hoosen and20

in its parameter blo
k the SA algorithm is advised to treat the problem as amaximization problem. Thus, it will sear
h for the solution with the highestvalue of the
ost fun
tion.The subdire
tory
on�g
ontains some useful templates of
on�guration �les.These templates must be renamed to SA.
fg and must be pla
ed in the dire
torywhere the exe
utable is situated. The parameter settings of this �les are rathergeneral and you may probably speed up the algorithm for a given problem. Ifyou want to know more about the possibilities of the SA.
fg �le
onsult se
tion7.2.5.7 The SA Output.rs
 FileWith the version 2.1 a new output
on
ept was introdu
ed to the parSA library.There are some points in every kind of annealing where a output is suitable, forexample after the initialization, when the Equilibrium is rea
hed or when thes
heduler freezes. It may also be useful to be able to spe
ify
ertain levels ofoutput. All the output during the annealing pro
ess is now set up by the useof the SA Output.rs
 �le in whi
h bo
ks are spe
i�ed. These blo
ks
orrespondto
ertain s
hedulers and solvers. By leading integer values lines of output aremarked. Only lines with values lower or equal to the level de�ned by the ver-boselevel parameter in the
on�guration �le are used. If you take a look at this�le you will re
ognize other integers with the spe
ial literal # in front of them.Ea
h variable of a s
heduler and a solver has a
orresponding number and thesestru
tures are substituted by the variable values.Therefore the new
on
ept does not only make the output more
exible but itis also possible to adapt the output of the parSA library to a spe
ial purposeor even a di�erent language.However from the users point of view it is only ne
essary to ensure that theSA Output.rs
 �le resides in the parSA dire
tory. The output de�ned in this�le is
urrently rather similar to the output of previous versions apart frombeing better to understand.6 Solving the QAP with the parSAFrom version 2.1 on the parSA is delivered with an example program that solvesthe quadrati
 assignment problem (QAP). The QAP was
hoosen be
ause it isa well known optimization problem. As the mathemati
al des
ription of theQAP is rather simple it is also very suitable to explain how the parSA has tobe adapted so that it
an solve an optimization problem.6.1 The Quadrati
 Assignment ProblemThe origin of the QAP is the problem how to distribute n fatories on n lo-
ations and minimizing the transporting
osts between them. Mathemati
ally21

this problem
an be des
ribed as follows:given two n-dimensional quadrati
 matri
es A = (aij) and B = (bij) minimizef(p) = nXi=1 nXj=1 aij _bp(i)p(j)p being a permutation. For the general QAP A and B are not expe
ted to besymmetri
. There are as many possible solutions to this problem as there aredi�erent permutations so n!. As simulated annealing is a lo
al sear
h algorithmit is ne
essary to de�ne a neighborhood of a
ertain feasable solution. We simplyregard every permutation that di�ers only on two postions from a given one asone of its neighbors. There are only as many possibilities to
hoose a neighboras there are subsets of two element in a set of n element so:n2 = n(n� 1)2 = O(n2)whi
h is mu
h smaller than the whole problem spa
e. The other
riterion whi
hhas to be full�lled is that every solution has to be rea
hable from another byusing neighborhood operations. Obviously every permution
an be
onstru
tedin that way. Given a permutation pold and a solution pnew just
hoose index jwith pold(j) = pnew(1) and apply the neighborhood operation on the indi
es 1and n. The result is a permutiation that di�ers at most n � 1 positions fromthe required one and so the
onstru
tion
an be done by re
ursion.Therefore the QAP seems to be a rather good
anditate for the simulatedannealing approa
h. The following se
tion will show how easyily the interfa
eof the parSA library
an be adapted to a spe
ial problem.6.2 Transforming the QAP to an user appli
ation of the parSAOnly two
lasses have to be implemented. As we have mentioned the terms ofthe QAP
an be translated to terms of an optimization problem as follows:solution spa
e: our solution spa
e is set of all possible solutions. This isequivalent to all permutations of n numberssolution : a solution is one single permutation p(x)
ost fun
tion: the
ost fun
tion is de�ned by the fun
tion f(x) a

ording toits de�nition in the previous se
tion.neighborhood of p(x): another permutation that di�ers only on two postionsfrom the a
tual one.The two �les SA QAPProblem.h and SA QAPProblem.

 in the subdire
toryexample
ontain all
hanges that has to be made to solve all the QAP instan
eswith the parSA library. We added all instan
es of the QAP that are a

essibleat the QAPLIB home page [3℄. For a detailled des
ription of the pe
ularities ofthese instan
es refer to this page.The most important problem spe
i�

hanges to the
lass SA Problem are thefollowing: 22

SA Problem: the
lass SA Problem
ontains the information about the di-mension n of the two quadrati
 matri
es A and B and the matri
es itself.SA Problem.GetInitialSolution(): we simply
hoose the identity fun
tionId(x) as an initial solution.SA Problem.GetRandomSolution():
hoose randomly a permutation.SA Problem.GetCost(): Determine the
ost fun
tion with a given permu-tation. If the
ost of the old permutation and the two
hanged indi
es areknown then the
al
ulation
an be done in O(n) instead of O(n2) be
auseonly O(n) summands are e�e
ted by the
hange. There are also manysummands like a
�ad�b
+bd when you
al
ulate the di�eren
e betweentwo neighbors. These are
al
ulated more eÆ
iently by (a� b)(
� d).SA Problem.GetNeighbor(): Choose two random indi
es ij and swit
h thevalues p(i) and p(j). These indi
es are part of the solution be
ause thenthe
al
ulation of the
ost fun
tion be
omes very easy.SA Problem.ResetSolution(): reset the indi
es and the permutation.SA Problem.UpdateSolution(): make the
hange to the permutation per-manent by deleting the indi
es.Beside these
hanges some other more te
hni
al
hanges have to be done likeimplementing input and output methods. These few methods are all an usermust think about. Nevertheless they
ould remarkably speed up your programif they are implemented eÆ
iently. As the
ost fun
tion is
al
ulated thousandsof times saving only a few multipi
ations may result in se
onds or even minutesof saved time.

23

7 Referen
e7.1 Conta
tIf you have any questions, remarks or suggestions
on
erning the parSA libraryor this manual please feel free to
onta
t us:Email: parsa�uni-paderborn.deor visit our homepage athttp://www.uni-paderborn.de/~parsa7.2 The Parameters of the SA-Con�guration FileWhen examining the following se
tions always keep the gerneral stru
ture of a
on�guration �le in mind:f SA Solver NAME OF SOLVER fSA Solver fSETTINGS OF SOLVER BASE CLASSgSA S
heduler NAME OF SCHEDULER fSA S
heduler fSETTINGS OF SCHEDULER BASE CLASSgSETTINGS OF DERIVED SCHEDULER CLASSESgSETTINGS OF DERIVED SOLVER CLASSESgg The terminology of the des
ription of the parameters is the following:required parameter < possible value 1 j possible value 2 ...> :required parameters are in normal prints and the possible
hoi
es are bra
ketedby <> and divided by j.required parameter type :if the required parameter is a number, the type is spe
i�ed.optional parameter <default value j possible value 2 ... > :optional parameters are printed with slanted literals. The default valuewhi
h is automati
ally used by the library is underlined and other possible val-ues are not. 24

optional parameter type = xxx :if the optional parameter is a number, xxx spe
i�es the default value.Within the se
tions of the s
hedulers and solvers the parameters are listedin alphabeti
al order.7.2.1 Solver and S
heduler Sele
tionSolver and s
heduler are sele
ted by using their names for the solver or s
hed-uler de�nition. The following values are valid:NAME OF SOLVER :< SA SeqSolver j SA MIRSolver j SA ClusteringSolver >NAME OF SCHEDULER :< SA SeqEasyS
heduler j SA EasyS
heduler j SA AartsS
heduler j SA MIRS
hedulerj SA TimeS
heduler >7.2.2 Settings of SA Solver Base ClassThe following keywords are a

epted in the blo
k SETTINGS OF SOLVERBASE CLASS:data�lename PATH :the name of the data�le has to be spe
i�ed with its
omplete path.output�lename PATH :one single line is written to this �le for every SA-run.overwritesolution < never j better j always >:de
ision of how the solution �le is modi�ed if more than one SA run is made.solution�lename < PATH j * > :this �le
ontains the best solution found during one SA run. If no name isspe
i�ed the data�lename with the suÆx .solution is used.Startsolution < Random j Init> :
hoi
e of the initial solution. Either the method SA Problem::GetInitialSolutionor the method SA Problem::GetRandomSolution will be
alled.verbose < on j o� > :some information is written to the standard output while running.verboselevel INT = 10spe
i�es the exent of output. 10 is standard output, greater levels produ
e25

more detailed information. In the standard implementation of the library themaximum output level is 30. As the output
an be modi�ed by
hanging theSA Output.rs
 one
an also de�ne higher verboselevels.writefun
tion < stream j path >:the parameter spe
i�es the output fun
tion. Stream sele
tsSA Problem::OutputSolution(ostream&,SA Solution&) while path sele
tsSA Problem::OutputSolution(
har *,SA Solution&).The �rst of these methodsis usually used with
out as ostream and the se
ond method is used to writethe solution to a �le.7.2.3 Settings of SA S
heduler Base ClassThe following keywords are a

epted in the blo
k SETTINGS OF SCHED-ULER BASE CLASS:inita

ratio FLOAT = 0.9:the requested initial a

eptan
e ratio for the Aarts warming up method. Ifnothing is spe
i�ed 0.9 is assumed.The value has no e�e
t if initialtemperature is set.initialtemperature FLOAT = determine using Aarts method:the initial temperature. If no value is spe
i�ed the adaptive method of Aarts[1℄ is used.OptType < MIN j MAX > :sele
t the goal of the algorithm. MIN means minimize the
ost fun
tion,MAX means maximize the
ost fun
tion.pi
turedire
tory DIRECTORY :spe
i�es the dire
tory in whi
h the input �les for GNUPlot will be pla
ed,whi
h show the progress of the algorithm graphi
ally. The runtime will in
reaserapidly if this option is used!timelimit LONG = -1Amount of se
onds allowed for the annealing pro
ess. When set to a positivvalue a
tual s
hedulers but the SA TimeS
heduler just freeze after this numberof CPU-se
onds.thresholdvalue FLOAT = 0:a new solution must be better than the value of thresholdvalue � BestE tobe a

epted. If it is set to 0 then the
lassi
al SA is used.verboselevel INT = 10outputlevel of the s
heduler base
lass. See also verboselevel parameter ofSA Solver base
lass. 26

7.2.4 SA SeqSolverThe following additional keywords are a

epted in the blo
k SETTINGS OFDERIVED SOLVER CLASSES when the sele
ted solver is SA SeqSolver:algorithm < SeqAlg j TestProblem > :Either the sequential algorithm or a simple test of the implemented userfun
tions is started.7.2.5 SA ClusteringSolverThe following keywords are a

epted in the blo
k SETTINGS OF DERIVEDSOLVER CLASSES when the SA ClusteringSolver is sele
ted:algorithm < SeqAlg j ClusteredAlg j ComputeLoopFa
tor j TestProblem>:sele
tion of the algorithm. SeqAlg starts a pure sequential simulated anneal-ing run on ea
h pro
essor. ClusteredAlg starts the normal
lustering algorithm.ComputeLoopFa
tor tries to
ompute the ne
essary sub
hainlength to solve agiven problem. TestProblem runs a simple test of the user implemented fun
-tions.ChooseMove < best j boltzmann j random j �rst > :de
ides whi
h move is
hosen if a
luster �nds several a

eptable solutions.The keyword boltzmann means that the boltzmann distribution is used to makethe
hoi
e.Communi
ateInCluster < Group j Asyn
 > :sele
tion of the
ommuni
ation mode in a
luster. For better eÆ
ien
y inmany appli
ations Asyn
 is re
ommended.Communi
ationMode < Solution j Move > :In a
luster pro
essors
ommuni
ate either by sending whole solutions oronly in
remental by sending moves. If Move is
hosen, make sure that the
lassSA Move has been properly implemented.ConstantSizeMove < yes j no > :In
ases where
onstant size of moves
an be guaranteed, the
ommuni
a-tion be
omes more eÆ
ient.DistributeSolutionAfterSub
hain < best j boltzmann j random j no>: spe
i�es if and how an initial solution is
hosen for all
lusters after one27

sub
hain.Equilibrium < Global j Lo
al > :de
ision whether the equilibrium is a
hieved or not. Global means that onesingle
hief pro
essor de
ides about the equilibrium. Lo
al means that everymaster of a
luster de
ides for his own
luster.Ex
hangeFun
tions < stream j MPI >:sele
tion of the user implemented ex
hange fun
tions. Stream sele
ts thestream fun
tions while MPI sele
ts the MPI based fun
tions. Even the streamfun
tions internally use MPI for
ommuni
ation, but as most users do allreadyknow streams these fun
tions should be easy to implement. Nevertheless moreexperien
ed users may
hoose to implement the MPI
ommuni
ation dire
tlyby adapting the MPI based fun
tions.MaxCluster INT = -1.0maximum number of
lusterlevels. The maximum number of pro
essors ina
luster is bounded by 2MaxCluster. Therefore the value has to be in between 0and log(numberofpro
essors).MinE� FLOAT = 1.1:sele
tion of the
lustering strategy. If the value is greater than 1.0 thenprodu
t of
luster eÆ
ien
y and
luster speedup is maximized. If the valueis between 0.0 and 1.0 then the
lusters are enlarged by
luster eÆ
ien
y >MinE�. If the value is set to 0.0 then the speedup is maximized.7.2.6 SA MIRSolverThe following keywords are a

epted in the blo
k SETTINGS OF DERIVEDSOLVER CLASSES when the SA MIRSolver is sele
ted:Betta Runtime FLOAT = 1.1:the in
rease fa
tor for the run lengths must be � 1:0Ebest FLOAT:the eastimated
ost of the best known solution has to be spe
i�ed.Epsilon FLOAT = 0.01 :the solution quality, whi
h has to be a
hieved.Maximum RunLength FLOAT = RunFa
tor � GetLo
alN():length of the longest run.Minimum RunLength FLOAT = GetLo
alN():the initial length of a run. 28

Samples INT = 10:number of runsRunFa
tor FLOAT = 5 :In the se
ond phase runs with a length out of the interval GetLo
alN(). . . RunFa
tor � Lo
alN(). This value is ignored when Maximum or Minimum-RunLength is de�ned.7.2.7 SA SeqEasyS
hedulerThe following keywords are a

epted in the blo
k SETTINGS OF DERIVEDSCHEDULER CLASSES when the EasyS
heduler is sele
ted:
oolingratio FLOAT = 0.9:the fa
tor the temperature is redu
ed by after every temperature step. Ithas to be greater than 0 and less than 1.frozenlimit INT = 5the number of su

sessive temperature steps with an a

eptan
e ratio smallerthan 'mina

ratio' needed to rea
h the frozen state in the s
heduler.mina

ratio FLOAT = 0.01:de
ision if the SA algorithm is frozen. A value greater 0 than means
oolinguntil 'frozenlimit' sub
hains have an a

eptan
e ratio < mina

ratio.The value0 means de
rement the temperature until the mean value stays almost the same.sub
hainfa
tor FLOAT = 1.0:
hosen sub
hain length is in
reased by this fa
tor.sub
hainlength INT = GetLo
alN:the length of sub
hains (number of iterations) on a single temperature level.verboselevel INT = 10outputlevel of this s
heduler
lass. See also verboselevel parameter of SA Solverbase
lass.7.2.8 SA EasyS
hedulerThe SA EasyS
heduler a

epts the same keywords than SA SeqEasyS
heduler.The following additional keywords are a

epted in the blo
k SETTINGS OFDERIVED SCHEDULER CLASSES when the SA EasyS
heduler is sele
ted:sub
hainredu
tion < linear j sqrt j none > :29

in ea
h
luster, the sub
hainlength is adapted referring to NPROC. linearmeans that the sub
hainlength is devided by NPROC. sqrt sele
ts the devisionby pNPROC and none means no sub
hain shortening at all.7.2.9 SA AartsS
hedulerThe following keywords are a

epted in the blo
k SETTINGS OF DERIVEDSCHEDULER CLASSES when the SA AartsS
heduler is sele
ted:delta FLOAT = 0.1:distan
e parameter.epsilon FLOAT = 10�4:stop parameter.omega FLOAT = 0.8:smoothing parameter.7.2.10 SA MIRS
hedulerThe following keywords are a

epted in the blo
k SETTINGS OF DERIVEDSCHEDULER CLASSES when the SA MIRS
heduler is sele
ted:Alpha FLOAT :a kind of temperature redu
tion fa
tor. It is used to
al
ulate the numberof temperature steps. It must be a value between 0 and 1.Betta FLOAT :
hains are this times longer at the next temperature level. This value hasto be � 1.endtemperature FLOAT :has to be greater than 0.Temperature Reset = 0:determines whether temperature is resetted or not.7.2.11 SA TimeS
hedulerThe following keywords are a

epted in the blo
k SETTINGS OF DERIVEDSCHEDULER CLASSES when the SA TimeS
heduler is sele
ted:30

endtemerature FLOAT = -1.0 :the endtemperature whi
h should be a
hieved in a given timelimit. Thetemperature steps that are probably needed to rea
h the frozen state are es-timated referring to the the start temperature, the end temperature and the
ooling ratio. After that all the iterations, that
an be made in the given time-limit, are distributed
onstantly on the single steps.solutionquality FLOAT = 1.0 :if set, then the s
heduler freezes either after the given timelimit or if thissolution quality is rea
hed. It represents the value of the
ost fun
tion.7.3 List Of FilenamesThis se
tion
ontains a list of the �les that are part of the parSA-pa
kage.

31

subdire
tory �lename des
ription. version.txt des
ription of the delivery pa
kageexample SA QAPProblem.h interfa
e between example program and libraryexample SA QAPProblem.

 interfa
e between example program and libraryexample SA QAP.

 the example programexample SA.
fg
on�guration �le that
ontrols the annealing algorithmexample SA Output.rs
 de�nes the outputexample o�les.in
l a list of all generated obje
t �lesexample Make�le LINUX/UNIX make�leexample data subdire
tory
ontaining QAP instan
esin
lude SA S
heduler.h abstra
t s
heduler base
lassin
lude SA ParS
heduler.h abstra
t base
lass MPI using s
hedulersin
lude SA SeqEasyS
heduler.h geometri
 s
heduler sequentialin
lude SA EasyS
heduler.h geometri
 s
heduler parallelin
lude SA AartsS
heduler.h Aarts' adaptive s
hedulerin
lude SA ClusteringS
heduler.h s
heduler
lass used by ClusteringSolverin
lude SA MIRS
heduler.h s
heduler
lass used by MIRSolverin
lude SA TimeS
heduler.h EasyS
heduler using a given timelimitin
lude AllS
hedulers.h
olle
tion of s
heduler header �lesin
lude SA Solver.h abstra
t solver base
lassin
lude SA SeqSolver.h simple sequential solverin
lude SA ParSolver.h parallel solver base
lassin
lude SA ClusteringSolver.h
lustering parallelizationin
lude SA MIRSolver.h multipel independent runs parallelizationin
lude SA Initializer.h starts the sele
ted solverin
lude SA Syn
hronizer.h sy
ronizes the
ommuni
ation in a
lusterin
lude SA Output.h this
lass
ontrols the output of the annealing pro
essin
lude SA Output.rs
 in this �le the outputlines are spe
i�edin
lude TIntKeyList.h sorted list used by SA Outputin
lude parrandom.h random number generator for parallel ma
hinesin
lude rngs.h random number generationin
lude
onstants.h
onstants de�nitionin
lude util salib.h mathemati
al fun
tionslibs libparSAxxx.a the parSA library; xxx spe
i�es the operating systemdo
 parSALibDo
.ps User Manual (this �le)
fg SA.
fg.xxx.yyy templates for
on�guration �les:xxx spe
i�es the solver yyy the s
heduler

32

Referen
es[1℄ Aarts, E.H.L. et alParallel implementations of the Statisti
al Cooling Algorithm,INTEGRATION, the VLSI journal 4 (1986), 209{238.[2℄ Lee, S.Y., K.G. LeeSyn
hronous and Asyn
hronous Parallel Simulated Annealing with Multi-ple Markov Chains,IEEE Transa
tions on Parallel and Distributed Systems, Vol. 7, Nr. 10(1996) 993{1008.[3℄ The QAP home page:http://www.imm.dtu.dk/ sk/qaplib/

33

