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Synchronous and Asynchronous 
Parallel Simulated Annealing 
with Multiple Markov Chains 

Sao-Young Lee, Senior Member, IEEE, and Kyung Geun Lee, Member, IEEE 

Abstract-Simulated annealing is a general-purpose optimization technique capable of finding an optimal or near-optimal solution 
in various applications. However, the long execution time required for a good quality solution has been a major drawback in practice. 
Extensive studies have been carried oulto develop parallel algorithms for simulated annealing_ Most of them were not very 
successful, mainly because multiple processing elements (PEs) were required to follow a single Markov chain and, therefore, only a 
limited parallelism was exploited. In this paper, we propose new parallel simulated annealing algorithms which allow multiple Markov 
chains to be traced simultaneously by PEs which may communicate with each other. We have considered both synchronous and 
asynchronous implementations of the algorithms. Their performance has been analyzed in detail and also verified by extensive 
experimental results. It has been shown that for graph partitioning the proposed parallel simulated annealing schemes can find a 
sclution of equivalent (or even better) quality up to an order of magnitude faster than the conventional parallel schemes. Among the 
proposed schemes, the one where PEs exchange information dynamically (not with a fixed period) performs best. 

Index Terms-Asynchronous communication, graph partitioning, multiple Markov chains, parallel algorithm, simulated annealing, 
solution quality, speed-up. 

---------+--------­

1 INTRODUCTION 

SIMUL'\TED annealing (SA) is an iterative probabilistic 
algorithm which combines local search with Monte 

Carlo techniques [1J. Numerous researchers have demon­
strated that SA can be very effective in many optimization 
problems Stich as TSP, placement and routing in VLSI 
design, logic minimization, code design and image proc­
essing, etc. One of the distinct features of the SA is its hill­
climbing capability which allows escape from local optima. 
Also, it may start from any initial solution and converges 
to an optimal or near optimal solution [2J. In addition, 
SA is applicable to various classes of problems including 
discrete, nondifferentiable, or combinatorial problems, etc. 
However, the long execution time of SA has been the major 
drawback in practice. 

There have been numerous efforts to make SA practical 
for problems of realistic size by shortening the execution 
time. 111ese efforts can be classified into two major categories: 
algorithmic optimization (of sequential SA) and parallel 
Processing. 

Two types of approaches are prevalent in the category of 
optimizing SA: careful perturbation and cooling. In the 
approach of careful perturbation, the idea of range-limiting 
was introduced and successfully applied to function mini­
!l1.J.zation cll1d VLSI deSign [3], [41. Since the execution time 
IS proportional to the total number of trials, a heuristic 
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perturbation scheme may shorten the execution time by 
reducing the chance of rejection [3], [5J. In the other 
a pproach, most schemes utilize statistical quantities such 
as mean and variance of costs obtained during annealing. 
They usually modify the conventional annealing schedule 
to accelerate the execution of SA. However, it has been 
shown that modifying the annealing schedule does not 
improve both the solution quality and execution time [6], 
[71. The execution time was reduced by a factor of 2 at best. 

The advent of parallel computers has made it possible to 
achieve speed-up of orders of magnitude in various appli­
cations. Most parallel SA schemes previously proposed 
share the feature that multiple PEs follow a single search 
path (Markov chain) [81, [91, [10], [11], U21, l13] (to be 
referred to as SMC PSA). In SMC PSA, C1 perturbation at 
each PE and/or evaluation of the perturbation is executed 
in parallel, and then only one global solution is accepted in 
each iteration. While this approach preserves the sequential 
nature of SA, follmving a single search path might be an 
unnecessary restriction especially from the viewpoint of 
performance, i.e., the execution time and solution quality. 
That is, only a limited parallelism is exploited, which is 
believed to be the main reason why most of the previous 
PSAs have not been very successful. 

Banerjee et al. implemented SMC £'SA schemes for a stan­
dard cell placement problem on hypercube multiprocessors. 
The f'SA schemes are based on ( sequential version of SA 
(TimberWol£). 111e task (SA) is spatially partitioned and non­
exact calculations by multiple PEs are allowed by assuming­
temporary locality. TI1ey concluded that such C/Toneous calcu­
lations can achieve a considerable speed-Up without seriously 
ilffecting convergence lIO]. However, this may be acceptable 
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r particular applications only when a periodic synchroniza­
.Ion is incorporated to compensate for the erroneous ca1cula­
"';cms. Consequently. either th synchronization overhead may 

.:rease the execution time or the erroneous calculations may 
etcriorate the solution quali·ty. Also, a general purpos PSA 

scheme which takes advantage of the acceptance rate but fol­
lows a single Markov chain was proposed by Roussel-Ragot 
and Dreyfus. Besides the drawbacks due to the single Markov 
chain, their synchronization strategy using the acceptance rate 
does not appear to be very efficient n1J. 

The feaSibility: of solving combinatorial problems on a 
Boltzmann machine was investigated by Aarts and Korst. 
[15J. However, it has been shown by computer simulation 
that the performance characteristics (convergence and 
speed) stronglv depend on the type of proble~. Also, a 
practical implementation on a massively parallel machine 
resulted in very small speed-Up for placement problems 
[16J. These facts imply that the implementation of SA on a 
massively parallel machine is not yet suitable in practice 
due to its sequential and random natures. 

In contrast to the abundance of SMC PSA schemes, there 
are very few schemes where PEs are allowed to follow 
multiple Markov chains (to be referred to as MMC PSA). 
Aarts and Korst described the idea of the :vJJ\1C PSA, 
namely the division algorithm. However, it does not seem to 
have been fuJly developed. The idle and communication 
times which are inevitable in practice are not taken into 
account. In addition, PEs may exchange the information at 
non-quasi-equilibrium state in the proposed algorithm, 

'hich may not 1 ad to an optimal solution [7J. 
'- In this paper, we propose a new MMC PSA which can 

overcome the potential drawbacks of the previous PSA 
schemes. One of the distinct features of Oill scheme is that 
PEs (following; multiple Markov chains) communicate with 
each other dynamically, not with a fixed period. This yields 
a significant savings in communication time by allOWing 
PEs to exchange only useful information. Also, it is shown 
that the information exchange can be implemented asyn­
chronously in order to further improve performance of the 
proposed MMC PSA. The goals of the proposed PSA are 

1) to achieve higher speed-Up and efficiency, 
2) to obtain a good solution quality (at least as good as 

that of the sequential SA), and 
3) to realize problem independent performance. 

nus paper is organized as follows. In Section 2, the new 
M\IIC PSA and its asynchronous version are described, fol­
ImNina our versions of MC PSAs. In Section 3. The SMC and 
MMC PSAs are compared through theoretical analysis. The 
implementation results for graph partitioning are provided 
with ctiscussions in Section 4, followed by conclusions in Sec­
tion 5. 

2	 PARALLELIZATION OF SIMULATED ANNEALING 

2.1 Simulated Annealing 
~A, also called statistical cooling, has many attractive features 

_ lduding the convergence to a high quality solu.tion, versatil­
ity, and ease of implementation. However, SA requires a care­
ful sdup of the basic strategies and parameters, e.g., 

1) how to define the config-ura bon space and an appro­
priate cost function, 

2) how to implement an efficient perturbation scheme 
and 

3)	 how to design the coolinf; schedule including initiai 
temperature, a rule for temperatille decrement, quasi­
equilibrium conditions for a temperatille. and i1 stop 
cntenon. 

A typical structure of SA consists of two nested loops as 
shown in Fig. 1. It starts from an arbitrarily selected COn­

figuration So with an appropriate initial temperature (T, ) 
and works to minimize a given cost function. At a fixed 
temperature. the inner loop repeatedly executes the fol­
lowing three step operation, to be referred to as iteration. 
until an inner loop break condition is satis ied. It randomly 
perturbs the current solution (or configuration), evaluates 
the corresponding cost, and accepts the new solution with 

the probability of min(l,t'--f) where t.C is the cost change 

due to the pertillbation and T is the Cillrent temperature. 
The outer loop decreases temperature according to the rule, 
T f-o:T , where 0:, the cooling coefficient, satisfies 0 < 0: < 1 . 
It can be said that SA consists of a sequential chain of con­
secutive perturbation, evaluation and decision steps. 

T~Ti; 

While the outer loop break condition is nat met do { 

While the inner loap break condition is nat met do { 

Perturb CUITent t.onfiguration 5 to 5"; 

Evaluate t.ost function and find the difference; 

tlC =C(5") - C(s); 

Accept new configuration with probability min(l, e-¥-); 

T ~ a<T; 

Fig. 1. Typical structure of simulated annealing. 

Those parameters mentioned above, which control the 
execution of the nested loops are called scheduling parameters, 
i.e., initial temperatllre (T j ), cooling coefficient (ex), and cquilib­
riwn conditions (also known as break conditions) for the ilmer 
and outer loops. The execution time and solution quality 
are heavily dependent oli the scheduling parameters. In the 
fol1o\\'1ng, 'we will first describe Oill versions of SMC PSAs, 
mainly for comparison purposes, and then present the 
proposed NfMC PSA In evaluating performance of a PSA, 
we need to consider solution quality as well as execution 
speed. The execution speed may be quantified in terms of 
speed-up (5) and efficiency (E). The speed-up (5) is defined as 
the ratio of the execution time (on one PE) by the sequential 
SA to that by the PSA (on N PEs) for an equivalent solution 
quality. In the ideal case, 5 would be equal to N. Efficiency 
(E) is defined as the ratio of the actual speed-up to the ideal 
speed-up (N) 

2.2 SinglE 
Lei" defin 
local distur 
t\llP PEs al 
Note that 
rHO'pe by PE 

In SMC 
Co pe.rturba 
tion. Th l 

change is 
One PE, t!' 
trol, colle 
schedulinl-

In this ~ 

the convel 
compared 
mOVl! sehel'. 
Sell me. Ea\. 
strategy. 

2.2.1 Sing 

In the sin(7 
move. The 
which are 
primary P. 
perturbed 
PE is col. 
done by a 
all PEs. De 
and is bro, 

This sd 
per pertur 
ried out. .P 
the anneaJ 
(near) opti 
figuration. 
when the t 
This degTa 

2.2.2 MuJ 

In the mull 
communic; 
mary P i 
be	 \1/2 m 
eadl pc I 

PEs an. til 
in d1argeol 
and bra d. 
Call figura ti 

The me, 
rapidly 'h 
bon chang 
near the . 
trapped ir 
cert< in "0 

optimu 
by a S111"IJ 

One PE ',S( 

de di 'ie 
number 0 



1996 ( L.EE AND LEE: SYNCHRONOUS AND ASYNCHRONOUS PARALLEL SIMULATED ANNEALJNG WITH MULT1PLE MARKOV CHAJ S 995 

)nro- I 

neJne 

initial 
1uasi­
~ stop
 

)PS as
 
i con­

e (Ti )
 

fixed
 
le foi-

Tatio;:. 
,domlv 
31uates 
,n with 

change 

~rature. 

he rule, 
. a < 1. 
of con­

ntrol the 
trQmeters, 
d Iqllililr 
the inner 
n quality 
,rs. In the 

PSAs, 
~s ,t the 
:)t PSA, 
.;.xccution 

terms vi 
letined as 
e< 'ial 
t 5o-U0n 

SfficienC)' 

the ideal 

2.2 Single Markov Chain PSA 

Let's define a couple of terms first. A move i~ defined to be a 
local disturbance f the oluilan (configuration), in which 
two PEs are inval ed (refer t Secti n 4.2 for examples). 
I ete that a pertlLrbation may result from more than one 
move by PEs, I.e., from a set of concurrent moves. 

In SM PSA, local moves t PEs which are involved in 
a peTturbation form one gl bal perhlrbation of ·configura­
tion. The diiferenc in the cost due to the configuration 
change is evaluated by all PEs cooperatively in parallel. 
One PE, the scheduler, takes care of the perturbation con­
trol, ollection of local evaluation results, dec.isiun, and 
scheduling of the annealing. 

In tili s c'on, three variations of SMC PSAs similar to 
the conventional PSA schemes are described. TI10se will be 
compared with the prop ed 1 PS . Tol'Y are th single 
m(Jue sdlCme, the multiple move scheme, and the hybrid move 
scheme. Ea h of thes variations has a different perturbation 
strategy. 

2.2. 1 Single Move Scheme 

In the ingle move scheme, a perrurbation results from a 
move. The scheduler PE randomly chooses one pair of PEs 
which are to interact with each other for perturbation. The 
primary PE of the hvo initiates the perhtrbation. For the 
perrurbed configuration, the partial cost evaluated by each 
PE is collected at the scheduler. Thus, a perturbatiun IS 

done by a pair f PB whiie the evaluation is carried out by 
all PEs. D . ion on the pertur aii n is made by the cl1eduler 
and is broadc3,t to all oth r PEs. 

11lis cherne allows only one move between a PE pair 
per perturbation. all wing an elaborate annealing to be car­
ried ut. A a consequence, esp ciaily in the tinal stage l)f 

the annealing, thi 5 -heme could arefull proceed to a 
(near optimal solution due to radual ehe nge i.n the con­
figuration. However, as shown i.n FiO". _a, most PEs are idle 
when the the selected PE pair is working on a perturbation. 
This degrades the parailelization efficiency. 

2.2.2 MUltiple Move Scheme 

In the ultiple move erne, all PEs are paired up and the.' 
COmmWlicate with each other when performing moves. Pri­
mary PE initiate a perturbation b selecting moves; there can 
be /2 moves per perturbation as shovvn in Fig. 2b. Then, 
each ubed. contiguration is evaluated by the corresponding 
PEs and U1e 10011 r re c llecteel at the s hedul r, whiell is 
U1 chaf?e of the overall annealing schedulin . A decision is made 
and b d .<lst by the'cheduler to upd, te the intermediate 
COnfiguran n in th same \ ayas in the single m ve e.me. 

The multiple move cheme can .hange the cost more 
rapidly than the single move scheme ~in e the configura­
tion Chang per perturbation can be made larger. Howev r, 
ear th tin ta~e f annea in~, th s lution (co t) being 

b'-clPped in < I cal optimum may e jlv n cillate ilH)W1d a 
c· .. .• 
en.am COil I~uratlon and not conv rge toward a ~lobal 
~Pt1rnum. In this case, it waul be d irabl t modi y lost 
Ya small • m un t. Iso. "in e th decision is still rm: de bv 

dne PE ('3ch uler) while the oth s are idle, J 'ubstanti~l 
egradation of ef iciency mClV r lut in, es ciallv when the 

nUmb at fiE LS Jar c. • 

. ) Single m ve scneme b Multiple mO\'e scheme 

o PEwilh prim"r"" lIon 

.c=:J collect CEJ pertUrb ( add, l'r;InQ, e I '~ch:lnEC) 

I I broadc:nsl CE:J evalu:ue 
_ idlcslal.e OLJ Jedde 

Fig'. 2. SMC PSA schemes (a) single move scheme, (b) multiple move 
scheme. 

2.2.3 Hybrid Move Scheme 
TI1e hybrid move scheme takes advantage of both the single 
move and the multiple move scheme. The basic idea 
appear to be equivalent to mploying a range limiting 
function which, in general, restricts tll range of moves 
according to the temperature. [3!. 

Tn the hybrid move scheme, the acceptance rate (the number 
of perturbations accepted/the number f perturbations tried), 
is measured during annealing. It is used to adaptively deter­
mine the type of perturbation to be performed. The single 
move would be desirable in oider to generate a small pertur­
bation when the acceptance rate is low. At high acceptance 
rates, multiple mov<::s to generate a large perturbation may 
lead to a fast reduction of the 0 t. Utilizing the acceptance rate 
does not dd a heavy burden th edluer because the in­
formation at each PE n be d 'vered 0 the eduler durin 
the mfonnation exchan e preceding a decision. 

2.3 Multiple Markov Chain PSA 

The ,1pproach of SMC P A has t least two fundamental 
drawbacks. Fi.rst parallelism is limit d ince it is onfined 
to a :;ingle -eareh path. Second" ver high overhead is to 
be paid "ue to t 0 frequent communi a i n. 

tn order improve performance f C PSA, one may 
r lax the restriction that aU PEs f How < singleearch path. 

ne possibility is to have PEs tra multiple earch paths at 
the s me time, i.e., mu tip! . lar v 'hain CMt'vl } PS . 
Every PE I the entir "C pac, d lhe perhU"bation, 
evaluati n :\l1J dec-isi n .Ire performed by ea h PE indi­
vidually. \t the t:!nd of the <11, rithm, the best so ution 
among the Psis :i lected. Th initial temperature, he 

II 
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cooling coefficient and the equilibrium conditions can be 
independently decided and controlled bv each PE. Since 

'tch PE randomly perturbs il configuration independently 
~. others, it would b£~ highlv unlikely that any two PEs fol­

lows the same path ror better performance, PEs may be 
allowed to interact with each other as \-\fill be described later. 

[n order to guarantee a reasonable speed-up, the number 
of trials al a temperature is reduced by a certain factor, 
called reductioll factor (refer to Section 3 for more details). 
Then, it is shown that we can still gel an equivalent or even 
better solution. 

Since PEs in the MMC PSA do not have to interact as 
frequently as in the SMC schemes, communication over­
head will be significantly lower, which leads to a higher 
speed-up and efficiency, Also, the system is less likely to be 
trapped in a local optimum because multiple search paths 
are traced simultaneously. 

Three schemes, namely, the noninteracting scheme, the 
periodic exchange scheme, and the dynamic exchange scheme, 
will be described helow. 

2.3.1 Noninteracting Scheme 
Each PE independently perturbs the configuration, evaluates 
the cost, and decides on the perturbation. PEs do not interact 
dming individual annealing processes until all PEs find their 
final solutions. Then the best of the solutions is saved and the 
others are discarded. One potential problem is that, as illus­
trated in Fig. 3<1, aD other PEs may have to wait for the PE with 
the longest seardl path (chain), resuHing in idle time in every 

PE (except one), whidl mav degrade the efficiencv substantially. 
In typical combinatorial problems, the computatIonal 

load for perturbation and evaluation varies with configura­
tion. Thus, as the annealing proceeds, the variance 0 the 
accumulated computdtional load among PEs becume~ 

larger due to the random nature of SA, i.., a larger vari­
ance in computation (or idle) time. Becaus PEs do not in­
teract with each other until the end of SA, some of them 
mav not perform useful computations. An efficient imor­
mation exchange among PEs may be able to prevent PEs 
from performing unproductive computation or being idle 
so that the efficiency of parallelization can be improved. 

2.3.2 Periodic Exchange Scheme 
One possible way to improve the performance, referred to 
as the periodic exchange scheme, is illustrated in Fig. 3b. In 
this scheme, PEs exchange local information including lhe 
intermediate s lutions and their costs with a fixed period. 
Then, each PE restarts from the best of the intermediate 
ones Alternatively, to reduce the chance to be trapped, a 
random selection among the equilibrium solutions mav be 
employed (11]. Also, depending on the intermediate cost 
distribution, the population update used in the genetic 
algorithm can be adopted [20]. We define a Markov chain 
between two successive information exchanges as a segment. 
Note that the multiple Markov chains are not completely 
independent, but they are within each segment. 

Compdred to the noninteracting scheme, commwucation 
overhead in this periodic exchange scheme would be 

(ll) Periodic. exc.hunge MMC scheme ee) Asyncbronous ~['dC scheme 

c:=J pC'1urb! evaluate I decide 

_ idlc.stale 

~ global state access 

Fig. 3. MMC PS/I, schemes (a) nonlnteracting scheme, (b) periodic eXchange scheme (synchronous), (e) asynchronous scheme. 
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in reased. Howe\ er, each PE can utilize the information 
from other PEs such that the decrease in computations and 
i Ie hmes an be gre"i\ter than the inere se in communication 
overhead. For instan e, a certain PE which is trapped in an 
inferi r solution can recognize its state by comparing it 
with othe and rna accelerate the nnealing procedure. 
That is, PEs may collectively converge to a better solution. 
Nevertheless, th period of the information excharlge needs 
t be carefully sel cted depending on how the intermediate 
solu ions affect the convergence of other PEs. 

This scheme resembles the division algcritlllli 1,\1ith com­
munication proposed in the literature [7J. However, note 
that this scheme does not require communication among all 
PEs (t ev t mp rattire while the division algorithm does. 

mmunic hon at every temperature would incur too 
much synchroni.zafon overhead. 

2.3.3 Dynamic Exchange Scheme 
The statistical data obtained during ex cution may be utilized 
to ad pti ely control the SA pr ess in each PE to further 
reduce the xecution time. For example, the acceptance rate 
whidl is dosely related to the annealing tate can be utilized. 
The periodic exchanges may induce unnecessary and 
untimely information exchang . Moreo\'t~r, an intermedi­
ate solution derived at insufficiently cooled state can 
hamper the com erge.nce of other PEs. 

We pr pose a new MMC PSA, the dynamic exclzalloe 
scheme, which adapti el' d termin when infonnation is 
to be exchanged. In the dynamic exchange scheme, whenever 
the f II wing tw c nditi s are . fied, the information 

c11i.mge mong PEs is calTied out. First" certain p riod of 
time has to el ps , i.e., to allow each PE. ufficicnt ind 
pendent annealing. Second, th acceptance rat is below a 
ce in value, i.e., some PEs arrive at ignificantly better 
solutions. That is, PEs excha~nge in.formation on.ly when 
necessary rather than with a fLxed period. In thO way, P 
more effi iently guide each other to a higher quality solu­
tion. Also, communication time can be reduced substan­
tially. In addition, to utilize the idle time, all PEs may con­
tinue even after the erminatiun criterion is met) their own 
annealing proc ses by exchanging their solutions until the 
PE, for which the termination criterinn is met last., finds its 
final solution. In such a case, all PEs actually terminate their 
ann ling simultaneousl '. 

2.4 Asynchronous MMC PSA 

The MMC I SAs des -ribed in the previous section are syn­
cbron us s hemes in that aU Es sh uld b read before, 
information exdlange tak s place. While the synchronous 
MMC i expe t to :nd < lobal optimal or near op­
timal s [ution fa ter than the conventional SMC PSAs, there 
is till p te ti, I for c nsi erable p rforman e (e: pecially 
Speed) im rov ment. Ea h PE in the svnchronous MMC 

A ne 0 wait r r ther PEs i . d{ egment b fore it 
Can COmmulticate with them to ~et their CUlT nt 'olutions 
~Iocaf stales} for amp r' n, illustrated in Pig. 3 . TIlere­
lore, unl Lh segment I ngth i' th am for, U paths llr 
P,s (an extremel. unlikely condin n), tfioen,' ( paral­
lehzation lS d"graded u t the idle time of each P ". As 
the variation in "egment length 'lmong PE incre es, the 
etficien lecreas. 

In order to further improve the performance of the 
MMC PSA, we pr pose a ync.hronous commun.ication 
among PEs accessing the global stat to r .. ue or elimi­
nate the idle times~ ach PE f Llow a eparate search 
path, access th global state which onsist of tlle currE'nt 
best solution and its c st whenever it finishes a segment, 
and updiltL'.S the state if necess ry. The global state is 
stored in a memory location that can be acce <;ed by all 
PEs. Once a PE geb the global state, it proceeds to the 
next segment without an. delay. For the asynchronous 
MMC PSA, the definition of segment needs to be generalized 
to a search path or Mark v chain that a PE follows be­
tween two succ ssi e accesses communications) to the 
global state. J ote that this definition is valid for the 
synchronous MMC P A also. 

In the case f the as nchronou C PS ,each PE 
locks the global state before accessing it at the end of each 
segment, and unlocks it subsequentl for other PE . If the 
local st te is better than the global state, it updat s the 
ulobal tate b, i I cal state. Otherwise, it updat its local 
state by the global state. Then, without any delay, it pro­
ceeds to th foIl wing sement. On the contrat:, in the 
case of the synchronous MMC PSA, each PE accesses and 
updates the global state in th same manner, but need" to 
wait until all other PEs finish th updating in each seg­
ment. Then, the global state which is the best solution 
(and its c t) found in that se "'ment is copied by ill! PEs 
before they initiate tht!ir next se ments. 

The asynchronou 1MC PS has the follOWing featur 
c mpared to the synchronou MMC PSA First, no PE will 
b idle during annea.linu. That is, di f rent len ths of seg­
ments do m..t cause iJle states u til Marko chain ends 
since communication (global state access) is carried out 
asynchroDnLlsly. Second, c mmunication overhead itself is 
I s in the ,1~ynchronQus implementation than in the syn­
chronous one. In the ,;ynchronous PSA, local tates 
are to be exchanged among PEs; during this time computa­
tions are n t pe-rformed. In contrast., an isolat d ac ess to 
the global state is needed by each PE at the end of each 
- gment in the asyndrronous MM PSA. Simultaneous 
ccesses by PEs, which r 'ult in conflicts, are unlikel '. 

Third, the probability or being trapped in a 10 al optimum 
n be smaller dep~ding on the c st function. This is 

mainly due to the fact that not ,Ill PEs tart from the same 
tat inach 5 gment while they do in the ynctu'ono 

MM _PSA. 

3 PERFORMANCE ANALYSIS 

In thi section, we model the PS 5 de cribed in the previ­
ous ection and compare their per or anee. The main 
purpose i' to how analytical! ' that the MM PSA can 

form better than the' rs an t at the asynchronoll.s 
MMC [-'SA can be faster than the synchronous MM [SA. 

3.1 SMC PSA vs. MMC PSA 
We consider the MMC rs first Let th' time f r one item-

ion (P/E/D) b denuted b tIl = II' / ..... /<1) <lnd! Jenot 
the number of hi, L at he kth tern tur outer) loop at 
rEi' hen the t tal cxecuh n lime f the n n-interactin r 
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Fig. 4. Simplffied annealing model (number of trials vs. outer loop 
count) for (a) SMC PSA and (b) MMC PSA. 

MMC PSA with N PEs, t",m((i'J) can be written as follows: 

(1) 

where I), is the final loop count of PE j and T is the total 
comrrnmication time For the interacting MMC PSAs, the 

",A~ 
first term becomes Lj=l maxjc(:,.,N) I/ .., where M is the 

number of segments and I ij is the total number of trials in 

the jth segment of PEi' 
It is reasonable to divide the temperature into higher and 

lower temperature zones by the cut-off temperature. TI,e cut­

off temperature (TJ is defined as a temperature at which 
the number of trials per temperature is noticeably reduced. 
Then, the annealing curve, the number of trials versus the 
outer loop count, can be approximated by a two-step curve 
as shown in Fig. 4. Note that the execution time is propor­
tional to the a'rca under the curve. The reduction factor, 
S(A!), which was introduced in Section 2.3, obviously affects 
the parallel execution time. A typical example of gCN) is -tr. 
For the MMC PSA the number of trials at a temperature is 

usually limited by g(N) ·1m from the initial temperature to 

the cut-off temperature and by g(N) I r from the cut-off 

temperature to the final temperature, where I and I,. arem 
the maximum numbers of trials allowed at high and low 
temperature reo-ions in the sequential SA, respectively. 

Let's denote the t mperature (outer) loop count at the 
t-off temperature by K and the total outer loop count by n 

"--" 

for the sequential SA. Then, the corresponding Km and 11 711 

for the MMC PSA can be represented as 

Kill = max,E(I. ... ,N) K, and 1/ 111 =ma"iell, .... NI 17 j when: K and 

1/i arc K and 11 of the PE;, respectively The outer loop 

counts at the final temperature (Il,,) and the cut-off tem­

perature (K",) arc rilTIdom variables which vary with other 
parameters and the characteristics of cost distribution. 

Let the times for perturbation, evaluation and decision 

be Ir, te' and td' respectively, and the scheduling time per 

iteration be t". Then, the execution time of a sequential SA, 

1seq' is 

(2) 

Similarly, referrincr to Fig. 4b, the execution time for the 
MMC PSA, t",mr(N) ,can be represented from (l) as follows: 

tm,lIc(N) = g(i'J)(I",K", +qll", -KlI,))(I/,+t. +t,Jr- Mtr log2 N. (3) 

In (3), it is assumed that the communication among N PEs 

can be completed in 10g2 N steps (e.g., in a hypercube), and tc 

is the communication time between adjacent PEs We note that 

M = 1 for the noninteracting scheme, and M = rnm / L;; 1for 

the periodic exchange scheme, where L,) is the number of tem­
perature loops between adjacent global state accesses (refer to 
Fig. 3). M for the dynamic exchange scheme is smaller than 
that for the periodic exchange scheme. 

From (2) and (3), the speed-up for the MMC PSA, 5",mc' 

can be derived as 

f 
SClf (4)Smmc = 1 (N) 

Wl/I( 

where t" = t,r)+ f., Co=I,J< + [r(/I.- K), and Cm = ImKm+ [,.(nm- K,n)' 

For small f> and I" if there is no Significant difference 

between K and K,,,, and 11 and l'm' the speed-up would be 

nearly 1/g(N) = N assuming f » ts' te . However, as the unit 

communication time (tel, the number of PEs (N) or the total 
number of segments (communication phases) (M), in­
creases, the speed-up is degraded. Even if the hvo MMC 
PSA schemes \lvith communication complete at the same 

outer loop count (n",), the amount of communication re­
quired by the dynamic exchange scheme is less than that by 
the periodic exchange scheme. 

Now, consider the SMC PSA. Suppose that the pertur­
bation and evaluation steps are parallelized, but not the 
decision step. The execution time for the SMC PSA can be 
written as (refer to Figs. 2 and 4) 

(5) 

In (5), I; is the unit communication bme of the SMC PSA 

which corresponds to the tc of tl,e MMC PSA, ~ is the number 

of communications per iteration, and to is the parallelization 
overhead fm datil management (e.g., the scheduler PE pre­
pares data for paralJel perturbation and evaluation, and the 

information to be broadcast to all PEs; refer to Section 2.2). te 
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and t; depend on data size, communication algorithm and 

computer system, and to depends on the perturbation and 
evaluation trategies. 

Then, the peed-up of SMC PSA is derived as follows: 

Igq Co(t + td)+nt. 
(6)Ssmc = --(-T) (	 )tsmc C I

'. - + to T+ td + let; 1082 N +1Is l. 

+ 11')5 

SIMI( time 
Ssmc = t me(	 

(7) 

Ev n though the size of data exc.hanged tit ,} time in the 
SMC may b malleI' thd.n that in the tviMC PSA 
(t; ~ te)' th total communiCltion time of the ~MC PSA is 

much larger than that of the MMC PSA due to the fact that 
PEs in the SMC PSA communicate much more frequently, 

i.e., J,t; log2' il> Mt log. N since C. Ie » M. Under the 

assumptions that / '/11 ~t,C. "= Cm and g( )=1/ N,-e->L 

i.e., the MMC PSA is fast I' than the SMC PSA. The as­
sumptions are valid in mo.t SA problems since 

1) tv d tIT are usually much larger than the scheduling 
time, /", 

1} the total number of trials in the MMC PSA can be 
made similar to that in the $MC PSA and 

3) tile reduction factor g(N) =1( is applicable because 
the sufficient coolin can lead PE to achieve a quasi­
equiLibnum in the prop sed interacting IC PSA. 

Even if a less drastic reduction factor like g( f) =* is 

employed (then more trials are made, therefore" better 
solution can be obtained), Smm, > S~m< is usually _atisfied 
under reasonable conditions su h as ~: I" : t~ = :1: 1. Only 
in ase that t ,I~ log2. ,S,mc can approach nunC' 

It would be interesting to see how problem-dependent the 
performance (speed-up) of each -trategy is. For thi purpose, 
One may ernplo the derivative of speed-up with respect to t 

where t =I,] + t" i.e., dS / at and as!<1flC I Jt. Note that a mmc 
different problem would ha e different value of t. 

From (4) and (6), we can derive the following derivatives 
whenl.,t,IJ t, nd (N)=l(N, 

(8) 

and 

(9) 

respect.v , 

lfe - -mondl"l; t,th second tenl1 of the denomi­

nator in ) is much "m, U r than the first term Jue to ml), 

Nn",I,_ .\1. 0, the se on Lerm 0 the L! nomin tor in ) is 

much smaller than tl1 first term due to Ci » Nn,l•. Com­
parin ~ the numerator- of 8) and (9), em >7; and 

C.lo>1;r Is a.re satisfied in most appll ations. Therefore, the 

following inequality holds in most cas 

dSsrru: dSmmc (l0)
at>~ 

That is, the performance (speed-up) of M C PSA is more 
consistent than that of S IC PSA as the optimization problem 

aries. This is main] due to the fact that the MMC PSA 
parallelizes the whole annealing steps while the SMC PSA 
do only a part whic..... can vary significantly with problem. 

3.2	 Synchronous MMC PSA VS. Asynchronous 
MMC PSA 

TIle length of il segment can be fOnTIulated as a random variable 
which has a -tain distribution characteriz d by a probability 
density function (pdf). In the foUowing analysis, it will be 
assumed that th random variClble for CI ent length has the 
same istribution for all PEs and at all temperature , given a 
problem and a scheduling scheme. This assumption is 
mainly for simplicity of analysis. Llter, whenever necl'Ssary 
and p "sible, relaxing the ilssumption or tJ-le effect of deviation 
from the a' umption wi.ll be discussed. 

Let rand m variable Iik den te segment lellgth for the kth 

segment of PE, .The unit f th se nt len th is time and 
is always non-negative. The mean n' standard deviation 
of Iik are P,Ii: and 0', ' I' sp ctivel r. Under the above 
assumption ,ulk -= P and 0' = 0' f r II i, k. 

Let the total e ecution tim of th as nchronous and 
synchronous C ?SAs be tll5Y" nd . ,respectively. Sup­

po e that PEs are employed and ach PE follows M seg­
ments. In the ca.se of the synchronous MMC PSA, aU PEs are 
s nchronizcd <It the end of each segment. There are, 'e; II can 

be ~vritten as follows: 
,\.j 

t.yrr =I. max / ..	 (P) 
k-I Ie 1, ..... ) 

In the case of the asynd1rOnous MMC PSA, each PE proceeds 
without synchronization until the end of th entire simu­
lated anneal.in ~ when 10 I' lutions are compared. Hence, 
1'1>VII can be repres nted as follows: 

,\of )
tlT<Vn = max I I;.l .	 (I2) 

, 1L.. .. NI( hot . 

From 11> ~d (L), one can see that I lin can never be 

smaller than t s!",They become e ual when the outcome of 

I'k doesn·t vary 1..rith i, which is practically impossibl . fool' 
, mar quantitative mparison, I t III=- denote the maxi­
mum possible lltome ( r upper b und) of I . It is reClson­

abl t (s ume thilt 'mtitt de ends on !l- and a. {olin thaI 
' ' ar~er for alar er (5, i en a • ass of underlying istri'max 
bution, me rna vrite 

I	 =,u(1 + II Cf), (13
trnLr 

where h(· i a monotonically inLre ;jn~ positi e functiol 
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indicating how much l"wI is deviated from J.!, and (f is the 

->andard deviation normalized by the mean, i.e., %. 
_ One may try to analytically derive I",a.r by assuming a spe­

cific pdf for 'iI;; .However, it may not be worthwhile dUl' to the 
following reasons First it is almost impossible to derive an 
easily appreciable dosed fom, formula describing maximum 
outcome tor samples of the sum of random variables, ta'.lfI" 

though it is relatively easy for samples of a random variable. 
Second, it may not be feasible to build a probabilistic model, 
e.g., pdf, that precisely fits a given practical problem. Third, in 
most cases, a perlormance measure derived with the first and 
second order moments, i.e., mean and standard deviation, is 
sufficiently accurate and meaningful. 

From (11), 

t:;'yI1=MlnIJ ,=,u(l+h(O'))M (14) 

TI,E: standard deviation of I, = L:~l Ii." ,which is the total 

segment length of PE, in the asynchronous MMC PSA, is 

() M(M-l)p+M where p is the correlation coefficient 

between segments lij and Ii' for j ;,: l, and 0 ::; p ::; 1. After 

normalization by its mean which is pM, it becomes 

O'~(M-~iP+' . With this result, (2) can be expressed as 

t =UhA(1 + h(-~(M-1)P 1)) (15)"- ./11 f-U VJ 
() M • 

ow, denote the ratio of t'!f1l to t
QS1J

1! by 1', which indicates 

the relative improvement of the execution time (it will be 
simply referred to as the improvement factor) of asynchro­
nous MMC PSA over synchronous MMC PSA It needs to 

be emphasized that r is not the speed-up (S"'!11c) of asynchronous 
MMC PSA over sequential SA From (4) and (5), 

tsy>: 1 + 11(0') 
r - -- - ----;,--~==" (16)

-tasyol -1+h(0'~(M-~P+I) 

whereM21. 
It is clear from (6) that r 2 1 since 0 <;; P ::; 1 and h(.) is 

monotonically increasing, i.e., thl' asynchronous .l'v[MC PSA 
is faster than the synchronous MMC PSA unless p = 1 for 
which r = 1. Though (6) is based on the assumptions men­
tioned abov,' everal meaningful observations can be 
drawn from the equation. 

3.2.1 Global State Access Frequency 
First, consider the effect of M on r. Though M is the total 
number of global state accesses (or segments), it may be 
referred to as global state acc"s frequency to indicate how 
often a PE accesses the global state, which should be line­
arly proportional to M. TI,e global state access frequency, 
M, is one of the major parameters which differentiates the 
synchronous and asynchronous schemes. As M increases, 

, PEs access the global state more frequently, PEs will be 
,Ie for a longer p iod of timt: in both PSAs. However, the 

idle time in the asynchronous scheme, which occurs only in 
the final segment, is relahnly smaller than that in the syn­
chronous scheme. This is due to the property that the nor­

malized standard deviation (0') of a sum of random vari­
ables cannot be larger than the sum of the normalized 
standard deVIations of individual random variables, a, 
derived earlier This difference becomes larger as M 
increases as can be seen in (16). 

From (6), it is easy to see that r increases first and tends 
to saturate as the global state access frequency increases. 
This benefit of using the asynchronous MMC PSA is greater 
when the normalized standard deviation is larger. As the 
correlation between segments decreases, r becomes more 
ad vantageous to use the asynchronous scheme. The 
improvement tactor r is maximized, given 0' and M 
when p = 0 (segments are uncorrelated). 

3.2.2 Number of Markov Chains 
In the above derivation and discussion, the number of 
Markov chains is assumed to have no effect on I . whichmnr 

influences the improvement factor Theoretically, the 
maximum value of a random variable is fixed given an un­
derlying distribution. When sampling the random variable 
in practice, the maximum of the samples or outcomes may 
not be the same as the theoretical one. The sample maxi­
mum is expected to approach the theoretical one as the 
number of samples increases. This practical aspect was not 
taken into account when l"'ltt was formulated (refer to (13)). 

To make the improvement factor formula more realistic, 
(13) may be modified as foIlows: 

(17)1""lX = ,u(1 + h((j)f(N)) 

,·"here feN) is a monotonically increasing function of T> 1, 
o< [(2) < 1, and f(N) approaches one as N increases. 

f(N) can be considered as a calibrating function which in­
dicates the actual effect of 11(0') or 0' on l",,"x as a function of T. 

As the number of PEs, N, increases, the improvement factor r 
(of the asynchronous MMC PSA over the synchronous MMC 
PSA) increases, but eventually saturates. 

3.2.3 Communication Overhead 
Another advantage of employing the asynclu-onous MMC 
PSA is that communication time itself can be saved (though 
it is not included in the equations ot this section). In the 
synchronous MMC PSA implemented on a message pass­
ing multiprocessor, the local states are to be collecteL at a 
certain PE which will then derive the global state from 
them and broadcast it back to all other PEs. This data shar­
ing would require communication time proportional to 
D log2 N on a hypercube. for example, where D is the size 
of data (global state) to be exchanged and N the number of 
PEs [18]. If the synchronous MMC PSA is implemented on 
a shared memory multiprocessor, the communication time 
would be O(Div) assuming that there is only one copy of 
the global state on the shared memory. 

In the asynchronous MMC PSA, each PE just needs to 
access and update, if necessary, the global state independent 
of other PEs. Therefore, the communication time would be 
O(D) on a shared memory system assuming that there is no 
conflict among PEs in the ?;lobal state access. Of course, in 
the worst case when all Pl.s try to access the global state at 
the same time, the complexity would be O(DN). However, 
this worst case is very unlikdy to occur. On a mes.age 
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passing multiprocessorl each PE may send its local state to 
a controller at the end of each segment. Then, the controller 
returns the global state (after updating it by the local state if 
necessary). The communication time complexity is the same 
as on a shared memory system. Therefore, the saving in 
communication time by the asynchronous scheme can be 
substantial when N is large. 

3.2.4 SOlution Quality 
Any faster scheme which degrades solution quality sig­
nificantly wou.ld not be acceptable unless speed is more 
important than solution quality. All PEs in the synchro­
nous l\1MC PSA initiate each segment from the same 
globa.! state (solution). However, a different PE in the 
asynchronous MMC PSA may see a different global state 
depending on the order in which PEs access the global 
state. 

Suppose that a FE accesses the global state at the end of 
each segment. II a local solution (state) of the PE is better 
than the global solution, the PE updates the globa.! solution 
bv its solution. II not, the PE discards its solution and initi­
a~es next segment from the global solution (state). For ex­
ample, suppose the PE with the best solution happens to 
update the global state first in a certain segment. Then, aU 
PEs wou.ld start from the same globaJ state at least in that 
segment. Unless this happens, some PEs wou.ld have initial 
solutions for a segment which are different from others. As 
in the genetic a.!gorithm [20], this will reduce the probabil ­
ity that the global state is trapped in a local optimum. 
Therefore, the solution quality is not expected to be worse 
than that by the synchronous MMC PSA. 

3.2.5 Problem Dependency 
The cost function may vary with the problem. If the cost 
function, more specifically density or distribution of local 
optima, changes, it is likely for the pdf of l,k to change re­

sultring in a different cr. For a larger (f, a higher r wou.ld be 
obtained as can be seen from (16). 

4 ApPLICATION TO GRAPH PARTInONING PROBLEM 

In order to experimentally exam.ine the performance of the 
proposed MMC PSAs (synchronous and asynchronous), we 
have applied them to Waph partitioning, which is NP­
complete. Many engineering problems can be formulated as 
a graph partitioning problem [211, [22], [23], [24J. 

4.1 Problem Formulation 
An undirected graph G = (V, E) consists of a finite set of 
nodes (vertices) V and a finite set of edges (Jinks) £, where 
an element of E is an unordered pair of nodes 11 and v in V, 
i.e., an edge in [. is represented ilS ell,v=(u,;')t:- E, where 

H, v E V . A subgraph (W, F) can be defined such that W s; 

V Jnd r = E . ff nonempty sets V/ and V2 are subsets of V 

SUch that V1u V2 = Vand V\ n V::. = . {VI' \'2]- is said to 

be Cl partiliun. Cut is .1 set ot edges the removal 'Jf which 
results in a partition. The weight of a node 11 is denoted by 

W,,(,n and the weight of an edge (u, i') by W,,«lI, (i)). 

4. 1. 1 Graph Pat1itioning Problem 
Given an undirected graph G = <V, E) with node and edge 

weights, «(0,,(.), w/», where V is a set of nodes and E is a set of 

edges, find a partition of V into R clisjoint sets {VI' V2 ,· .. , VR } 

such that the cost function below is minimized. 
The cost nmction, which is to be minim.ized, is chosen as 

where 

and 

L({Vl, .. ·,vR})= L W,'((lI,V)), 
(lI,tJ)EO( ,y,),lSI,j::R,i"i 

where IIVill= Lv eV (Ov(Vn) and 8(Vj, Vi) is the cut of the 
• I 

sets V, and VI' which is defined as 

8lVj , vJ={(u, V)E £1 U V, t\ V E VJE 

Suppose that a = b = x = y = 1 with (OJ.) = 1 and (OJ) = 1 

for all nodes and edges in the graph. Then, CO = M + L, 
where M is the largest number of nodes in a subgraph and 
L is the total number of edges between subgraphs. In this 
case, minimizing CO requires balancing the node distribu­
tion among subgraphs and at the same time reducing the 
number of edges lying between subgraphs. By choosing an 
appropriate set of values for the parameters (a, b, x, y), one 
may fonnulate a cost function suitable for a given applica­
tion. Also, it needs to be pointed out that our approach of 
lVlMC PSA is not limited to graph partitioning only, but 
applicable to any optimization problems. 

4.2 Perturbation Algorithm 
In SA, the next candidate configuration (partition) is deter­
mined by a perturbation scheme. In the graph partitioning 
problem, we define three ways of perturbation, i.e., add, 
remO1Je , and exchange, (each of which is referred to as a 
move), where an add in a subgraph corresponds to a remave 
in the paired subgraph. Note that a perturbation may result 
from multiple moves when there are more than two parti ­
tions (subgraphs). One of the moves is selected at random 
according- to the node distribution. The add, remove and 
exchange are uniformly generated except in the extreme 
cases (e.g., thE~ ditference in the number of nodes exceeds a 
certain constant or the selected subgraphs have only non­
removable nodes). hg. 5 shows the perturbation examples 
where (a) is the initiai contiguration and the resulting con­
iigurations ,lfter ,1 mov~(b) add, (c) remove and (d) ex­
change--ul view of the subgraph A (the primary subgraph). 

The perturbation scheme, which is reterred tu as the 
heuristic rearrangement tilgorithm .. is incorporated into the 
inner ioop to efficiently perturb ihe configuration. In the 
heuristic rearrangement algorithm, the nodes in the pri­
mary ..;ub,C7aph (which is randomly chosen among all ;;ub­
graphs) ,Irl.' sorted periodically (not in t'very ite.ration) in 
lhe clscending order according to internal Jegree (where the 

internal deo-ree deo (i.',), is dehned as the sum of wei»;hts ofu ' t-) • 
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Fig. 5. Perturbation examples (a) initial configuration, (b) add, (c) 
remove, (d) exchange. 

internal edges incident on the node Vi, where an internal 
edge is an edge that does not lie betweell subgraphs). The 
.op node in the sorted list is involved in the move irrunedi­
.Itely following the sorting. Selection of nodes to be moved 
or exchanged is basically random, but is designed such that 
no node is completely excluded. 

This heuristic rearrangement algorithm generates the 
next configuration more effectively than a Simple random 
pertltrbation since it can reduce the unnecessary perturba­
tions to a great extent by utilizing the connectivity infor­
mation of subgraph nodes. 

4.3 Communication Algorithms 

Information xchange among PEs is necessary for both 
types of PSAs described earlier. In the SMC PSA, communi­
cation is indispensable when subgraphs are perturbed, 
when the locally evaluated costs at different PEs are col­
lected at a certain PE, and when the decision is broadcast. 
In the MMC PSA, local information needs to be exchanged 
to update the global state (the current configuration and its 
cost) when each PE wants to check other PEs status during 
anneabng and when all PEs finish annealing. Thus, three 
different types of communications are needed: 

1) broadcast,
 
2) collect, and
 
3) exchange.
 

These communications can be efficiently implemented using 
the p5cudobil1ary ircc embedded in the hypercube [I8) 

.4 Results and Discussions 
--The proposed PSA ,llgorithms have b en applied to the IEEE 

30-node and lIS-node standard netvvorks, labeled as G30 and 
GlIS, respectively, a randomly generated 200 node weighted 
graph (G200), 'where the range of node weight (l0, 20) and the 

range of edge wf'ight 0, 5) and 1,200 node graph (GI2flO). 
Their performance ha'i been evaluated under the same conditiOns 
(parameters listed in Sc-'Ction 4.4.1), All performance figures, 
cost and execution time, are the averaged (not best) ones. 

The PSA schemes have been compared based on the 
minimum cost found and the paraIJel execution time. In 
order to evaluate the convergence property of the proposed 
schemes, the best results obtained by the sequential algo­
rithm of Irving and Sterling. [21J are referred to, which was 
reported to find significantly better solutions than an iterative 
improvement algorithm. The performance results of the pro­
posed schemes for the cost function in (8) ((a, b, x, y) are 
usually set to 0, 1, 2, 3) as in [21]) are provided for G30 
(average degree: 2.73), G118 (average degree: 3.05), G200 
(average degree: 2.77), and G1200 (average degree: 2.98). 

For further comparison, another SMC PSA scheme pro­
posed by Roussel-Ragat and Dreyfus. [ln to be referred to 
as Modified R-R (MRR), has been modified for better ad­
aptation to the graph partitioning problem and imple­
mented. It utilizes the acceptance ra te in determining next 
solution. In the MRR, PEs asynchronousl,' continue an­
nealing until at least one PE finds an acceptable solution. 
Then, one of the accepted solutions is randomly selected 
when the acceptance rate is high (> 1IN) while the best so­
lution is chosen when the acceptance rate is low « 1/1\!) 
[11). Note that PEs have to communicate with each other 
frequently especially when the temperature is high. 

4.4.1 Test Environment and Parameters 
A graph is initially partitioned at random. Thinihal tem­
perature (T;) for each PE is not predetermined identically, 
but is independently derived in the begiJ.Uling with ran­
domly selected sample configurations In addition, the 
standard deviation of the intermediate solutions at each PE 
is calculated at every temperahu-e to determine the next 
temperature [19]. In the following, the annealing parameters 
for the graph partitioning problem, which are empirically 
determined, are summarized: 

• maxi.mum number of temperature decrement: 250 
• maximum number of iterations at a temperature (lm): 

k 100 . (R - 1) . g(N) 
0=(k 1 for G30, k 0= 2 for GIIS, k 0= 3 for G200, k 0= 10 for 

GI200 where g(N) is usually set to liN) 
• minimum number of iterations at a temperature (lJ : 

max(0.3 I'll' 5) 
•	 static temperature decrement factor a (cooling rate): 

. 0.95 
• threshold acceptance rate for hybrid move: 0.5 

The synchronous MMC PSA schemes have been com­
pared with the SMC PSA schemes on the Intel iP5Cj2, a 
message-passing system. The synchronous and asynch.ro­
nous MMC PSAs have been tested on a shared-mc17!Onj 
multiprocessor system, BBN GP1000. The typical imple­
mentation results are tabulated in Tables 1 throuah 6 
where cost and speed-up are the averClged ones for multi­
ple executions in each case. 

4.4.2 SMC PSA 

Among the SMC PSA schemes, the hybrid move scheme 
has found the best con.figuration in all cases tested, as 
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TABLE 1
 
PERFORMANCe OF PSA SCHEMES FOR IEEE
 

30-NoDE NETWORK (G30), (x, y) = (2, 3)
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TABLE 2
 
PERFORMANCE OF PSA SCHEMES
 

FOR G30, G118, AND G1200
 

;\r~tc: 1'$,\SMCPSA 

1'1 

310 18tr-I 56 168 l-+.lj I I I 318 :!.-l82 6... .3·2fl l'n-l 65 

16 .0187 ?JfJ6 S 7 )91 1.2757 I ~ 3:20 Xl'JS 76 J:lll IJO'! 1~ 

{~1 GJO. H;:;:r"l.. (.:l.b):Io'{I.n. (x.y).:!lr.....J) 

I ~ ~2 1~40 1.3 340 'J6.~:!O 0'6 :nn 6.311 1.6 .120 +-+::$2 1.7 

190 lJC,~l<i ::::.1 571 19703 U.5 3f15 1li6J J 2. .no "153 J.:\ 

lo.l\ICI"'SAS.'lc.: PSA 

.llJO I~ 17 rll:SKS 3::::-+o(l III I -1-t17 17(\.1.1 I ~ :3~~ 1.PJ.(, ~ I 
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l...i 173ct) UJ/)I I.~ 1 l.lc(, l.ui2 .,... 1 L'~J llt.l 

Shown in Tables 1 and 3. In terms of the execution time, Lhe 
multipie move scheme takes the least ,lmount of time, and 
the ::;ingie move ;.;cheme takes the longest since it chang 
the grZlDi1 configuration ~adually. \Nhj!c the multiple 
mOve ',cheme ,:an rapidly perform the initial ::;tages of ,111­

nealing, it is susceptible to local minima and oscillations in 
the .fin~l,t:l(';es. Tl1e single move is better :It the final ::;tage 
of the ,inne'lling. This is the reason why the hybrid move 

TABLE 3 
PERFORMANCE OF PSA SCHEMF-S FOR IEEE 
118-NoDE NETWORK (G118), (x, y) = (2, 3) 

".O.l:d ".'",R I/O 

tl ~ JI.3)o J 1 1'$tl-l.U ~c.l8tm1)J-fll 

- 9-"'" 

scheme performs best among the SMC PSA schemes. 

The convergence of the MRR (SMO PSA seems to be 
poor since the random selection rule (which is designed to 
preserve the property of the sequential SA) at high tem­
peratures may not be suitable for the graph partitioning 
problem. The solution quality is usually worse than those 
by our SMC PSA schemes as can be seen in Tables 1, 2, and 
3. Also, the speed-Up is noticeably lower i.n the MRR PSA 
than in our SMC PSA schemes especially for a large N. In 
the MRR PSA, a larger amount of information 
(perturbation, evaluation and decision results) needs to be 
exchanged at every step among PEs to generate N different 
states. 

It is observed that the SMC PSA sometimes performs even 
worse than the sequential version espeCially for a small size 
problem (Table n For J. small 'ize of graph, the computational 
load in the pertw'barion and evaluation steps (which Me to be 
parnllelized) is relatively small compared to the total execution 
time, and. the relative communication overhead is larger. That 
is, the overhead can offset the speed sain from the limited ex­
ploitation of parallelism in computation. For the MRR PSA, in 
which even evaluation is not parallelized, the performance 
degradation is more apparent. 

The single Markov chain approach is shown not to be suit­
able for efficient parallelization of the SA algorithm particu­
larly for the graph partitioning problem, since the perturbation 
and evaluation of the configuration (for which the workload is 
shared by PEs) do not occupy a large portion of the execution 
time. In addition, the communication overhead involved in 
each perturbation and decision can be ovenvhelming. 

4.4.3 Synchronous MMC PSA 

Among the synchronous M 1C rSAs, th propoS€d dynamic 
exchange scheme, which utiliz(~ th c cceptance rate in deter­
mining when to communicate, usually performs best in lenns 
of bl)th the solution quality and the xecution time, as shown 
in Tables 1, 2, and 3. The periodic exchange scheme often 
completes its execution earlier than the non-interacting \1MC 
sd1eme. However, ilS the problem size STOWS and the nwnber 
of sUbgraphs ( ubnetworks) increase~, it i::; Likely to be trapped 
<It a 1 cal minimum (Table 1 f r! =R = " and Table 3 for 
tV = R = 16 ). It can be observed that the MMC PSA perfmTIls 
much better in terms of the solution quality and/or the execu­
tion time than the SMC PSA in most cases. This superiority oj 
the MMC PSA becomes more visible (IS the nwnber of PEs 
employed, N, increases. The speed-ups reported in the bles 
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Fig. 6. Annealing curves of rvlMC PSAs (N = 4 for G118) (a) noninlere­
acting, (b) periodic exchange. (c) dynamic exchange. 

,---/.:lTe based on different qUillities of solutions due to the random 
nature of SA. Hmvever, note that the solution quality by the 
lvLMC PSAs is better thall that by the SMC PSAs in almost all 
cases (all cases for the dynamic exchange sd1eme). Therefore, 

it is expected that higher speed-up would be achiev cJ jf we 
somehow force the same quality of soluhon in both of ivlM 
andSMCPSA~ 

These observations may be explained as follows First, 
sincl' multiplF search paths (chains! are fl1110wed in the 
~vfMC PSA, the probability of searching the local space 
where a global (or near) optimal solution is located would 
be higher for the MMC PSAs. Once most PEs (at least one 
PE) get on the right track, the annealing toward the near 
global optimum solution could be accelerated especially in 
the interacting MMC PSAs, i.e., a shorter execution time. 
Second, the SMC PSA requires more frequent comrmmica­
hans (broadcast, collect, and exchange) among P since 
each PE needs to get the updated configuration and cost for 
every perturbation. Thi less cormnunication overhead of 
the MMC PSA is another major factor which contribut ,. to 
their better performance_ Since the communication time is 
proportional to the number of PEs, N, the SMC PSA per­
forms significantly worse than the ?v1MC PSA, especiallv for 
a larger N. TlUrd, in the MMC PSA, the P/E/D steps are 
fully (equivalently speaking) paralJelized while in the SMC 
PSA the perturbation and decision (with updating the new 
graph partition in sequence) may not be executed fully in 
parallel. 

The typical annealing curves (average cost vs. tempera­
ture) for the MMC PSAs are shown in Fig. 6. Each curve in 
the non-interacting scheme represents a normal sequential 
annealing curve, but only one of them leads to the final (best) 
solution. Note that the PE which completes annealing last has 
not fOllDd the best solution. The periodic exchange IvIMC 
PSA may reduce the redundant or lUmeccs ary computation. 
However, the periodic exchange does not always re ult in 
positive effects as can be seen in Tables 1 and 3 and the an­
nealing curve in Fig. 6b. Overly frequent information EX­

changes can lead to oscill.ation, hampering careful annealing 
processes and eventually deteriorating the convergence. In 
other words, only the sufficiently annealed solutions are 
worthwhile to be exchanged. This is why the dynamic ex­
change scheme improves the solution quality and also the 
execution time in most cases (Tables 1, 2 and 3). 

Fig. 7 shows how the :oolution quality varies depending 
on the reduction factor, geN), for the G30 and G11S As the 
number of PEs (or Markov chains), N, increases, the solu­
tion quality (average cost) is improved to a certain point 
and then is degraded in general. A more drastic reduction 
factor like 1/N usually has the turning point at sma.ll 

(compared to -ff or IOg,\1+1 ). That is, there can be a trade-

off between the solution quality and execution time 
(remember that the speed-up, S, is almost inversely 
proportional to g(N)). 

The problem dependencies of the SMC and MMC PSAs are 
compared in Fig S. In these experiments, the system par<lme­

ters (except t = t" + tc ) like commt.rnication time, obtained from 
the iPSC/2, were used. Fig. Sa shows that for a certain value of 
t, it would be possible for the speed-up of the SMC PSA to 
decrease after some point as N increases. Ais ,the derivatives 
of Smmc and Ssm, with respect to t (refer to (S) and (9)) are 

plotted in Fig. Sb. It is obvi us that Smmr is much less problem-

dependent than S..,/c· 
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Fig. 7. Effect of reduction factor g(N) for MMC PSA (dynamic 
exchange) for (a) G30, (b) G118 (N > 32: sequential simulation 
resUlts). 

4.4.4 Asynchronous MMC PSA 

The improvement factor, r, reported in Tables 4, 5, and 6 
should be considered to be conservative since the solutions 
by the asynchronous MMC PSA are mostly better than 
those by its counterpart, the synchronous MMC PSA 

It is clear that the asynchronous MMC PSA outperiorms 
~he synchronous MMC P5A in speed as analyzed in 
Section ~.2. For the cases considered in this study, per­
formance f MMC PSAs has been improved up to 43% by 
the asynchronous scheme in execution speed (refer to Table 4b). 
As can be seen in Table 4, ! becomes larger as the global 
state acce frequency, M, increases. Also, d larger problem 
(e.g., a I rger i:,'Taph, i\ larger number of partitions, a more 
complic<lted cost function! tends to result in a larger im­
provement factor since the segment length varies more rela­
tive to its mean when the problem (graph) size increases. 

From Table 5. it can be observed that r increases as the 
number ui Markov chains or PEs increases. This is bemuse the 
tnaximum value (outcome) of seh'1l1ent length would be larger 
11l general when there is c1 larger munber ot segments, This 
ltn.Provement in execution speed is <lisa partially due to the 
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Fig. 8. (a) Speed-Up (5) and (b) as/at for SMC and MMC PSA. Note 
that the three curves for MMC in (b) are overlapped at the bottom 
(SMC: single move scheme, MMC: dynamiC exchange scheme). 

conununication overhead vmch grows with N faster in the 
svnchronous M1vlC P5A than in the L yn hronous NllvlC PSA 
(refer to Tables 6b and hd). For reference, the speed-up, S. 
of the asynchronous :'vlMC PSA over the sequential SA is 
included in Table 5. It is seen that, in most cases" high paral­
icliz,.'tion efficiency is obtained. 

The percentage idle and communication (global ~tate 

access) times (i.e.., normalized by the total execution time) 
with N or :'v1 varied are proVided ill Table h. For a fair 
comparison, the ld.bsolutc) idle and communication times 
are normalized b~r the [ntal . ecution time which changes 
with I and M. First, it is dear that the percentage Idle time 
outweighs the perct'nta;.;' communication t.ime in bnth 
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PSAs, especially for larger problem sizes. Second, both the 
percentage idle and communication times are much larger 
in the synchronous \fMC PSA than in the asynchronous 
7vll\1C PSA (refer to the ratios in the tables). Therefore, the 
major factor which distinguishes the asynchronous and 
synchronous MJvfC PSAs is the idle time (according to 
these two observations). Third, it can be seen that the 
percentage idle time increases as the global state access 
frequency, M, or the number of PEs (Markov chains), N, 
increases, especially in the synchronous scheme. Fourth, the 
ratio of the percentage idle times, synchronous over asyn­
chronous, increases significantly with the global state access 
frequency, ]\1, and the number of PEs, N. The idle time in­
creases linearly ,vith M in the synchronous scheme while it 
is proportional to -JM in the asynchronous scheme. The 
idle time in 'the asynchronous MMC PSA, which occurs 
only after the last iteration, is less sensitive to N than the 
(accumulated) idle time in the synchronous l\1J\1C PSA. 
Fifth, the ratio of the communication times, synchronous 
over asynchronous, increases with N but decreases with 
M. The communication time increases with both of M and 
N in both schemes. However, in the asynchronous scheme, 
it increases faster with M than with N. That is, the commu­
nication time in the asynchronous scheme is proportional to 
M (the number of global accesses), but not to because the 
simultaneous access to the global state (in this case the 
~ommunication time would also deDend on N) rarely 

~ occurs during the execution of SA . 
It is '-llso observed that on aver.lge better solutions are 

found by the asynchronous MMC PS \. This is mainly be-

TABLE 5 
EFFECT OF THE NUMBER OF MARKOV CHAINS OR PEs (NJ 
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cause PEs in the asynchronous scheme do not start (:ach 
segment from the same state (solution) and, therefore, they 
have a better chance IIOt to miss the global optimal solution. 

Tables 4, 5, and 6 are obtained by synchronous and 
asynchronous implementations of the periodic exchange 
MMC PSAs for a better control of M. The dynamic ex­

Nchange MMC PSA has also been Lmplemented asynchro­
nously and its performance has been compared with that of 
its synchronous cOUIlterpart. In general, similar behi!viors 
were observed. The asynchronous version of the dynamic 
exchange M:MC PSA achieves improvement (r) of up to 
24% (vvith equivalent qualities of solutions) over the syn­
chronous version for the cases considered. 

asynchn
5 CONCLUSION Their p( 
Although SA can find a global (near) optimal solution, its compan 
use has been severely limited in practice mainly due to lOWing 
the long computation time requirement. In order to experim 
shorten the computation time, paralJelization of SA has • Th 
been attempted in various applications. However, these eq 
efforts have not been very successful since they tried to • Th 
preserve the single Markov chain in most cases (SMC pr' 
PSA) and, therefore, the parallelism exploitable was lim­

• AI.
ited Although the idea of following multiple MarkOV ou 
chains (MMC PSA) was sketched in the literature, it was • It 
not fully developed and had a significant drawback (too MJ 
frequent communication). inf 

In this study, we have developed new Iv1Jv1C PSAs, espe­ • Th 
cially the dynamic exchang scheme. Both synchronous ilnd is i 

I 



-- -

I 

I 

~. 

'ER 1996 LEE AND LEE: SYNCHRONOUS AND ASYNCHRONOUS PARALLEL SIMULATED ANNEALING WITH MULTIPLE MARKOV CHAINS	 1007 

TABLE 6 nous verSlOn.
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asynchronous implementations have been considered. 
Their performance has been analyzed and experimentally 
compared to other PSAs for graph partitioning. The fol­
lov,ring conclusions may be drawn based on our extensive 
experimental results: 

•	 The MMC PSAs can find a solution of better or 
equivalent quality faster than the SMC PSAs. 

•	 The performance of the MMC PSAs is much less 
problem-dependent than that of the SMC PSAs. 

•	 Among the MMC PSAs, the dynamic exchange scheme 
olltpcrforms others in :,peed and solution quality. 

•	 1t i:; possible to reduce the execution time of the 
MMC PSA significantly by employing asynchronous 
information exchange. 

•	 TI1e quality of solution by the asynchronous MMC PSA 
is as good as (or even better than) that by the synchro-

the synchronous version becomes larger for a greater 
number of PEs (or Markov chains) involved or a 
higher global state access frequency. 
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