MetroScript™
Programming
Language

OMP-0399Q

Zygo

Zygo Corporation

Laurel Brook Road

P.O. Box 448

Middlefield, Connecticut 06455

Telephone: (860) 347-8506
E-mail: inquire@zygo.com
Website: www.zygo.com






ZYGo CUSTOMER SUPPORT

For help within North America, please use the contacts listed below. For help in other countries,
please contact your local Zygo Corporation representative. Be sure to supply the instrument
model and serial numbers, and the software version.

%

PHONE Monday - Friday, 8 a.m. - 8 p.m. (Eastern Standard Time)

(800) ZYGO NOW  (800) 994-6669
or (860) 704-5191

4
= rAx (860) 346-4188

support@zygo.com

@ INTERNET WWW.zygo.com
=1

WRITE Zygo Corporation
Laurel Brook Road
P.O. Box 448
Middlefield, CT 06455-0448
Attn: Customer Support

MANUAL REVISION INFORMATION
The document (OMP) number and the applicable revision letter for this manual appear on the
title page. The publication date appears below.

Revision Release Revision Release Date
Date
A (softwarev. 7.2.0) March 1998 J (software v. 7.14.0) September 2003
B (softwarev. 7.3.2) January 2000 K (software v. 7.14.0) January 2004
C (softwarev. 7.4.2) Nov. 2000 L (softwarev. 7.15.0) March 2004
D (softwarev. 7.4.2) April 2001 M (software v. 8.0.0) July 2004
E (software v. 7.6.0) August 2001 N (software v. 8.0.2,8.1.0, 8.11) June 2005
F (softwarev. 7.7.0) March 2002 P (softwarev. 8.11) August 2005
G (software v. 7.10.0) Nov. 2002 Q (softwarev. 8.2.0, 8.3.0, 8.3.2, 8.3.3, 9.0) March 2011
H (softwarev. 7.12.0) July 2003
MANUAL NOTATIONS
Warning!

Denotes a hazard that could cause injury to personnel, and/or damage to
A the equipment.

Note, provides helpful information.

X

© Copyright 2011 by Zygo Corporation; All Rights Reserved. ¢ Product or company names mentioned in this
manual are trademarks or registered trademarks of their respective companies, and are hereby acknowledged.



NorTice: The descriptions, drawings, and specifications contained herein are subject to change. Zygo
Corporation is not responsible for errors or omissions herein or for incidental damages in connection with
the furnishing or use of this information. This document shall not be reproduced, photocopied, or
duplicated, in whole or in part, without prior written approval of Zygo Corporation.

ZYGO Software License Agreement

The following is a legal agreement between you and ZYGO Corporation. This software is licensed to you and not sold. You
may use this software only according to the terms of this License.

1. GRANT OF LICENSE. You may use the software only on a single computer at a time. You may not network the
software or otherwise use it on more than one computer or computer terminal at the same time. The License covers
all users on the single system.

2. OWNERSHIP OF SOFTWARE. The software is owned by ZYGO and is protected by United States copyright laws and
international treaty provisions. Therefore, you must treat the software like any other copyrighted material.

3.  USE RESTRICTIONS. You may transfer the software to a hard disk and make copies of the software solely for backup
or archival purposes. You may not alter, modify, or adapt any part of the software or documentation. This means
you may not reverse-engineer, decompile, disassemble this software, or create derivative works from it.

4. TRANSFER RESTRICTIONS. This Software is licensed only to you, and may not be transferred to anyone without prior
written consent of ZYGO. The terms and conditions of this Agreement shall bind any authorized transferee of
software. In no event may you transfer, assign, rent, lease, sell, or otherwise dispose of the software on a temporary
or permanent basis except as expressly provided herein.

5. TERMINATION. This License is effective until terminated. This License will terminate automatically without notice
from ZYGO if you fail to comply with any provision of this License. Upon termination you shall destroy the written
materials and all copies of the software, including modified copies, if any.

Disclaimer of Warranty on Software

THE SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ZYGO EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES. ZYGO DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR
THE RESULTS OF THE USE OF THE SOFTWARE OR ANY ACCOMPANYING WRITTEN MATERIALS IN TERMS OF THEIR
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE SOFTWARE AND WRITTEN MATERIALS IS ASSUMED BY YOU.

Software Limited Warranty

ZYGO warrants the magnetic media on which the software is recorded to be free from defects in materials and faulty
workmanship under normal use for a period of 90 days from the date of delivery. ZYGO will replace the media, provided
you return the faulty media to ZYGO with return authorization. ZYGO shall have no responsibility to replace magnetic
media damaged by accident, abuse, or misapplication.

Limitation of Liability

IN NO EVENT SHALL ZYGO, OR ITS EMPLOYEES AND AFFILIATES BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL,
OR DIRECT DAMAGES ARISING OUT OF THE USE OR THE INABILITY TO USE THE SOFTWARE OR ACCOMPANYING WRITTEN
MATERIALS, EVEN IF ZYGO OR A ZYGO REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS
LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE TO STATE.

U.S. Government Restricted Rights

The software and documentation are provided with restricted rights. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at 52.227-7013. Contractor/manufacturer is Zygo Corporation, Laurel Brook Road, Middlefield, CT 06455.

Should you have any questions concerning this Agreement, or if you wish to contact ZYGO for any reason, please write:
ZY GO Service Department, Laurel Brook Road, P.O. Box 448, Middlefield, CT 06455-0448.

11/2002

i




CHAPTER 1 - INTRODUCTION

LY o A R\ =] o 1Y o T o S PRP 1-1
X=To 01T =T g aT=T ) K P P PP P PP PP PP PP PPPPPPPPPPPPN 1-1
0T =Y 1=t o o 1Y ol £ 1o ) U PPPPPUPR PPN 1-1
THE FIVE BaSiC STOPS ..iiiiiiriiieee e ettt ettt e e e e e et e e e e e e e estbaaeeeeeesssaarasaeeeeeennsrseeens 1-2
USINE ThisS IMIANUAL....eeiiiiieiiiiiee ettt e e ttree e e e e e e etbr e e e e e eeeetbaaeeeeeesennsnraeaeaeenans 1-2

CHAPTER 2 - METROSCRIPT FUNDAMENTALS

L] oY LI Lo U 21T {1 o U 2-1
Terms Used in this Manual ...t 2-1
Using Parentheses and BraCkets.......ccuuiieieiii i e e 2-2

[ [or= R @e T Y7 =T ) 4 [0 o - P PP PP RPN 2-2
COMIMANGS ..ttt st e e st e e sttt e e s s bbe e e s s beeesssabeeessbeeeeesabaaessnbaeessanenas 2-2
(60T 1 01 0 0 1=1 01 £ TP PP PUPUPPPPRTPORE 2-3
SEALEMENTS ...ttt e e e e e e e s e e e e e e e e nnreeeeeeeenan 2-3
To 1= o) =T PSS 2-3
Data Types and Variables ........eeeeiiiciiiiiiece et e e e sreae e e e e e e e enees 2-6
Operations anNd EXPreSSIONS ......ueeieiiieciiiiieeeeieciiiieeeeeessesetrereeesessssseeeeeeesssssssssnneesssannnns 2-8
FIOW CONEFOL c.tiiiiiitee ettt ettt e e s sbae e s e ae e s sabeeessaneeas 2-11
SUBTOULINES ..ttt ettt e st e s sbte e e ssabee e e ssbeeeesbteeeseabeeeesnes 2-12

Top Level and Application SCHIPES ..oooveviiiiiee e e e e e e 2-13

WIIting @ MEtrOSCriPt FilE ...uuiiii it e e e e e st e e e e e s e s eaanrreaeeeeean 2-13
STArting @ SCHIPE Fil cuneeiiieiee e e e re e e e e e e s ranraeaeeeeeean 2-13
Yo g o] A T[T Mo Yot 1 o o U USPR 2-13
Yo T o] A ST [T S o 0 - | PR 2-14
PrOZram STIUCLUIE ....uvviiiiiiiiiiiieieteteietere e e e e e e e e e e e e e e e e e reeeeeeeaeaeeeaeaeaaeeaaeeaasaaaaanees 2-14

MetroScript Commands and MetroPro Functionality ........ccccceeeevicciieeec e, 2-15

Measure, ACQUIre, anNd ANGIYZE ......c..uuviiiiee et e e e e e e e e e enrraa e e e e s 2-15

ACCEeSSING MELIrOPIO ODjJECES .ooviiiieiiiieeee et e e e et e e e e e e snnaraee e e e e s 2-15
L0 ] o [T o1 A 1 0SSRt 2-16
NV T =T I ] o =T ox &S UUPRE 2-17
Reading MetroPro Controls, Results, and Attributes .........cccceeeeeeiiiieee e, 2-18
Writing MetroPro CONIOlS.......uuiiiieie i e e e e e e snaaa e e e e e s 2-19

Interacting With the OPErator.......oceeiiiiii e errreee e 2-20
IMIESSQEE BOX ..uvvvvvereiiiiiiieieieierereieeeeereeeeeeeeeeereeereeeereereeeeterereeeeeeeeeeeaeeeeeaeeeeeeesesaeeseseeeseeeeeees 2-20
DT =] Lo == T ) U UURRRE 2-20
ANNOTATIONS ...t e e e e st e e e e e s neree e e e e e e e snnreeeeeas 2-21
Making @ Status ANNOLATION .....ceiiiiiiciiiieee e e e e e e e e e e eaees 2-22
CONEIOI BOXES . .iiiiiiiiiie ittt ettt et e sttt e e s bte e e st e e e s sbee e e s sabee e e sabeeeesabteessanbeeessanteas 2-22
Accepting Parameters at RUN TIME ..o 2-23

iii



CHAPTER 2 - METROSCRIPT FUNDAMENTALS-CONTINUED

Interacting With MEtroPro Files ........coccuiiiiiiiie et e 2-25
Formatting Output Of NUMDEIS.......oiiiiiiie e e 2-26
Controlling the Mask EAITOr ........uiiiiiiiii e et e e areee s 2-27
RemMote CoONLrol Of IMELIOPIO ...cccuii ittt s e st e s baeesaee s 2-28
TaT o101 - oo @ 1 U] o o TV | A USSR 2-29
(20T [o 1 =11 o To ] o U U POTURPPTP 2-30
Considerations for Motion Control and Joystick USage........cccccuveeeviieeicciieeeeciee e e 2-31
MOtiION CONTIOIIEr BASICS ..vveiruriiiiiierieeiiieerieerte e st ettt ste e sbe e st e e sibeesiteesbeesaaeesaseas 2-31
SCript DESIZN DECISIONS ..cciieeiiiiieieie ettt e aaaeaeaenee 2-31
Motion Related MetroScript Commands...........ccveeeiiiieieieiieee e e e 2-32
Joyon and JOyoff COMMANAS ......uviiiiiiiie e e e e e eaaaee s 2-33
Yol g o) d @eT 0] o F= X1 o111 4V SR 2-34

CHAPTER 3 - EXAMPLE SCRIPTS

Example 1 - Perform a FUNCLION .........uuiiiiie ettt e e etttee e e e e arre e e e e e e e anrraaeee e s 3-1
Example 2 - Enter @ CoNtrol’s ValUe.......eeee ittt e e e nraae e 3-2
Example 3 - Select @ Control’s SELHING ...eeeveeeeeciiiieie e 3-3
Example 4 - Writing Results t0 @ Fil€.....uuuiviiiiiieeei e 3-3
Example 5 - Get Results for Specific Regions on a Part........ccccceeeevcciiiieee e, 3-3
Example 6 - Configure MetroPro for Multiple Parts .........ccccceeeeeeiciiiieee e, 3-4
Example 7 - Automate @ Measurement PrOCESS .....cuiciivcccuiieieeeeeecirieee e e e eeetrree e e e e e e araaee s 3-5
EXample 8 - HANAING EFTOrS ...uiiiiiiieiieiiee ettt ee e ectee e e e e e e seitare e e e e s e entba e e e e e e e esannraaaeeaeean 3-6
Example 9 - Set @ RESUIL VAlU ....cc.eeeeiiieiee ettt et e e e nrrae e e e 3-7
Example 10 — Set POSItion STatUsS ........uuviiiiii ittt e e e e arraee e e 3-8

CHAPTER 4 - METROSCRIPT REFERENCE

Reference Dictionary (Commands listed alphabetically) ........cccoecveeiiiiiiiiiiiee e, 4-1
APPENDIXES

Appendix A — Functional Cross REfErence ........ueeevii ittt A-1

Appendix B — INteractive IMOTE. .........uuiiiii ittt e et e e e e e e e nrraae e e B-1

Appendix C— Available CoNLrols ... e e e e e C-1

Appendix D — Programmable Stage Pattern FUNCLIONS........ccoviiiiiciiiiieee e, D-1

iv



Chapter 1
Getting Started

What is MetroScript?

MetroScript is a scripting language for use with MetroPro. It enables you to automate multiple
and specialized operations with the click of a button. Examples of some operations are:

e Change control values or settings.

e Prompt the operator for input.

¢ Load a data file.

e Calculate and log special results.

e Combine multiple actions into one mouse click.

The key to MetroScript is writing a “script” file. The script file is a text file containing commands
that MetroPro software executes.

Scripts are particularly useful for operating an instrument in a production environment. Simple
scripts can be created quickly. Yet, the language is powerful enough to enable an experienced
programmer to write scripts to control complex measurement processes.

Requirements

You must have a licensed version of MetroPro to use MetroScript. It is included with MetroPro
and is not a separate program.

Using MetroScript

Once you have created a MetroScript file, you add a MetroScript button to a MetroPro
application and link it to a script file.

MetroPro

I N

Click Button to...

( NE .
I\ clicks D files

ABC text

[>> sequences
D menus

run script (.scr) file...

to automate MetroPro.

The 5 Basic Steps

Control Window

1. n MetroPro, create a MetroScript button in

a Control window. Use the Control window Control Window...
menu and select New Button— New Button...— |Misce||aneous—>| MetroScript

. . Nlaw P Aantrnl —
Miscellaneous— MetroScript.

1-1



INTRODUCTION

2. Specify the name of the script file to link to | Enter MetroScript fle name | MyScript scr |
the MetroScript button. The filg name MetroScriol
should have ".scr" as the extension. Access Button
the MetroScript button menu, select the File File...

. . Edit...
command, type the script file name, and Debug...
press [Enter]. Move

Name—

3. Createa script file using any standard text Font—
editor. You can run a text editor from golrd?r...
MetroPro by accessing the MetroScript AR
button menu and selecting the Edit
command. Save the file to the MetroPro
working directory. . script

.SCr file

4. Change the name of the MetroScript button

to indicate its function. Access the
MetroScript button menu, select the
Name—> Rename command, enter a new
name, and press [Enter].

MetroScript

Automate BRrocess |
TN Button

5. Click the button to run the script.

Using this Manual...

This manual makes the following assumptions: 1) that you are already familiar with MetroPro,
2); that you are familiar with the computer’s operating system; 3) that you have used the text
editors included with the computer, and 4) that you have some understanding of programming
concepts.

Familiarity with a BASIC language, such as Microsoft QuickBASIC, Microsoft Visual Basic, or a
scripting language is recommended

1-2



Chapter2
MetroScript Fundamentals

Before You Begin

This chapter provides essential information about MetroScript language conventions. As with any other
programming language, there are associated usage rules. This chapter covers these rules as well as
important MetroScript command information that is interrelated with many MetroPro functions.

Terms Used in this Manual

The following terms are used in this manual. They are described in more detail in the following sections.

Term Description

IntConst An integer number.

RealConst A decimal number, which may include an exponent.

HexConst A hexadecimal number with Ox as a prefix.

StrConst A sequence of characters within matching single or double quotes.
Const Any IntConst, RealConst, HexConst, or StrConst.

RealVar The name of a real number variable.

IntVar The name of an integer variable.

StrVar The name of a string variable.

Var Any RealVar, IntVar, or StrVar.

FileVar The name of a file variable.

LineNum An integer from 1 to 99999999 used as a program line number.
LineNumRange A range of line numbers.

LineLabel A name used to label a program line.

Lineld Either LineNum or LineLabel.

SubstrRange Specifies a substring in any of these forms:

[ start] [start, end] [start; length ]
For example: nameS[3] color$[4,10]

IntExpr An integer expression involving IntVars and operators.

RealExpr An arithmetic expression involving RealVars, RealConsts, IntVars,
operators and parenthesized RealExpr.

2-1



METROSCRIPT FUNDAMENTALS

StrExpr A string expression involving StrVars, StrConsts, concatenation
operator (&), and parenthesized StrExprs.

LogicExpr A logical expression involving two RealExprs or StrExprs compared by
operators. Separated by operators And or OR. Parethesized
LogicExprs.

Expr Any RealExpr, StrExpr or LogicExpr.

FileNameExpr A string specifying an existing file or a file to be created. FileNameExpr

FileNameConst is a StrExpr. FileNameConst is a StrConst.

Using Parentheses and Brackets

When writing constants, variables, or the expressions section of a MetroScript command, observe the
following usage of parentheses and brackets. Parentheses ( ) are used for two purposes: 1) is for
functions that take passed parameters—in this case the parameters are enclosed in parentheses; 2) is
for enclosing array subscripts, for example, x(1) or y(2,3).

Brackets in italics [ ] are used to enclose optional items. Just remember, when writing scripts do not
type the brackets when using options. Ellipses (... ) appearing after a bracketed item denote repetition.
Brackets are also used to enclose string subscripts. For example: nameS[3].

Lexical Conventions

Components of a MetroScript file include commands, comments, and statements. Each component has
associated usage rules, which are described in the following sections.
Commands

A load-time command is executed when a program is first loaded and is no longer visible when the
program is run. A load-time command is not preceded by a tab or line number. Comments are not
allowed on the same line as load-time commands.

The only useful load-time command is loadsub.

2-2



METROSCRIPT FUNDAMENTALS

Comments

A comment is a section of code that is ignored by MetroScript when a program is executed. The
exclamation point character (!) starts a comment at any location after the initial tab or line number. A
or rem (remark) starts a comment at the end of a statement. A comment continues until the end of the
line.

-’

Why use comments? Because having them in the code will help later on when the script has to be
changed. Comments can be used to identify the function of the script, the name of the programmer, the
date it was written, etc.

Statements

A statement is an expression that is preceded by a line number or tab and ends with a carriage return.
An expression is a valid sequence of tokens. A token is the smallest piece of code that is recognized by
MetroScript, and there are five types:

¢ |dentifiers
e Keywords
e Constants
e Operators
e Commands

Spaces, tabs, and comments (collectively referred to as white space) are ignored except as they separate
tokens. Indenting gives visual structure to the script. NotePad and WordPad do not provide auto
indenting; tab characters at the start of a line must be inserted manually.

White space helps to separate items. Blank lines between logical sections of code help divide the script
into smaller, workable sections. Spaces separate operators, operands, and pathname components, and
make the code more readable.

Identifiers

Identifiers are sequences of letters, numbers, and underscores that are variable names or line labels.

They are case sensitive. My_String, MY_STRING, and my_string will all be recognized as unique names.

Variables are the programming convention used to store values in memory. These values are used when
the program performs calculations and/or operations. Variables have a name, which is used to refer to
the variable, and can be very helpful when debugging a program.

Variables also have a data type component. Data types identify the kind of data the variable can store.
MetroScript data types are described in the section entitled, Data Types and Variables, later in this
chapter.

Line Labels

Line labels are used with statements. Labels may contain upper and lower case letters and underscores,
but no spaces. Labels must be contiguous.

Choose meaningful names for line labels. Those line labels which mark the start of a logical section of
code (a subroutine), should start with a label that describes the function of the code, e.g., GetIDs, Init,
GetSkewAngle, AnalyzeSite, etc. Line labels within a subroutine might also have descriptive names. One

2-3



METROSCRIPT FUNDAMENTALS

convention is to have those names start with the same prefix. For example, within the subroutine
MeasureSite, there might be line labels such as MS_Retry, MS_Error, etc.

gosub Measurement Partl
on error goto No Error

E\/; Note: Line labels and variable names may not duplicate MetroScript
commands or functions. Remember that case makes a difference.

Keywords and Commands

The identifiers in the list below are reserved for use as keywords and may not be used otherwise.

abort for pause
assign gosub print
data goto printer
dim if read
disable input restore
else is return
enable let step
endif logfile stop
end next then
enter off to
enterline on wait
error output




METROSCRIPT FUNDAMENTALS

Constants

A constant is a section of data that appears directly in the program. Constants are used to assign data to
variables or to the print function.

Integer Constants (/ntConst) 3

Any integer number. 0xfc3b

Real Constants (RealConst)

Any decimal number, which may 2.3

include an exponent. —15.73e-6
String Constants (StrConst)

Any sequence of characters within “Sample text”
matching single or double quotes. ‘new program’

Special Characters in String Constants

There are special characters that can be used in string constants. A string constant
used in a file name must follow certain path naming conventions. Refer to the
following section.

Escape sequences are used to embed special characters in string constants. Some
characters are not printable, and others are used to begin and end a string constant.
Escape sequences begin with the backslash (\ ) character as shown below.

\b backspace

\f form feed

\n newline

\r carriage return
\t horizontal tab
\v vertical tab

\\ backslash

\” double quote
\ single quote

\nnn octal character value (ASCII)

2-5



METROSCRIPT FUNDAMENTALS

The string may be an absolute path name beginning with the forward slash
character( /) or a drive letter followed by a semicolon ( : ), and containing any
number of directory names. For example:

/temp/test.dat

C:/temp/test.dat

The string may be a relative path name beginning with a period and forward slash
character( /) or the name of a directory within the current working directory and
containing any number of directory names. For example:

.Jtest.dat

runl/test.dat

The string may be a simple file name indicating that the file exists or will be created
in the current working directory. For example:

test.dat

In MetroScript, the backward slash (\ )is interpreted as the beginning of an escape
sequence to represent special characters in strings. Therefore, the forward slash
( /)is recommended as a separator in absolute and relative path names.

Data Types and Variables

A variable is a named container for data. It is assigned a value from a constant or another variable.
There are four data types in MetroScript: integer, real, string, and file. Special characters are used to
indicate the type of variable. Keywords may not be used as variable names. All MetroScript variables
are visible everywhere in the file in which they are defined.

Integer Variables (IntVar)

Integer variables start with an identifier and end with the percent character (%). They are also known as
whole or counting numbers. Real data is truncated to an integer.

Assignment:  var name% = 3

Real Variables (RealVar)

There is no special character to indicate real variables.

Assignment:  var name = 23.56

2-6



METROSCRIPT FUNDAMENTALS

String Variables

String variables end with the dollar sign character ($). They require a matched pair of either single or
double quotation marks. The default size is 32 characters, but this may be changed by allocation.

Assignment: var_name$ = “a string”
Allocation: dim var name$ [ 256 ]
Accessing: var name$ [ startNum ]
var name$ [ startNum, endNum ]
var _name$ [ startNum; length ]

File Variables (FileVar)
File variables begin with the at character ( @ ).

Assignment: assign @identifier to fileNameString accessString

Arrays

Arrays are ordered sequences of data. Arrays may contain any data type except file variables. Every
element of an array must contain the same data type. Array indices are base one and therefore array
dimensions must be greater than or equal to one. Array dimensions expressions are truncated to
integer values, that is, they are rounded down to the next highest whole number.

The following examples show valid array statements.

dim b% (4, 3)
dim a$ ( 3 ) [ n%
dim ¢ ( len ( s$

Assignments

Assignment is the process by which a value is given to a variable. Assignment is by copy and not by
reference. When one variable is assigned to another variable, as in a = b, it is done by copying the value
of b to the variable, a. The following example shows a program that prints 1, not 2, as it might in other
languages.

O oW
o\° o\° o\
L

N
o°

print b%

2-7



METROSCRIPT FUNDAMENTALS

Operators and Expressions

Operators perform mathematical or logical operations on values. Operators are arithmetic, relational,

or logical.

Arithmetic Operators(ArithOpr)
Addition +
Subtraction -
Multiplication *
Divison /

Exponentiation /

Relational Operators(RelOpr)

Equal to (also assigment operator) =

Less than <
Greater than >
Not equal to < >
Less than or equal to <=

Greater than or equal to

Logical Operators(LogicOpr)

Negation not
Conjunction and
Disjunction or

Miscellaneous Operators

String concatenation &
Parentheses ()
Used for enclosing expressions, array

subscripts, and function parameters.

DIV and MOD Operators

DIV returns the integer portion of the result of
a division

MOD returns the fraction portion of the result
of a division

Note: for either operator, the divisor cannot
be zero (0). This will return a divide by zero
error.

Example:
-6DIV2=-3
1DIV2=0
2DIV2=1
3DIV2=1
3.5DIV2=1
4DIV2=2
-1MOD3=-1
0OMOD3=0
1M0OD3=1
2MOD3=2
3MOD3=1
4MOD3=1
5MOD3=2
55M0D3=2



METROSCRIPT FUNDAMENTALS

Operator Precedence

The operators are listed in order of highest to lowest precedence.
()
A

not

+\*QO

1}
N
\"

and
or

Expressions

Expression components are defined as follows:

Intltem is defined as: InConst or,
IntVar

Realltem is defined as: RealConst or,
RealVar

Stritem is defined as: StrConst of,
StrVar

Integer Expressions (IntExpr)

This is an expression involving integer variables, integer constants, and the arithmetic operators. Integer
expressions produce an integer value.

IntExpr is defined as: IntItem or,

IntItem ArithOpr IntItem oOfr,
( IntExpr )

2-9



METROSCRIPT FUNDAMENTALS

Real Expressions (RealExpr)

This is an expression involving real variables, real constants, integer variables, and the arithmetic
operators. RealExpr is parenthesized. Real expressions produce a real value.

RealExpr is defined as: IntItem or,
Item or,
Item ArithOpr ReallItem or,
Realltem ArithOpr IntItem or,
Realltem ArithOpr Realltem or,
( RealExpr )

String Expressions (StrExpr)

This is an expression involving string variables, string constants, and the concatenation operator. StrExpr
is parenthesized. String expressions produce a string value. (When using a string expression in a path
file name, refer to the Constants, “Path Names in String Constants” section of this chapter.

StrExpr is defined as: StrItem or,
StrIiItem & StrItem oOr,
( StrExpr )

Relational Expressions (RelExpr)

This is an expression involving two RealExprs or two StrExprs, and the relational operators. Relational
expressions produce a truth value.

RelExpr is defined as: RealExpr RelOpr RealExpr  Of,
StrExpr RelOpr StrExpr or,
( RelExpr )

Logical Expressions (LogicExpr)

This is an expression involving two RealExprs or StrExprs compared by operators. Logical expressions
produce a truth value.

LogicExpr is defined as: RelExpr or,
RelExpr LogicOpr RelExpr or,
( LogicExpr )

2-10



METROSCRIPT FUNDAMENTALS

Flow Control

As with other programming languages, MetroScript includes the ability to control decision-making
functions as well as the repetition of operations. The following section lists the statements that are used
to manage flow control in a MetroScript program.

Decisions

if LogicExpr then Expression

if LogicExpr then Expression else Expression
if LogicExpr then

Statements

endif

if LogicExpr then
Statements
else
Statements
endif

As shown below, if statements may be nested.

if LogicExpr then
if LogicExpr then
Statements
endif

else

if LogicExpr then
Statements
endif

endif

Repetition

for Variable = RealExpr to RealExpr
Statements
next Variable

for Variable = RealExpr to RealExpr step RealExpr
Statements
next Variable

2-11



METROSCRIPT FUNDAMENTALS

Branching

goto lineld

gosub lineld

error return

return

on error gosub LinelD

on error goto LinelD

on RealExpr gosub LinelD [, LinelD]...

on RealExpr goto LinelD [, LinelD]...

As shown below, for statements may be nested.

fori =1 to 10

for j =1 to 10
Statements
next j
next i
Other
end
stop

stop Expression

Subroutines

While MetroScript has a gosub keyword, it does not have user-defined subroutines (or functions) in the
usual sense. A subroutine can be simulated with a label and a return statement. Data that would
normally be returned from a function must be stored in a (global) variable.

To avoid clashes of variable names and labels, a naming convention can be very helpful. One such
convention is to prefix labels and variable names with the name of the function that they are in. For

example:

MyFunction:
MyFunction_N% = 3
goto MyFunction_End
I do something
MyFunction_End:
I do something
MyFunction_StrS = “some string”
I do something
return

2-12



METROSCRIPT FUNDAMENTALS

Top Level and Application Scripts
Within MetroScript there is a differentiation between top-level and application-level scripts.

MetroPro scripts can be compared to macros used in a word processing program. A top-level script is
similar to a macro that is defined outside of a specific document. An application-level script is similar to
a macro that is defined within a specific document.

An application-level script has the following characteristics:
(Refer to the script samples in Chapter 3 of this manual.)
¢ Has access to MetroPro objects defined within the application;
¢ Cannot access MetroPro objects outside the application (e.g. other applications);
¢ Can be run from a MetroScript button in the application;
¢ Can be run when the application is opened using Script controls.

A top-level script has the following characteristics:
¢ Has access to MetroPro applications;
¢ Has no access to MetroPro objects inside of applications;
e Cannot control a measurement;
¢ Can be run from the Desktop Menu option Script/Run;
¢ Can be run at start-up using the +script command line option.

The following functions can only be used in a top-level script:

e closeapp
¢ getappid
¢ loadapp
® openapp

Writing a MetroScript File

Starting a Script File
Use one of these methods to create a file.
e Qutside of MetroPro, use any ASCII text editor to create a new script file.

¢ In MetroPro, create a new MetroScript button. Using the button pop-up menu, select File to specify
a name for the script file. Select Edit to open the script file with a text editor so you can create and
edit the file.

Hint: It can be useful to associate the “.scr” extension with either the Notepad or
Wordpad application.
* Access the Interactive Mode (see Appendix B).

Script File Location

Script files must be located in the MetroPro working directory in order for MetroPro to find them. If you
start MetroPro from another directory, the script files must be located in that directory. The default
working directory is: “\users\zygo”.

2-13



METROSCRIPT FUNDAMENTALS

Script File Format

Each program line should start with a tab character. This causes each program line to be automatically
assigned a line number. This is the recommended programming style.

It is also possible to start each program line with a positive integer line number. Program lines are
ordered by increasing line number. This style is not recommended, except for very short scripts because
scripts with embedded line numbers are more difficult to revise.

Reminder End each script with a carriage return.

Program Structure

If the script is longer than what can be seen at one time in the text editor, break the script into logical
sections, which perform specific functions, and call them with the gosub function. Not all program
statements need to be put into subroutines; it may be appropriate instead to base the structure on
logical grouping.
A program broken into subgroups would look like:

gosub sub A

gosub sub_ B

end

! SUBROUTINES

sub A:

return

sub B:

return

2-14



METROSCRIPT FUNDAMENTALS

MetroScript Commands and MetroPro Functionality

Many MetroPro functions can be simulated using MetroScript commands. The remaining sections of
this chapter describe how to use commands for a desired function.

Measure, Acquire, and Analyze

MetroScript can perform the same functions as clicking the MEASURE button and the Analyze button in
MetroPro. Unlike its MetroPro counterpart however, MetroScript can obtain unprocessed data with the
acquire function. The following table summarizes the distinctions between the MetroScript measure,
acquire, and analyze functions.

measure Equivalent to clicking the MetroPro MEASURE button or pressing
F1. For the Process window, it adds results to the process buffer if
the Auto Store control is On. For the Report window, it logs or
prints the report if the Logging or Printing controls are On.

acquire Obtains data from the part under test, but no further processing is
performed. Itis the “scan” part of a measurement; it takes video
data and generates "unprocessed" data; no results or plots are
displayed. There is no MetroPro equivalent.

analyze Equivalent to clicking the MetroPro Analyze button or pressing F2.
It processes the “unprocessed” data according to Data window
controls, and displays results and plots.

When acquire and analyze are used together in sequence, it does
not log reports, print reports, or add results to the process buffer.
This must be done explicitly with the logreports and
storeprocstats functions.

Accessing MetroPro Objects

An important aspect of MetroScript is the ability to access MetroPro objects. An object is any named
item, for example, control buttons, attributes, plots, windows, and results. There are many reasons to
do this, some of which are:

e Set control values to initial values at the start of a script.
e Change control values during a script for re-analyzing data.
e Read numeric results, controls or attributes for use in numeric calculations.

e Read control values to make decisions (e.g., if ... then).

2-15



METROSCRIPT FUNDAMENTALS

Object IDs

Each MetroPro object has a unique identifier or ID. MetroScript provides several functions for accessing
MetroPro objects. Each of these functions requires knowing the object address. For most objects, this is
done with the MetroScript getid function.

idobject = getid (MenuPathToObject)

The path for an object resembles the path for a file, except that instead of directories, the path contains
menu items. The menu items are separated by the forward slash character (/). The path structure looks
like:

WindowType | Menultem | SubMenultem /| SubMenultem

The window type is used for data windows. If no window type appears, then the path applies to Control
windows. If the window is a Control window, do not enter "Control" in the path name.
Some path examples are:

" Controls / Acquisition / Phase Res "

" Attributes / Miscellaneous / Limits "

" Surface Wavefront Map / Results / Peak Valley / PV "
" Slope X Profile / Results / Rms "

It is often helpful to place all the getid calls in a section by themselves. This makes them easy to find and
edit.

Hints for Typing Path Names
e Separate menu items by forward slash characters (/).
e  Omit any slash characters that are embedded in Window names or menu items.

e The first menu item will always be “Controls,” “Results,” or “Attributes.” Note that the window
type precedes the first menu item, except when it is a Control window; in which case the
window type must not be entered.

e Path names are not case sensitive - use capital letters for readability.
e Spaces are allowed in path and file names.
e The returned address is an integer; there is no need to assign it to an integer variable.

e Data window types must be the full name, including "map" or "profile".

User-Defined Variable Names

User-defined variable names should be understandable. For example:

idPower = getid (" Surface Wavefront Map / Results / Power ")
idCameraMode = getid (" Controls / Interferometer / Camera Mode ")
idTestandRefDataWindow = getid (" Surface Wavefront Map (T+R) ")

Finding an Object's Path Name
To get the path for an object, there are three methods:

1. Access the item's menu and select the Name— Identify command. A dialog box lists information,
which will help you construct the path.

2. Point to the window in which the object is found and navigate the menus to find the object listing.
The path contains the names of the items as they appear in the menus.

2-16



METROSCRIPT FUNDAMENTALS

3. Print a settings file for the application type you are using. The settings file indicates the path
structure to all controls and attributes in the application.
The Report Window and the getid Function

The getid function does not operate on Report window items. This is because Report windows are not
unique. That is, two Report windows in the same application can have two different values of the same
control.

Named Objects

It is also possible to get addresses for specific windows including Report windows and annotation boxes.
This allows accessing the Window Control sub-menu functions for specific windows and writing
information to specific annotation boxes. Addresses of this type are keyed to the object name, not the
path.

To get a specific window address, use the getwinid function.
idWindow = getwinid (WindowName)

For example:
idSpecialDataWin = getwinid ("Special Data")

gets the address of a window which has been renamed "Special Data". To get a specific annotation box
address, use the getannotid function.

idAnnotation = getannotid (idWindow , AnnotationName)
For example:
idSpecialResult = getannotid (idSpecialDataWin, "Special Result")

gets the address of an annotation box which has been renamed "Special Result" and which sits in the
window identified by idSpecialDataWin. Because the getannotid function identifies a specific annotation
in a specific window, you cannot use the getid function to get the window address which is fed to the
getannotid function.

Identifying Masks
Masks are also identified for the purpose of manipulation. This type of address will be taken up in the
"Controlling the Mask Editor" section.

Reading MetroPro Controls, Results, and Attributes

The getval and getval$ Functions

The whole purpose of identifying particular MetroPro objects is to either read their values or change
their values. This is done with the getval, getval$, sethum and setstr functions.

RealVariable = getval (1dObject, UnitsString)
StringVariable = getval§ (idObject)

The numeric variable may be either an integer or a real. The string specifier indicates the units in which
the value is to be given. This is simply the unit string as would be shown on the object itself. It does not
need to be the unit actually shown on the screen. Examples of unit strings are:

2-17



METROSCRIPT FUNDAMENTALS

A A A urad sqA nm3
nm nm nm mrad sq nm um3
um um um rad squm
mm mm mm sec sq mm
cm cm cm min sqcm
m m m deg sqm
uin uin uin sq uin
mil mil mil sq mil
in in in sqin
pix wave
fr

z

An object does not need to be visible on the screen for MetroScript to access its value with either of
these functions. In other words, if you want to access the Camera Mode control, the control does not
need to be present in the application.

A value with no units still needs a units specifier. In this case use the empty string,

Examples:

StepHeight = getval (idAvgHgt, "nm")
Power = getval (idPower, "wave")
Points = getval (idPoints, "")
Comments$ = getval$ (idComments)

List Controls/Attributes

For list type controls and attributes, either the getval or getval$ functions can be used. Each selection of
the list has an index, starting at 1. Each selection in the list has a string value. Either can be used.

Examples:

ScanLength = getval (idScanLength, "")
print ScanLength
4

ScanLength$ = getval$ (idScanLength)
print ScanLength$
40 um bipolar (25 sec)

When using getval for a list index, the units specifier is always the empty string.

Writing MetroPro Controls

It is often important to write to MetroPro controls. Typically this is done to initialize control values at
the start of a script or to change control values if a script performs multiple analyses on the same data.
Use the setnum or setstr functions for writing to MetroPro objects:

setnum (idobject, RealValue, UnitsString)
setstr (1dObject, StrExpr)

Some examples:

setnum (idMinMod, 5, "")
setnum (idNomRailLength, 0.15, "mil")

2-18



METROSCRIPT FUNDAMENTALS

setnum (idZernike8, SA3 / 6, "waves")

setnum (idScanLength, 3, "")

setstr (idComments, "This is a test")

setstr (idScanLength, "10 um bipolar (9 sec)")
setstr (idNamedAnnotation, val$ (Calculated Result))

Note that MetroScript can write to Control boxes and Annotation boxes, which have been named. Itis
not possible to write to Attributes; and Results are read only. The rules regarding the getval and getval$
functions apply to the setnum and setstr functions as well.

Interacting with the Operator

Message Box

Message boxes are temporary displays of information. Their usefulness is limited. The message
function displays a box with text in a pop-up window in the center of the screen.

message (MessageString, MessageBoxCode, DisplayTime,)

The message box code controls the color of the header bar, indicating the intent of the message:

1 green informational
2 red error
3 yellow warning
Examples:
message (" hello world ", 1, 2)
message (msg$ = "The measurement failed ", 2, 5)
message (" The process took " & val$ (time$ (end time - start time)) & "
seconds ", 1, 3)
message (" This is a long message \n It takes more than one line. \n This

is the third line, ", 1, 5)

Hints for Using Message Boxes
* Message boxes are for temporary display only.

* Message boxes are always displayed at the center of the MetroPro window. If this covers
important information, rearrange the application objects.

e The script execution does not proceed to the next line of code until the message box display is
finished.

e Messages are easier to read if they include "blank-space". Some methods of using blank space
are: 1) insert a space at the start and end of each line in the text, and 2) insert a line feed escape
sequence - "\n" between lines of text or at the start and end of the message string.

Message Box alternative

Use a named annotation. This will not delay continuation of the script execution.

2-19



METROSCRIPT FUNDAMENTALS

Dialog Box

The dialog box provides messaging capability, which requires operator acknowledgment. It can also
provide branching input from the operator.

Response = dialog (MessageString, DialogBoxCode)

The dialog box code controls both the color of the header bar, indicating the intent of the message, and
the buttons on the box:

1 green informational OK button
2 red error OK button
3 yellow warning OK button
4 green informational Yes and No buttons
5 red error Yes and No buttons
6 yellow warning Yes and No buttons

E\/j Note: Pressing the Escape key in response to a dialog box generates a
MetroScript error.

Examples:
ok = dialog (" Measurement Finished ", 1)
ok = dialog (" The part is out of spec: " & val$ (Calc Spec), 2)
ok = dialog (" Measurement Finished \n Click Yes to measure another

part, Click No to stop ", 4)
if ok = 1 then goto NewPart

end

ok = dialog (" Measurement Failed \n Click Yes to try again,
Click No to proceed to next part ", 5)

if ok = 1 then goto ReMeasure

goto NewPart

Hints for using message boxes apply to dialog boxes as well.

Annotations

Named Annotations provide a display which becomes part of the application. This has the advantage
that it can be printed. Uses for Named Annotations include:

e Display of status messages, without halting execution of the script.
e Display of numeric results which can then be printed with the data (but not saved with the data
set).
Example:

idStatWin = getwinid ("Status")
idStatBox = getannotid (idStatWin, "Status")
setstr (idStatBox, " Initializing parameters ")

2-20



METROSCRIPT FUNDAMENTALS

Making a Status Annotation

The status annotation is very useful, both as a development tool and as a reassurance to the operator
that all is proceeding as planned. To implement this tool:

1. Open (or create) the window in which you want the display to appear.

2. If the window does not have a unique name, rename it.

3. Create an annotation box in the window.

4. Rename the annotation box (from the menu).

In the script file:

1. Inthe GetlDs section of your script, add the lines:
idStatusWindow = getwinid (WindowName)
idStatus = getannotid (idStatusWindow, AnnotationName)

2. Every place in the code you want to display some information, insert the line:
setstr (idStatus, DisplayString)

Status displays can include a variety of messages including:

Name sections of code "Initializing Parameters"

Read values files val$ (int (NumMeas)) & " measurement locations"
Timing data "Done" & val$ (EndTime - StartTime)

Error messages val$ (int (errn)) & " " & errm$

Calculated values not for "New stage position: " & val$ (x) & val$ (y)
final display

Control Boxes

Control boxes can also be used to display information. Though this is not so useful for strings, the
formatting of the control box (units, value format, and layout) can be used to advantage.

2-21



METROSCRIPT FUNDAMENTALS

Accepting Parameters at Run Time
Often a script will require some information that is not available until runtime. For example, the number
of measurements to make, a serial number, the name of an output file, etc. There are several methods
of reading parameters at run-time.
The promptstr$ Function
This promptstr$ function creates a pop-up box to solicit input. An example:

promptstr$ (PromptString, DefaultString, MaxInputLength)

The box appears in the middle of the screen and does not disappear until the enter key or the escape
key is pressed, or a mouse button is clicked.

If the entry is supposed to be a numeric value, check the validity of the entry before proceeding.

Examples:
Comment$ = prompstr$ ("Enter comment here", "No comment", 80)
NumberEntry:
temp$ = prompstr$ ("Type the number of measurements", "4", 3)

on error goto InvalidNumberString
NumMeas = val (temp$)
off error

InvalidNumberString:
off error
ok = dialog (" \n Invalid number \n \n Please try again \n ", 3)
goto NumberEntry

Unless there is a compelling reason to prompt the user, it is recommended that control boxes be used
for entering numeric values.

In the case of the Lot Num, Part Ser Num, and Auto Save Data File controls see the promptentry function
in Chapter 4.
Input from Control Boxes

MetroPro controls provide a good way to enter parameters. In addition to using the standard controls
for the application, it is possible to "commandeer" unused controls. That is, take an otherwise unused
control and use it for a parameter which is needed by the script.

Example:

idMultiplier = getid ("Controls / Miscellaneous / Part Thickness ")
Multiplier = getval (idMultiplier, "nm")

In this example, the control for Part Thickness has been used for another purpose. In the application,
you would create the control and rename it to "Multiplier". In this way the operator could click on the
Multiplier control, type in a value, and proceed as if Multiplier were a standard MetroPro control.

Finding Controls to Take Over

For a listing of available controls, see Appendix C.

2-22



METROSCRIPT FUNDAMENTALS

There are many controls available in a Control window. In data windows, the available controls are
significantly fewer. It is essential that you select a control that will have no unwanted effect on any part
of the application use.

If making a script for a GPI, select controls normally used for the microscopes. If making a script for the
microscope, select controls normally used for the GPI.

Hint:  Avoid using the Zernike Coefficient controls if: either the Wavelength-In or
Wavelength-Out controls are changed, or the application is to be copied to
other systems. These controls interact with one another; values can change.

Controls that toggle between On and Off values are useful for controlling branching in the script. These
controls can be set to display On/Off, Yes/No, or True/False by selecting the Display As command from
the control's menu.

Controls that are used for integers should be truncated to the nearest integer when read with the getval
function. MetroScript contains no "nint" function, so this truncation takes the form of:

idNumMeas = getid (" Controls / Autosequence / Auto Seqg Max Count ")
NumMeas = int (getval (idNumMeas, "") + 0.5)

Here the control is a numeric control that has no units.

Hints for Using Control Boxes

e Controls can be renamed as necessary. There is no need to economize on the length of the
name. Its purpose should be clear.

e Text controls can be used for a number of purposes in addition to storing comments. Most
significant among these is to store a file name for some ancillary file which the script is either to
read or to write.

e When possible, use a unitless control for a unitless parameter. If the parameter has units, it is
best if a control with the same type of units can be found. If this is not possible, then it is
recommended to change the Layout to "Name Value" to avoid confusion.

e Set the Value Format command appropriately for the parameter.

e Ifthe value is an integer, add 0.5 to it and truncate (see the getval function).

2-23



METROSCRIPT FUNDAMENTALS

Interacting With MetroPro Files

MetroScript provides for reading and writing the standard MetroPro files (data, masks, patterns,
settings), except Report files. It also allows for writing sequential ASCII files to the disk. These may be
used to create and/or read:

e customized report files

e stitching coordinate files (*.crd)

e stitching sequence files (*.seq)

e measurement location files (*.sit) (sites)

This type of 1/0 uses the following functions:
assign @FileVar to FilenameString AccessString

The file variable name begins with an @ sign. The file name string may include a path. The access string
parameters are shown in the following table.

"w" open for writing - erases existing file of this name.
"t open for reading only.
"a" append - opens for writing but does not erase existing data.

To close the file, use the assign function with the following syntax,
assign @FileVar to ""

Reading from and writing to the file are accomplished with the enter and output functions. Each enter
function corresponds to one line in the input. A semi-colon at the end of an output statement
suppresses the linefeed at the end of the line.

enter @FileVar; variable 1, variable 2,

output @FileVar; variable 1, variable 2,
output @FileVar; variable 1; variable 2;

Examples:
dim SpecialResult (10)

assign @ReportFile to "process.rep" "a"

output @ReportFile; " index Result"
for i =1 ton

output @ReportFile; int (i), SpecialResult (i)
next 1i

assign @ReportFile to ""

dim x(10)
dim vy (10)
assign @CoordFile to "xycoords.sit" "r"
for i =1 ton
enter @CoordFile; x (i), y (i)
next i

assign @CoordFile to ""

2-24



Formatting Output of Numbers

METROSCRIPT FUNDAMENTALS

The output of numbers is governed by the integer and real number formatting functions: ofmtr and
ofmti. The functions take a string argument which follows formatting conventions used by the C
language "printf" function.

ofmtr ("%10.4£f") Real numbers displayed in floating point format; field of 10
spaces with four digits to the right of the decimal point.

ofmtr ("%.2f") Real numbers with two decimal places with no leading spaces.

ofmtr ("%08.4f") Field of eight spaces, forces leading zeroes.

ofmtr ("") Return to default real number formatting.

ofmti ("%5d") Integer formatting in a field of five spaces.

Examples:

ofmti ("%8d")
ofmtr ("%8.3f")

output @FileVar; n%, x, y, s$
output @FileVar; n%; x; y; sS$

for 1 =1 to 3
output @FileVar; x (i)
next i

for i = 1 to 3
output @FileVar; x(i);
next i

To use the integer formatting, either use integer variables (with % as last character in name) or use the
int function on the real variable when outputting it.

In the output statement, variables may be separated by commas or semicolons. The comma indicates
that the output should be spaced in standard size fields. Use of the semi-colon suppresses any
additional spaces beyond those specified in the ofmtr and ofmti functions.

14 2.345 -0.875 hello world

14 2.345 -0.875hello world

1.234
6.789
-7.654

1.234 6.789 -7.654

2-25



METROSCRIPT FUNDAMENTALS

Controlling the Mask Editor

MetroScript provides limited interaction with the MetroPro Mask Editor.

adjustmask Changes the mask width and height.

loadmasks (FileNameExpr) Loads the specified mask file.

movemask Moves mask to specified location.

savemasks (FileNameExpr) Saves the current mask with the specified
file name.

resetmasks The equivalent of clicking on the Clear

button in the Mask Editor.

Mask manipulation is done with the following functions:
idMask = getmaskid (XCtrCoord, YCtrCoord, UnitsString)

The getmaskid function returns the id of the mask figure for which the minimum enclosing rectangle has
its center closest to the coordinates specified in the function call. The coordinates are based with 0,0 as
the center of the camera, except when using lateral units of pixels ("pix") for which the origin is the
lower left corner of the camera.

movemask (idMask, NewXCtrCoord, NewYCtrCoord, UnitsString)

The movemask function moves the center of the minimum enclosing rectangle of the specified figure to
the coordinates specified in the call. It follows the same units/origin convention as getmaskid.

adjustmask (idMask, NewWidth, NewHeight, UnitsString)

The adjustmask function applies to the minimum enclosing rectangle of the figure specified in the
function call. It follows the same units/origin convention as getmaskid.

For the movemask and adjustmask functions, when idMask = 0, all mask figures are affected; it is
equivalent to a "pick all" in the Mask Editor.

2-26



METROSCRIPT FUNDAMENTALS

Remote Control of MetroPro

MetroScript provides for remote control of MetroPro through an RS-232 interface.

“COM” Ports

PC compatible computers used with ZYGO instruments are provided with two serial or "COM" ports. The
default designation of most computers built-in serial ports are COM1 and COM2. COM1, COM2, COM3,

and COM4 ports may be used for remote control purposes.

Four COM port settings can be set. These settings are: baud rate, bits, parity, and stop bits. Use the
assign statement to set values. For example, to set COM1 to 57600 baud rate, 8 bits, odd parity and 1
stop bit, use the statement as shown below. Note that values must be set in the following order: baud

rate, bits, parity, stop bits.

assign @Sio to “coml” “57600, 8,1,1”
However, if using the default setting, which is 9600 baud, 8 bit, no parity, and 1 stop bit, use the
following: assign @Sio to “coml.”

Baud Rate Bits (per byte) Parity Stop Bits
150 5 0 no parity 1
300 6 1 odd parity 1.5
600 7 2 even parity 2
1200 8

2400
4800
9600

19200

38400

57600

115200

2-27



METROSCRIPT FUNDAMENTALS

The PC serial ports use 9-pin D-subminiature connectors with RS-232 standard Data Terminal Equipment
(DTE) signals. Most remote control configurations require only the RXD, TXD, and GND signals.

1 DCD Data carrier detect

2 SIN Serial input (RXD)

3 SOUT Serial output (TXD)

4 DTR Data Terminal Ready
5 GND Ground

6 DSR Data Set Ready

7 RTS Request To Send

8 CTS Clear To Send

9 RI Ring Indicator

Input and Output
The serial port device file is opened like an ordinary file using the assign statement as shown below.
assign @Sio to “com2” ! PC compatible example

Characters are transmitted using the output command as shown in the following example.

dim TxData$[100]
TxData$ = “hello world”
gosub Tx

stop

Tx:

output @Sio; TxData$
return

The default output terminator is an ASCIl new-line character (hex OA). Characters are received using the
enter command as shown in the following example:

dim RxData$[100]
gosub Rx

print RxData$
stop

on error goto RxErr
Rx2:
enter @Sio; RxData$
off error
return
RxErr:
if pos( errm$, "Ran out of input" ) <> 0 then goto Rx2
print errm$
stop

The on error is needed because the enter statement will result in a "Ran out of input" error if a new-line
terminated string is not received within two seconds.

2-28



METROSCRIPT FUNDAMENTALS

Remote Abort

It may be desirable to allow the remote controller to abort the current processing. To support this
capability there is an enable abort MetroScript command, which is used like this:

enable abort @Sio

Then, if an ASCIl escape character (hex 1B) is received (while not executing enter @Sio), it will resultin a
"Processing aborted" error. (The effect is as if the operator pressed the Esc key on the keyboard.) This
error can be handled using the on error mechanism.

To be thorough, after an enter @Sio statement, the received string should be checked to see if it
contains an escape character as in this example:

if pos( RxData$, chr$(27) ) <> 0 then goto RxEsc

The ability to handle the "Processing aborted" error using the on error mechanism is new with MetroPro
6.5.7. Previously, this error always caused a script to be aborted. To ensure that a poorly designed
script using the on error mechanism cannot hang up MetroPro, the on error mechanism will fail if the
escape key is pressed two or more times.

Note the use of the enable abort should only be in areas where received data is not expected (e.g.
during measurements, execution of patterns, or other lengthy operations).

The enable abort command under certain circumstances can read and discard an incoming character,
thereby not allowing it to be seen by an enter command. It is recommended that enable abort be used
in conjunction with disable abort as shown in the following example:

Meas Tt:
on error gosub Chk Meas Abort
enable abort @Sio ! enable remote abort
measure
disable abort @Sio! disable so we don’t lose any characters
return
Chk Meas Abort:
if pos( errm$, "Processing aborted" ) <> 0 then
ok = dialog (" Measurement Aborted ", 1)
else
ok = dialog (" Measurement Error Occurred ", 2)
endif

error return

2-29



METROSCRIPT FUNDAMENTALS

Considerations for Motion Control and Joystick Usage

MetroScript is often used to control stage motion with the Nova Motion Controller. In particular,
managing the state of the joysticks requires careful attention when developing scripts. This section
provides information about the issues related to the Nova Motion Controller as they relate to creating
well-behaved scripts.

Motion Controller Basics

When using the motion controller with MetroScript commands, observe the following principles.
MetroPro and MetroScript try to manage commands to the controller to avoid violating these principles.

e Ajoystick canot be disabled while the operator is using it.
e A programmed move command is rejected if the joystick is enabled.

e Ajoystick cannot be enabled during a programmed move.

Script Design Decisions

There are two major design decisions to consider when writing scripts to manage the joysticks. They
are: concurrent motion and error handling.

Ignore the Joysticks—A script that simply ignores the joysticks is the easiest to write. However, it
cannot be robust. For example, if the joysticks are enabled and the operator moves the joystick just
prior to the script executing a programmed move, the move command will generate an error.

Disable the Joysticks—A script that disables the joysticks during execution is practical if the operator
does not need to use the joysticks during the run. The script should use error handling to ensure that
the joysticks are always re-enabled before exiting. The programmer must be aware of commands that
may unexpectedly re-enable the joysticks.

Enable the Joysticks Intermittently—A script that enables the joysticks intermittently is required if the
operator must use the joysticks during the run.

Concurrency—A script that perfoms stage movements concurrent with other operations may be
necessary to meet performance goals. In this situation, the “Don’t-Wait-For-Stop” move commands
must be used.

Error Handling—This can be the most difficult aspect of writing a production-quality script.
Encountering both process errors, as well as anticipating operator interaction, (including activity such as
repeatedly pressing the Esc key), poses multiple challenges to writing scripts that include robust error
handling routines. Managing conditions such as concurrent motion and the state of joysticks adds more
complexity. It is possible for no error handling to be better than poorly designed error handling as
occasionally the handling routine will produce results that are difficult to explain.

When writing scripts that will include error handling, keep the following in mind:

e Assume that an error can be generated at any time by virtue of the operator pressing the Esc key
at any time.

e Always have an on error goto or on error gosub in effect.

2-30



METROSCRIPT FUNDAMENTALS

e The error handler should test the value of errm$ to find out which error has occurred. For
example, it should not simply assume that if measure failed, the part must be out of focus. As a
minimum, the error handler should test for the string “Procesing aborted” to find out if the
operator is trying to stop the script with the Esc key.

e The error handler may be re-entered as a result of the operator pressing the escape key at just
the “wrong”time.

e The error handler should provide optional logging of error messages as a diagnostic.

Motion Related MetroScript Commands

The following table lists the primary MetroScript stage movement commands, segregated into “Wait-
For-Stop” and “Don’t-Wait-For-Stop” commands.

Wait-For-Stop Commands

Don’t-Wait-For-Stop Commands

movexy(X,Y)

movexy(X,Y,1) movexy(X,Y,0)
movexyz(X,Y,Z)

movexyz(X,Y,Z,1) movexyz(X,Y,Z,0)
movez(Z)

move(Z,1) movez(Z,0)
moverp(R,P)

moverp(R,P,1) move(R,P,0)
move(T)

movet(T,1) move(T,0)

moveaxis(“X”,0,X,1)

moveaxis(“X”,0X,0)

The wait-for-stop forms of the move commands are the easiest to use. They perform the following
sequence:

Record the initial state of the joysticks.
Disable the joysticks if they were enabled.

1

2

3.  Command the Motion Controller to start moving.
4. Wait for the Motion Controller to finish moving.
5

Restore the joysticks to the initial state.
The don’t-wait-for-stop forms of the move commands allow for concurrent operations.
The commands perform the following sequence:
1. Disable the joysticks.

2.  Command the Motion Controller to start moving.

The script must wait for movement to complete, and manage re-enabling the joysticks. If the script tries
to enable the joysticks before all movement is completed, the joyon command generates an error.

As of MetroPro version 8.1.5, the Don’t-Wait-For-Stop form of the moveaxis command tries to restore
the joysticks to the intial state. If the joysticks were previously enabled and the move is non-zero, the
following diagnostic message is output to the log file.

mc_enable_joy() failed - ERR MC_ JOYSTICK ENABLE
mc_pop_joystick() failed — ERR MC_ JOYSTICK_ ENABLE

2-31



METROSCRIPT FUNDAMENTALS

Note that the command does not generate a MetroScript error. To avoid the diagnostic message,
ensure that the joysticks are disabled before using this form of the command.

There are several MetroScript commands that perform pattern-related stage movements, including:
gotopatorg gotopatload gotopatpos

These commands perform the following sequence:
Record the initial state of the joysticks.

Disable the joysticks if they were enabled.

1

2

3.  Command the motion controller to start moving.
4. Wait for the motion controller to finish moving.
5

Restore the joysticks to the intial state.
All of the move commands operate as follows: If the joysticks were previously enabled and the operator
was moving an axis, the command will fail when it tries to disable the joysticks.
Joyon and Joyoff Commands
The joyon command generates an error if a programmed move is in progress. The joyoff command
generates an error if a joystick is in use.
Wait-For-Stop-Commands

There are several MetroScript commands that perform a wait-for-stop operation. They are useful after a
Don’t Wait-For-Stop Move command is used. The commands are:

waitxy waitxyz waitz waitrp waitt

Timing/Communication Failures

A simple script, as shown below, should have worked perfectly. But, sometimes one or more locations
were omitted from the stitch.

loadpattern (“MyPattern.pat”)
gotopatorg
runscript (0, “UserStitch.scr”)

When that happened, the MetroPro log file contained the following message:

mc_enable joy() failed - ERR MC JOYSTICK ENABLE
mc_pop-Joystick() failed - ERR _MC JOYSTICK ENABLE

The problem was fixed by inserting a 50 millisecond delay into a low-level joystick control function.

Script Compatibility

While scripts are generally compatible between systems and versions of MetroPro, you may encounter
problems under the following conditions:

e a3 button or control was moved to a submenu,
e adirectory name was changed,
e adirectory was moved or deleted,

e some hardware changes.

2-32



METROSCRIPT FUNDAMENTALS

Before upgrading to a new version of MetroPro/MetroScript, review existing scripts to determine if any
of these conditions have occurred.

2-33






Chapter 3
Example Scripts

CK Note: The first two examples illustrate in detail all five steps as mentioned in
Chapter 1. The remaining examples in this chapter show only the sample script
file. To implement a script, all five steps should be performed.

Be sure to use the tab key when writing script files. All active script files should
be stored in the working directory.

Reminder: End each script with a carriage return.

Example 1 - Perform a Function
This example creates a button that clears masks from the application; it reduces four mouse clicks to
one.

1. In MetroPro, create a MetroScript button. Use the Control window menu and select New Button—
Miscellaneous— MetroScript.

2.  Specify the name of the script file to link to the MetroScript button. Access the MetroScript button
menu, select the File command, enter the script file name, and press [enter]. In this example link
the button to a file named "ClearMask.scr".

3. Create the script file. Access the MetroScript button menu and select the Edit command. In the
text editor type the following; [tab] and [enter] refer to keys on the keyboard.

[tab] resetmasks [enter]

Save the script file to the working directory and then exit the text editor. In this example name the
file "ClearMask.scr".

4. Change the name of the MetroScript button to match its function. Access the MetroScript button
menu, select the Name— Rename command, enter a new name, and press [enter]. In this example
name the button "Clear Mask".

5. Test the script file. Open the Mask Editor and create a figure. Click the Clear Mask button to
perform the script; the figure should be deleted.

3-1



EXAMPLE SCRIPTS

Example 2 - Enter a Control's Value

This example changes the value of the Wavelength Out MetroPro control with a preset value and units
so that the GPI scales results as if the test was made at another wavelength.

1.

3-2

In MetroPro, create a MetroScript button. Use the Control window menu and select New Button—
Miscellaneous— MetroScript.

In addition, select New Control— Master Units— Wavelength-Out to create the Wavelength-Out
control. Using the control's menu, set the Layout to Value Units and the Value Format to 0
decimals and 4 width.

Specify the name of the script file to link to the MetroScript button. Access the MetroScript button
menu, select the File command, enter the script file name, and press [enter]. In this example link
the button to a file named "Set488.scr".

Create the script file. Access the MetroScript button menu and select the Edit command. In the
text editor type the following: [tab] and [enter] refer to keys on the keyboard.

[tab] idWLOut = getid ("Controls/Masterunits/Wavelength-out") [enter]
[tab] setnum (idWLOut, 488, "nm") [enter]

Save the script file to the working directory and then exit the text editor. In this example name the
file "Set488.scr".

Change the name of MetroScript button to match its function. Access the MetroScript button
menu, select the Name— Rename command, enter a new name, and press [enter]. In this example
name the button "Set 488".

Test the script file by clicking the Set 488 button. Verify that the value of the control has changed.

To automatically load the script file when the application is loaded, perform the following steps:
Create the Auto Run Script and Script File controls in a Control window. Set the Auto Run Script
control to On and enter the name of the file (Set488.scr) in the Script File control. Save the
application.



EXAMPLE SCRIPTS

Example 3 - Select a Control's Setting

This example script file sets a control with multiple selections to a predetermined setting. By adding
additional lines, the same script could be used to select the settings of numerous controls at the same
time.

idCameraMode = getid ("Controls / Interferometer / Camera Mode")
setstr (idCameraMode, "640x480")

Example 4 - Writing Results to a File

This script appends header and result information to a report file named "Results.rep" when the button
is clicked.

ofmtr ("%$8.3f") !'set output formats
ofmti ("%8d")
assign @ReportFile to "Results.rep" "a" l!open file to append

t =timedate
output @ReportFile; IDS, date$(t), time$ (t)

for i =1 to n !loop through results

output @ReportFile; int (i), Ra (i) lwrite meas. num. and value
next i
assign @ReportFile to "" Iclose file

Example 5 - Get Results for Specific Regions on a Part

This script file locates two distinct areas on the part, measures PV in each location, displays both values
in a dialog box and asks the operator for input. The distinct areas or regions must be previously defined
with user-created masks.

idPV = getid ("Surface Wavefront Map/ Results/ Peak Valley/ PV")
loadmasks ("maskl.mas")

analyze

PVl = getval (idPV, "waves")

loadmasks ("mask2.mas")

analyze
PV2 = getval (idPV, "waves")
msg$ = "PV1:" & val$ (PV1) & "\n PV2" & val$ (PV2)

ok = dialog (msg$, 1)

3-3



EXAMPLE SCRIPTS

Example 6 - Configure MetroPro for Multiple Parts

This example uses the MetroPro settings file to quickly and easily change the settings of numerous
controls within the application. Create a MetroScript button for each type of part you want to measure.

Before running the script file, the settings file should already exist. To make a settings file, configure the
software controls for measuring the part and click the Save Settings button, enter a name for the file
ending with ".set", and press [enter]. The Save Settings button is available in a Control window; it is
created with the New Button— command.

loadsettings ("partl.set")
measure

loadsettings ("part2.set")
measure

3-4



EXAMPLE SCRIPTS

Example 7 - Automate a Measurement Process

This script file automates multiple measurements of the same part. A mask file is loaded to select an
area of the part to measure; the measurements are made; the results are stored in the Process Stats,
and then saved to a file.

dim LotName$[200]
dim PartName$[200]
dim MaskName$[200]
dim MeasFn$[200]
dim ErrMsg$[200]

SAMPLE_PARTS:
Exit Now = 0

on error gosub MASK LOAD ERR

NumSamplesId = getid( "Controls/Stitch/NCols")
NumSamples = getval( NumSamplesId, "")

LotNameId = getid( "Controls/Miscellaneous/LotNum")
LotName$ = getval$( LotNamelId )

PartNameId = getid( "Controls/Miscellaneous/PartNum")
PartName$ = getval$ ( PartNameId )

MaskName$ = LotName$ & ".mas"
resetmasks
loadmasks ( MaskName$ )
clearprocstats
for x = 1 to NumSamples

on error gosub MEAS ERR

measure
storeprocstats
MeasFn$ = LotName$ & " " & PartName$ & " " & val$(x) & ".dat"
savedata( 0, MeasFn$ )

next x

saveprocstats ( LotNameS$S & " stat.tbl",0 )
goto SAMPLE PARTS EXIT

MEAS_ERR:
off error
ErrMsg$ = " Error in measurement " & val$(x) & ", Continue? "
ok = dialog( ErrMsg$, 4 )
if ( ok = 0 ) then goto SAMPLE_PARTS_EXIT
error return

MASK_LOAD ERR:
off error
ErrMsg$ = " Error loading mask '" & MaskName$ & "', Continue? "
ok = dialog( ErrMsg$, 4 )
if ( ok = 0 ) then goto SAMPLE PARTS EXIT
error return

SAMPLE PARTS EXIT:
end

3-5



EXAMPLE SCRIPTS

Example 8 - Handling Errors

The first example shown below is a generic error script; the second script is specific to a microscope with
programmable stages.

On error gosub SetError Flag

ReMeasure:

measure

if Err=1 then
Err=0
OK = dialog ("The following error occurred during
measurement" \n & errm$ & "\n Click Yes to retry,
click No to quit", 5)
if OK = 1 then goto ReMeasure
end

end if

SetError Flag:
Err=1
return
on error gosub Move Error
movexy (xpos, ypos)
off error

Move Error:
if pos (errm$, "out of range") >0 then

ok = dialog ("Stage position is out of range"& val$ (xpos)
& val$ (ypos), 2)
end

end 1if

if pos (errm$, "communicating")>0 then
ok = dialog (errm$ & "\n Click Yes to retry,
click No to quit", 6)
if ok=1 then error return
end
end if
if pos (errm$, "host")>0 then
ok = dialog ("Please let go of the joystick", 3)
resetmc
return
end
end if
ok = dialog (errm$ & "When attempting to move to position" &val$ (xpos)
& val$(ypos) & "\n halting script", 2)
end

3-6



EXAMPLE SCRIPTS

Example 9 - Set a Result Value

This example script file sets the value of a result box. This is particulary useful for setting the values in a
Custom result box.

// Get the id of two standard MetroPro results

idTiltXTest = getid ("Surface Wavefront Map/ Results/ Tilt/ Tilt X")
1idTiltXTest2 = getid (“Surface Wavefront Map 2/ Results/ Tilt/ Tilt X”)

// Get the values of these results

tiltXTestVal = getval( idTiltXTest, “degrees”)
tiltXTest2Val = getval( idTiltXTest2, “degrees”)

// calculate the angle between the two surfaces
angle = tiltXTest - tiltXTest2
// get the id and set the value of the custom result

idAngleX = getid(“Surface Wavefront Map 2/ Results/ Custom/ Custom Result
l//)

setnum (idAngleX, angle, “degrees”)

3-7



EXAMPLE SCRIPTS

Example 10 - Set Position Status

Generally, a Stage Control Pattern is set up to make a measurement at each pattern position. In this
case, the Position Status Map displays different letters to indicate the result at each position.

A less typical use of the Stage Control Pattern function is when it is set up to run a script at each pattern
position. This is done by setting the Operation field to Run Script and specifying the script filename. In
this case, the script is responsible for setting the pattern position status. If the script does not set the
position status and completes normally, the default position status is “P”.

The setpatposstat function can be used to allow a script to set a position status. The following sample
script shows usage of this function.

acquire

analyze

id = getid( “Attributes/ Pattern / Pattern Row” )
Row = getval ( id, " )

id = getid( “Attributes / Pattern / Pattern Col” )
Col = getval (id, “" )
id = getid( “Attributes / Miscellaneous / PassFail” )
Pass = getval( id, “ " )
if Pass = 1 then
Status$ = “p”
else
Status$ = “F”
endif
setpatposstat ( Row, Col, Status$ )

The status letter normally must be one of the following. Case
is not significant.

P Green Pass

F Red Fail

? Yellow Could not measure
# Green No operation

(o] Red Out-of-Limits

A Yellow Abort

(\) Note: The sequence “acquire” and “analyze” are used instead of
“measure.” The “measure” command would reset the Pattern Row and
Pattern Col attributes therefore defeating the above logic.



EXAMPLE SCRIPTS

Error Handling

Pattern Script Fatal Error

A pattern script fatal error can occur if 1) the script could not be run, either because the file was not
found or it contained syntax errors; 2) the script ran but generated an error that that was not handled
via the “on error” mechanism.

A pattern script fatal error always sets the position status to yellow “?” and causes the pattern to abort.
An error dialog is displayed (the Failure Action control is ignored).

Stop Value

The script can use the stop command with a numeric expression parameter (stop value) to achieve some
rudimentary control over error handling and the position status value. For example: stop 1

If the stop value is zero, it is the same as using the stop command without a parameter. The Position
Status is set to green “P” for pass unless the setpatposstat was set to another value (see the table
following the example script). The pattern continues normally.

IIIII

If the stop value is negative one (-1), then the position status is not changed from the initial white
unless the setpatposstat function set another value. The pattern is aborted and an error message is
displayed (the Failure Action control is ignored).

If the stop value is any other value, then the position status is always set to yellow “?” (over-riding any
use of setpatposstat). A pattern error is generated and handled according to the Failure Action
mechanism.

3-9



EXAMPLE SCRIPTS

3-10



Chapter 4
MetroScript Reference

Reference Dictionary

This section describes MetroScript functions and statements; they are listed in alphabetical order. These
functions and statements are best used in a program. Some of them may be used in Interactive (Debug)
mode, but refer to Appendix B before doing so. Return values are type real unless the function name
ends with "$", in which case the return value is type string. Conversion between integer and real values
is automatic where required.

@ Note: Statements cannot be used in an expression.

RealVar = RealExpr
This assignment statement evaluates the RealExpr and assigns the result to the variable.

IntVar = RealExpr

This assignment statement evaluates the RealExpr, truncates any fractional part, and assigns the
result to the variable.

StrVar = StrExpr
This assignment statement evaluates the StrExpr, and assigns the result to the variable.

abs( RealExpr)
Returns the absolute value of RealExpr parameter.

accumdata( FileNameExpr)
acquire

Causes MetroPro to acquire data from the instrument without analysis. There is no equivalent in
MetroPro. Returns no value.

acs( RealExpr)
Returns the arc-cosine of the value of RealExpr in the current angle unit.

adddata( FileNameExpr )

Causes MetroPro to add to the current data the data file specified by FileNameExpr. Returns no
value. Equivalent to clicking on the MetroPro Add Data button and entering the data file name.

4-1



METROSCRIPT REFERENCE

adjustmask( IntExpr, RealExpr1, RealExpr2, StrExpr )

This function changes the dimensions of a mask figure; it does not return a value.

The IntExpr parameter specifies the ID of a mask figure obtained via getmaskid. The new X and Y
dimensions are specified by RealExprl and RealExpr2, respectively. The measurement unit is
specified by StrExpr. If null, the default unit is pixels. If either dimension is zero, the mask figure is
deleted.

The dimensions of the coordinate system are as described for the getcamsizx and getcamsizy
functions.

analyze

Causes MetroPro to reanalyze the current data. Equivalent to clicking on the MetroPro Analyze
button.Returns no value.

analyzeftpsi( IntExpr)

This command generates a phase map by performing the MST analysis. There must be data
available to perform the analysis. IntExpr specifies the source of the MST data. For all MST
applications besides Homogeneity, the source must be zero (0). When loading data into the MST
Homogeneity application, set IntExpr to zero ( 0 )for full cavity, and one for empty cavity data.
Data may be loaded using the MetroScript command, loadftpsi; manually loaded by clicking the
Load Data button within an Acquisition Data window, or from the most recent measurement.

This function is available in the following MST applications: Two Surface, Parallel Surface,
Homogeneity, and Custom Cavity.

analyzeftpsipeak( IntExpr, RealExpr, StrExpr)

This command generates a phase map by performing MST analysis. The analysis occurs at a peak
chosen by the RealExpr parameter, corresponding to the one-pass optical path length between
two parallel surfaces. StrExpr specifies the units. There must be data available to perform the
analysis. IntExpr specifies the source of the MST data. For all MST applications besides
Homogeneity, the source must be zero (0). When loading data into the Homogeneity application,
set IntExpr to zero (0) for full cavity, and one (1) for empty cavity data. Data may be loaded using
the loadftpsi command, or manually by pressing the Load Data button within an Acquisition Data
window, or from the most recent measurement. This function is equivalent to clicking on the
Analyze Peak button within the MST Custom Cavity application. Returns no value. (Refer to the
Custom Cavity Application Booklet, OMP-0487, for additional information.)

asn( RealExpr)

4-2

Returns the arc-sine of the value of RealExpr in the current angle unit.



METROSCRIPT REFERENCE

assign @FileVar to FileNameExpr [StrConst]
This statement first closes any open file already associated with FileVar. If FileNameExpr is of non-
zero length, then the file with that pathname is opened and associated with FileVar. The optional
StrConst specifies the mode:

r read (default)
w write
a append

atn( RealExpr )

Returns the arc-tangent of RealExpr parameter. The return v waitz waits for movement of the
stage Z axis to complete. Returns no value. The value is in the range [-90, +90] degrees or [-
27, +27] radians, depending on the current angle unit.

atn2( RealExpr1, RealExpr2 )

Returns the arc-tangent of the value (Y/X) where Y is the value of RealExpr1 and X is the value of
RealExpr2. The signs of the two values are taken into account to determine quadrant information.
The return value is in the range [-180, +180] degrees or [-27, +27] radians, depending on the
current angle unit.

autoclampoff
Disables the motion controller’s automatic clamping of air bearing stages.

autoclampon
Enables the motion controller’s automatic clamping for air bearing stages.

autofocus

Causes MetroPro to perform an automatic focus adjustment. Equivalent to clicking on the
MetroPro Focus button. Returns no value.

autofocusoff

Disables the motion controller’s auto focus feature. The auto focus zero position needs to be set
using setmcafzero for the motion controller’s auto focus feature to be enabled.

autofocuson

Enables the motion controller’s auto focus feature. The auto focus zero position needs to be set
using setmcafzero for the motion controller’s auto focus feature to be enabled.

autofocustilt

Causes MetroPro to perform an automatic focus and tilt adjustment. There is no MetroPro
equivalent. Returns no value.

4-3



METROSCRIPT REFERENCE

autolatcal( IntExpr, RealExpr, StrExpr )

This function calculates and sets the lateral resolution of the current objective selection. Itis
analogous to the ‘Auto Cal’ button currently available in the Microscope calibrator. Calibration is
performed on the data obtained from measuring the Precision Lateral Calibration Standard. If
IntExpr is zero (0), calibration is performed on data at the top level of MetroPro; otherwise,
IntExpr must specify the ID of a data window obtained via the getid function (not getwinid).
RealExpr specifies the mean spacing for the measured area of the standard. The mean spacing
value can be read from the certificate of calibration included with each standard. StrExpr specifies
the measurement units for the mean spacing of the measured area. The calculated resolution is
returned in units specified by StrExpr.

autosavedata

Saves the current data using the values in the Auto Save Data Dir and Auto Save Data File controls.
This resembles how data is saved by MetroPro when performing a measurement with the Auto
Save Data control On. Note that the Auto Save Data File value is not incremented.

autotilt

Causes MetroPro to perform an automatic tilt adjustment. Equivalent to clicking on the MetroPro
Auto Tilt button. Returns no value.

break

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

chr$( IntExpr)

Returns a string containing just one character whose ASCIl numeric value is specified by the
IntExpr parameter.

clampstage( IntExpr)

Causes the motion controller to clamp a single stage or all stages as indicated by IntExpr. The
stage must have clamping enabled in the motor configuration file for this command to have any
effect. For clamping a single stage, IntExpr has a valid range of [0, 7]. To clamp all stages, set
IntExpr to -1.

clearmcafzero

Clears the motion controller’s auto focus zero position. The auto focus zero position needs to be
set using setmcafzero for the motion controller’s auto focus feature to be enabled.

clearprocstats

Causes MetroPro to clear any process statistics including the stored results. Equivalent to clicking
on the Clear button in a Process window. Returns no value.

4-4



METROSCRIPT REFERENCE

clickon( IntExpr)

This function is used to “click on” a MetroPro button or selection control which makes it possible
to perform some MetroPro operations for which there is no built-in MetroScript function. The
IntExpr parameter specifies the ID of the button, or selection control obtained via the getid
function. For example, to open the Lateral Calibrator window:

id = getid (“Buttons / Calibrate” )

clickon (id)

E\/; Note: This function cannot be used to close the application by “clicking
on” the Close App button.

closeapp( IntExpr)
This function closes (iconizes) an open application. Returns no value.

The IntExpr parameter specifies the ID of the application, obtained via getappid. This function
does nothing if the application is already closed. This function can only be used in a top-level
MetroScript.

closewin( IntExpr )
This function closes (iconizes) an open window within an application. Returns no value.

The IntExpr parameter specifies the ID of the window obtained via getwinid. This function does
nothing if the window is already closed.

contpattern

Continues the programmable stage pattern after it has been paused. Equivalent to clicking the
MetroPro Cont Pattern button. Returns no value.

continue

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

convinten

Causes MetroPro to convert intensity data to height data. Equivalent to clicking the MetroPro
Conv Intens to Data button. Returns no value.

cos( RealExpr)
Returns the cosine of the value of RealExpr. RealExpr must be in the current angle units.

cosh( RealExpr)

Returns the hyperbolic cosine of the value of RealExpr. RealExpr must be in the current angle
units.

4-5



METROSCRIPT REFERENCE

data Const [ , Const] ...

This statement records data values for later use with the read statement. Any value may be
prefixed with IntConst to make it be used IntConst times.

date$( RealExpr )

deg

del

Returns a string containing the date corresponding to RealExpr number of seconds since the start
of the Epoch. This function is commonly called with the argument value of the timedate function.

Examples:

? date$(0)
ThuJan 1 1970

? date$(timedate)
Thu Feb 8 1996

Sets degrees as the current angle unit for the trigonmetric functions and for stage axis positions.
(See also the rad statement.)

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

delfid ( IntExpr)

Deletes a fiducial. The ID of the fiducial is specified by IntExpr. See also makefid.

dialog( StrExpr, IntExpr )

4-6

Displays a MetroPro dialog box containing the specified StrExpr parameter and waits for user
input. There are six modes selectable by the IntExpr parameter:

1 Normal confirm OK - green title bar 1
2 Error confirm OK -red title bar 1
3 Warning confirm OK - yellow title bar 1
4 Normal decide YES/NO - green title bar 1/0
5 Error decide YES/NO -red title bar 1/0
6 Warning decide YES/NO - yellow title bar 1/0

Clicking on the OK button or pressing any key, completes an OK dialog. Clicking on the YES or NO
button completes a YES/NO dialog. Pressing the Enter key is equivalent to clicking on the YES
button. For any dialog, pressing the ESC key produces the "Processing aborted" error.



METROSCRIPT REFERENCE

dim Dimltem [ , Dimltem] ...

This statement dimensions the specified Dimltems. The same variable may be dimensioned
multiple times during the execution of a program. A Dimitem is one of the following:

StrVar dimensions a string variable for the default 32 characters.
StrVar[IntConst] dimensions a string variable for IntConst characters.

StrVar Subscripts dimensions an array of strings for the default 32 characters.
StrVar Subscripts[intConst] dimensions an array of strings for IntConst characters.
RealVar Subscripts dimensions an array of real numbers.

Subscripts look like:
( M) specifies a one-dimensional array with subscripts 1 to M.
(M, N ) specifies a two-dimensional array with subscripts 1to Mand 1to N. M and N are
normally IntConsts. They may also be RealExprs.

disable abort @FileVar

This statement disables handling of an abort request from a serial I/O device. FileVar must have
been created by a previous assign statement.

edit
This command is only usable in interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

editmasks( IntExpr )

Opens the MetroPro Mask Editor to allow the operator to edit masks or fiducials. IntExpr is a wait-
for-close flag. If IntExpr is non-zero, the script pauses until the operator closes the Mask Editor.

editpatpos
Opens the MetroPro Pattern Position Editor window and allows user interaction. Completes when
the user closes the window or presses the Escape key. Pressing the Esc key results in the
"Processing aborted" error. Equivalent to clicking on the MetroPro Edit Pattern Pos button.
Returns no value.

editpattern

Opens the MetroPro Pattern Editor window and allows user interaction. Completes when the user
closes the window or presses the Escape key. Pressing the Esc key results in the "Processing
aborted" error. Equivalent to clicking on the MetroPro Edit Pattern button. Returns no value.

else
Refer to the if command.

enable abort @FileVar

This statement enables handling of an abort request from a serial I/O device. FileVar must have
been created by a previous assign statement.

4-7



METROSCRIPT REFERENCE

end
This statement halts program execution. This is equivalent to the stop statement.

endif
Refer to the if command.

english
Sets inches as the current linear unit for stage axis positions. (See also: the metric statement.)

enter @FileVar ; Var [, Var ] ..

This statement reads data from the file associated with FileVar into the specified Vars. This is
similar to the input statement.

enterline @FileVar ; StrvVar
Returns a single line from the file associated with FileVar into the string variable StrVar.

errl( Lineld )

Returns 1 if the most recent error occurred in the specified line, otherwise returns 0. Using this
function with a LineLabel instead of a LineNum avoids problems caused by renumbering a
program.

errin
Returns the line number of the most recent error.

errm$
Returns the most recent error message from a running program.

errn
Returns the number of the most recent error from a running program. The possible values are:

101 Attempt to divide by zero.

102 Ran out of input during read.

103 Invalid exponentiation.

104 Floating-point overflow.

105 Argument out of range.

106 File access error.

107 Invalid data during read.

108 Subscript out of range.

1004 Various fatal (unrecoverable) program errors.
1005 Various fatal (unrecoverable) internal errors.




METROSCRIPT REFERENCE

error return
See on error gosub.

execute( StrExpr)

The string parameter is passed to the DOS shell and executed as a command. Returns the integer
exit status of the command. Usually a zero exit status means successful execution.

exit
This command is only usable in interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

exitmp( IntExpr )

Exits immediately from MetroPro to the operating system with a status value specified by IntExpr.
The useful range of IntExpr is 0 to 127.

exp( RealExpr)
Returns the natural exponentiation of the value of RealExpr.

findfid( IntExpr, RealExpr1, RealExpr2, RealExpr3, RealExpr4, StrExpr)

This function searches for a fiducial in a MetroPro data matrix (map). There is no MetroPro
equivalent to this function. Returns no value.

The search is controlled by parameters previously established by the functions: setfidsize,
setfidthresh, and setfidpat. The results of the search are subsequently obtained via the functions:
getfidctrx, getfidctry, getfidorgx, getfidorgy, getfidsizx, and getfidsizy.

The data matrix is specified by the IntExpr parameter as follows: If IntExpr is zero (0), the matrix is
the height map at the top level of the MetroPro app (unprocessed phase data) obtained by
measuring, loading, or generating. Otherwise, IntExpr must specify the ID of a data window,
obtained via the function getid (not getwinid), and the matrix is the one associated with that data
window.

The remaining parameters specify the location and dimensions of a rectangular region within the
matrix for the purpose of limiting the search.

The X and Y coordinates of the center of the rectangle are specified by RealExprl and RealExpr2,
respectively. The rectangle X and Y dimensions are specified by RealExpr3 and RealExpr4,
respectively. The measurement unit is specified by StrExpr. If null, the default unit is pixels.

Either of the dimension parameters may be set to zero (0) to obtain default values for both the
dimension and the center coordinate. The default center coordinates are the same as the values
returned by functions getdatactrx and getdatactry. The default X and Y dimensions are the same
as the values returned by the functions getdatasizx and getdatasizy.

The coordinate system is consistent with the Mask Editor display, which corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system
depends on the measurement unit.

If the unit is pixels, the origin of the coordinate system is the lower left corner of the image. X and
Y are more positive to the right and up, respectively.

4-9



METROSCRIPT REFERENCE

If the unit is other than pixels, the origin of the coordinate system is the center of the image. X and

Y are more positive to the right and up, and more negative to the left and down, respectively.

The dimensions of the coordinate system are the effective dimensions of an image from the
camera used to measure the data (or the virtual camera used to generate the data).

flipdatax

Causes MetroPro to flip the current data in the X dimension. Equivalent to clicking on the
MetroPro Flip Data X button. Returns no value.

flipdatay

Causes MetroPro to flip the current data in the Y dimension. Equivalent to clicking on the
MetroPro Flip Data Y button. Returns no value.

for RealVar = RealExpr1 to RealExpr2 [ step RealExpr3 ]

This statement repeats a group of instructions a specified number of times. There should always

be an associated next statement.

Let Step and Limit be hidden variables associated with this statement and the corresponding next

statement. If step RealExpr3 is specified, Step is assigned the value of RealExpr3, otherwise 1.
RealVar is assigned the value of RealExprl - Step. Limit is assigned the value of RealExpr2.

Execution skips to the next statement specifying the same RealVar. This statement may also be
used with an IntVar and IntExprs.

generate

Causes MetroPro to generate data. Equivalent to clicking on the MetroPro Generate button.
Returns no value.

gensyschar( FileNameExpr )
gensyschar( FileNameExpr, SwliFileNameExpr )

This command generates a system characterization file in the current working directory as
specified by FileNameExpr. The file is created either by performing a measurement of an SiC
Reference Flat, or by loading a SWLI data file. If using a SWLI file for generating the system
characterization file, be sure to use “.syc” as the file extension. Set the following controls as
specified below:

FDA Res: Films

DiscrMode: RAM

Films Mode: Top Surface
In addition, use the objective that will be used when measuring the part. The Scan Direction

control must be set the same as well. If FileNameExpr is set to “@,” the actual filename will be
automatically generated based on the objective magnification and scan direction. If the optional
parameter SwliFileNameExpr is specified, the system characterization file is generated using the
SWLI data SwliFileNameExpr. If it is not specified, a measurement is taken to generate the file. No
value is returned.



METROSCRIPT REFERENCE

getannotid( IntExpr, StrExpr )

This function returns the ID of a named annotation box within a window. The ID can then be used
in calls to the setstr or getval$ functions. The IntExpr parameter specifies the ID of the window,
obtained via getwinid. The StrExpr parameter specifies the name of the annotation box.

Note that blanks and slash "/" characters are not significant in StrExpr. An error is generated if
there is no annotation box with the specified name. If there are multiple annotation boxes with
the specified name, this function will return the ID of the first one found.

getappid( StrExpr)
This function returns the ID of a loaded application. The ID can then be used in calls to various
application control functions. The StrExpr parameter specifies the file name used to load the

application. An error is generated if there is no loaded application with the specified file name.
This function can only be used in a top-level MetroScript.

getavmode

Returns the current align/view mode of the GPI. It returns an integer value of zero (0) for view
mode, and one (1) for align mode.

getbindir$

Returns the pathname of the directory containing executable programs (binaries) for the current
MetroPro installation.

getcamres( StrExpr)

Returns the camera resolution in the unit specified by the StrExpr parameter. If there is an active
instrument, the returned value is the effective spacing of camera pixels based on the Camera
Mode control, the Lateral Calibrator, and if the instrument is a microscope, the objective selection
and the Image Zoom control. Otherwise, if there is a data set measured or loaded, the returned
value is the effective lateral spacing of points in the data. Otherwise, the Camera Res control value
is returned (only available in applications that can generate data). Returns zero (0) if unknown.

getcamsizx( StrExpr)
getcamsizy( StrExpr)

These functions return the camera dimensions in the unit specified by the StrExpr parameter. If
there is an active instrument, the returned values are the effective dimensions of an image from
the camera based on the Camera Mode control, the Lateral Calibrator, and if the instrument is a
microscope, the objective selection and the Image Zoom control. Otherwise, if there is a data set
measured or loaded, the returned values are the effective dimensions of an image from the
camera used to measure the data (or the virtual camera used to generate the data). Or the
returned values may be based on the Camera Size X, Camera Size Y, and Camera Res control values
when used in applications that can generate data.

getdatactrx( /ntExpr, StrExpr )
getdatactry( IntExpr, StrExpr )
getdataorgx( IntExpr, StrExpr)
getdataorgy( IntExpr, StrExpr)

4-11



METROSCRIPT REFERENCE

getdatasizx( IntExpr, StrExpr )
getdatasizy( IntExpr, StrExpr)

These functions return the position and dimensions of a MetroPro data matrix (map). The data
matrix is specified by the IntExpr parameter as follows: If IntExpr is zero (0), the matrix is the
height map at the top level of the MetroPro app obtained by measuring, loading, or generating.
Otherwise, IntExpr must specify the ID of a data window, obtained via the function getid (not
getwinid), and the matrix is the one associated with that data window.

The measurement unit is specified by the StrExpr parameter. If null, the default unit is pixels.

The values returned from getdatactrx and getdatactry are the coordinates of the geometric center
of the data matrix.

The values returned from getdataorgx and getdataorgy are the coordinates of the lower left
corner of the data matrix.

The values returned from getdatasizx and getdatasizy are the dimensions of the data matrix.

The coordinate system is consistent with the Mask Editor display, which corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system depends
on the measurement unit.

If the unit is pixels, the origin of the coordinate system is the lower left corner of the image. X and
Y are more positive to the right and up, respectively. If the unit is other than pixels, the origin of
the coordinate system is the center of the image. X and Y are more positive to the right and up,
and more negative to the left and down, respectively.

The dimensions of the coordinate system are as described for the getcamsizx and getcamsizy
functions.

getdir$( StrExpr )

This command returns the directory path used by MetroPro to save or load files of a specified
type. The file type is specified by StrExpr and must be one of the names in the following table.
The case of letters and embedded blanks is not significant. For example, “Q-DAS Report” and “g-
dasreport” are the same. Use setdir to change the directory paths. See also getbindir$ and
getwrkdir$.

App Model Report
Bitmap Pattern Script
Config Pattern Position Settings
Data PSF SWLI Data
Fiducials Q-DAS Report TIFF
Masks Regions Zernikes

getdiskfree( StrExpr)

Returns the number of bytes free on the specified disk. The StrExpr specifies the disk drive letter.
If StrExpr is a null string, the “current” drive is assumed.

getdistsys

Returns the Dist Sys calibration value for a Simetra FTP instrument in inches. This value is
normally specified in the system calibration file.



METROSCRIPT REFERENCE

getdmipos( StrExpr)

This function returns the current position reported by a distance measuring instrument (DMI). The
measurement unit is specified by the StrExpr parameter, which cannot be null.

getdmiscale

Returns the DMI scale factor calibration value for a Simetra FTP instrument. This value is normally
specified in the system calibration file.

getdmitype$
Returns a string indicating the distance measuring instrument (DMI), if any.

getfidctrx( StrExpr)

getfidctry( StrExpr)

getfidorgx( StrExpr)

getfidorgy( StrExpr)

getfidsizx( StrExpr)

getfidsizy( StrExpr)
These functions return the location and size of a fiducial found by the function findfid. The
measurement unit is specified by the StrExpr parameter. If null, the default unit is pixels. The
values returned from getfidctrx and getfidctry are the coordinates of the centroid of the fiducial.

The values returned from getfidorgx and getfidorgy are the coordinates of the lower left corner of
the fiducial region. The values returned from getfidsizx and getfidsizy are the dimensions of the
fiducial region. If the fiducial was found using setfidthresh Mode 2, the fiducial region is defined
by the size of the pattern matrix specified by setfidpat. Otherwise the fiducial region is defined as
the minimal enclosing rectangle for the points found.

The coordinate system is consistent with the Mask Editor display that corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system depends
on the measurement unit.

If the unit is pixels, the origin of the coordinate system is the lower left corner of the image. X and
Y are more positive to the right and up, respectively. If the unit is other than pixels, the origin of
the coordinate system is the center of the image. X and Y are more positive to the right and up,
and more negative to the left and down, respectively.

The dimensions of the coordinate system are as described for the getcamsizx and getcamsizy
functions.

getftpsipeakbynum( Intexpr1, RealExpr1, IntExpr2, IntExpr3, RealExpr2, RealExpr3, StrExpr )

Returns the location of a peak based upon an OPD spectrum calculation of a pixel at the location
of the Test Calibration marker.

IntExprl (Data Source)

Specifies the source of the MST data. For all MST applications besides MST Homogeneity, the
source must be zero. When loading data into the MST Homogeneity application, set IntExpr
to zero for full cavity, and 1 for the empty cavity data.

RealExprl (Peak Threshold)

4-13



METROSCRIPT REFERENCE

Threshold for peak detection. Possible values are between zero (0) and one (1). Indicates the
required signal strength to be classified as a peak. The strength is relative to the highest
peak.

IntExpr2 (Peak Number)

Specifies which peak out of the number of peaks specified by IntExpr3 is found. The location
of the selected peak is returned by this command.

IntExpr3 (Number of Peaks)

Specifies the number of expected peaks. Peaks are found based upon the highest signal
strength first.

RealExpr2 (Lower Search Range)

Specifies the Optical Path Length that is the lower boundary when searching for peaks.
RealExpr3 (Upper Search Range)

Specifies the Optical Path Length that is the upper boundary when searching for peaks.
StrExpr (Units Specifier)

Specifies the unit type for all input parameters and returned values.

The following example illustrates how to use the getftpsipeakbynum command to return the OPD
of a two surface gap. The example is based upon a 4-surface measurement as outlined in the Test
Calibration Pixel Trace Window section of OMP-0487.

The command as shown below returns the optical path distance for peak 4 of 6, found between 0
and 400 mm. In the 4-surface example, peak number 4 corresponds to gap 3-4 (back surface of
test part).

dataSRC =
peakThresh
peakNum
numPeaks
lowerOPD
upperOPD
unitStr$
peakOPD = getftpsipeakbynum( dataSrc, peakThresh, peakNum, numPeaks, minOPD, maxOPD,
unitStr$ )

I
oo h~O
—
o

35
BO

The value assigned to peak OPD would be 195.9 mm given the example data shown in OMP-0487.

This function is available in the following MST applications: Two Surface, Parallel Surface,
Homogeneity and Custom Cavity.

getftpsipeakbypos( IntExpr, RealExpr1, RealExpr2, StrExpr )

4-14

Returns the location of a peak based upon an OPD spectrum calculation of a pixel at the location
of the Test Calibration marker.

IntExprl (Data Source)

Specifies the source of the MST data. For all MST applications besides Homogeneity, the source
must be zero (0). When loading data into the Homogeneity application, set IntExpr to zero for full
cavity and one (1) for empty cavity data.

RealExprl (Lower Search Range)

Specifies the Optical Path Length that is the lower boundary when searching for peaks.

RealExpr 2 (Upper Search Range)



METROSCRIPT REFERENCE

Specifies the Optical Path Length that is the upper boundary when searching for peaks.

StrExpr (Units Specifier)
Specifies the units type for all input parameters and the returned value.

The following example illustrates how to use the getftpsipeakbypos command to get the OPD of a
2-surface gap. The example is based upon a 4-surface measurement outlined in the Test
Calibration Pixel Trace Window section of

OMP-0487.

The command, as shown below, returns the optical path distance for the strongest peak found
between 150 and 250 mm. In this 4-surface example, the strongest peak in the search range
corresponds to gap 3-4 (back surface of the test part).

dataSrc =0
lowerOPD =150
upperOPD =250
unitStr$ =“mm”

peakOPD = getftpsipeakbypos( dataSrc, lowerOPD, upperOPD, unitStr$ )

This function is available in the following MST applications: Two Surface, Parallel Surface,
Homogeneity, and Custom Cavity.

getftpsipeakpower( IntExpr, RealExpr, StrExpr )

Returns the power of an OPD transform calculation at the distance given by RealExpr. The
calculation occurs for a pixel at the location of the Test Calibration marker. StrExpr specifies the
units.

There must be data available to perform the analysis. IntExpr specifies the source of the MST
data. For all MST applications besides Homogeneity, the source must be zero (0). When loading
data into the Homogeneity application, set IntExpr to zero for full cavity and one (1) for empty
cavity data. Data may be loaded using the loadftpsi command; manually loaded by clicking the
Load Data button within an Acquisition Data window, or from the most recent measurement.
There is no equivalent function in MetroPro.

This function is available in the following MST applications: Two Surface, Parallel Surface,
Homogeneity, and Custom Cavity.

getgpizoom (/ntExpr)
Returns the current position of a GPl encoded zoom lens.

If IntExpr is zero, the position is in motor counts. Otherwise, if IntExpr is non-zero, the position
value is a magnification. An error is generated if magnification calibration data does not exist.

(This command applies to GPIl or MST instruments with an encoded zoom lens.)

getgpizoommax (/ntExpr)
Returns the maximum position of a GPl encoded zoom lens.

If IntExpr is zero, the position is in motor counts. Otherwise, if the IntExpr is non-zero, the position
value is a magnification. An error is generated if magnification calibration data does not exist.

(This command applies to GPI or MST instruments with an encoded zoom lens.)

4-15



METROSCRIPT REFERENCE

getgpizoommin (/IntExpr)

Returns the minimum position of a GPl encoded zoom lens.

If IntExpr is zero, the position is in motor counts. Otherwise, if IntExpr is non-zero, the position
value is a magnification. An error is generated if magnification calibration data does not exist.

(This command applies to GPIl or MST instruments with an encoded zoom lens.)

getid( StrExpr )
getid( IntExpr, StrExpr)

Returns an integer that is the ID for a MetroPro window, control, attribute, result, button, or limits
object. An ID value is used when calling functions getval, getval$, savedata, sethnum, or setstr.

In the first form StrExpr is a pathname like those found in MetroPro setting files except that the
forward slash “/” is used as a delimiter instead of the backward slash “\”.
Examples: id = getid( “Controls / Miscellaneous / Lot Num”)

setstr( id, “Lot 29”)

id = getid( “Surface Map / Controls / Trim” )

setnum( id, 2, “”)

The second form of getid provides access to controls and attributes that appear in the Report,
Q-DAS Report and Video Monitor windows. In this form, the IntExpr specifies a window ID
obtained via the getwinid function and StrExpr specifies a pathname. Q-DAS Report controls can
be accessed by starting the path with “Parts Controls,” “Results Controls,” or “Data Attr Controls.”

Example:

wid = getwinid( “My Report” )

id = getid( wid, “Controls / Log File” )

id = getid( wid, “Parts Controls / Test Part Number” )

getlight

Returns the current instrument light level as a percentage.

getmaskctrx( IntExpr, StrExpr)
getmaskctry( IntExpr, StrExpr)
getmasksizx( IntExpr, StrExpr )
getmasksizy( IntExpr, StrExpr )

4-16

These functions return the locations and sizes of a mask figure. The IntExpr parameter specifies
the ID of a mask figure obtained via getmaskid. The measurement unit is specified by the StrExpr
parameter. If null, the default unit is pixels.

The values returned from getmaskctrx and getmaskctry are the coordinates of the center of the
figure.

The values returned from getmasksizx and getmasksizy are the dimensions of the minimal
enclosing rectangle for the figure.

The coordinate system is consistent with the Mask Editor display that corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system
depends on the measurement unit.



METROSCRIPT REFERENCE

If the unit is pixels, the origin of the coordinate system is the lower left corner of the image. X and
Y are more positive to the right and up, respectively. If the unit is other than pixels, the origin of
the coordinate system is the center of the image. X and Y are more positive to the right and up,
and more negative to the left and down, respectively.

The dimensions of the coordinate system are as described for the getcamsizx and getcamsizy
functions.

getmaskid( RealExpr1, RealExpr2, StrExpr )
Returns the ID for the mask figure that is closest to specified coordinates. Returns an integer. An
ID value is required when calling the various functions for querying and manipulating mask figures.

The X and Y coordinates are specified by the RealExpr1 and RealExpr2 parameters, respectively.
The measurement unit is specified by the StrExpr parameter. If null, the default unit is pixels. The
coordinate values are for a point close to the center of the target figure.

The coordinate system is consistent with the Mask Editor display, which corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system depends
on the measurement unit.

If the unit is pixels, the origin (0,0) of the coordinate system is the lower left corner of the image. X
and Y are more positive to the right and up, respectively. If the unit is other than pixels, the origin
(0,0) of the coordinate system is the center of the image. X and Y are more positive to the right
and up, and more negative to the left and down, respectively.

The dimensions of the coordinate system are as described for the getcamsizx and getcamsizy
functions.

getmicrolynxpos

Returns the current position of the Micro LYNX stage in the current linear unit, either inches or
millimeters. This operation is equivalent to clicking the Read button in the MetroPro Micro LYNX
window. The stage must be homed first.

getnum( IntExpr, StrExpr )
See getval.

getosname$
Returns the name of the host operating system.

getpatval( StrExpr1, Var, StrExpr2 )
This function gets a value (or an array of values) from the current stage control pattern. (This is
the pattern viewable in the Pattern Editor.) StrExprl specifies the value name. (See the table of
pattern values following the getsubpatval command.) Var specifies a MetroScript variable to
which the value or values are assigned. StrExpr2 specifies the unit, if relevant. Returns no value.

getpos( IntExpr1, IntExpr2 )
getpos( StrExpr, IntExpr2 )

Returns the current position of a stage axis.

4-17



METROSCRIPT REFERENCE

The axis may be specified as a letter (a one-character string) using StrExpr, or as an axis number
using IntExprl. Axis numbers are normally in the range [0, 7]. Axis letters are normally “X,” “Y,”
llP’Il IIR,II IIT’II Or llr.ll

The IntExpr2 parameter specifies the unit. If the value of IntExpr2 is negative one (—1), the
position is returned in stepping motor controller counts. Otherwise the position is returned in the
unit appropriate for the axis type.

getppos
Returns the current position of the Pitch Axis Stage in the current angle unit.

getramsize
Returns the amount of physical memory in bytes.

getrpos
Returns the current position of the Roll Stage Axis in the current angle unit.

getrsmode

Returns the current ring/spot mode for the VeriFire/GPI. This command returns an integer value
of zero (0) for Ring mode and one (1) for Spot mode.

getstr$( IntExpr)
See getval$.

gettpos
Returns the current position of the Theta stage axis in the current angle unit.

getturpos( IntExpr1)

Returns the current position of the motorized turret on a microscope. The NewView 6000 return
value range is one through six (1—6). The NewView 5000 return value range is one through five
(1—5).

getscancal

Returns the scan calibration factor for a scanning type instrument. This value is normally specified
in the system calibration file.

getsubpatval( StrExpr1, Var, StrExpr2 )

This function gets a value (or an array of values) from the current stage control subpattern. (This
is the pattern in the hidden subpattern holding area.) StrExprl specifies the value name. (See the
table of values below.) Var specifies a MetroScript variable to which the value or values are
assigned. StrExpr2 specifies the unit, if relevant. Returns no value. (Refer to Appendix D for
additional information on subpattern functions.)

4-18



METROSCRIPT REFERENCE

AlignArrayX Get Only 1D Real Array Linear
Pattern AlignArrayY Get Only 1D Real Array Linear
Values ColSpace Get / Set Real Linear
Table

Dirname Get Only Str

EndCommand Get / Set Str

FailureAction Get / Set Real

Filename Get Only Str

LoadX Get / Set Real Linear

LoadY Get / Set Real Linear

NumAlign Get Only Real

NumCircles Get / Set Real

NumCols Get / Set Real

NumPos Get Only Real

NumPosIncl Get Only Real

NumRadials Get / Set Real

NumRows Get / Set Real

Operation Get / Set Real

Order Get / Set Real

OriginX Get / Set Real Linear

OriginY Get / Set Real Linear

PatType Get / Set Real

PauseAfter Get / Set Real

PauseBefore Get / Set Real

PosArrayld Get Only 1D Real Array

PosArrayX Get Only 1D Real Array Linear

PosArrayY Get Only 1D Real Array Linear

Prompt Get / Set Real

RectOriginLoc Get / Set Real

Rotation Get / Set Real Angle

RowSpace Get / Set Real Linear

ScriptFilename Get / Set Str

SecColSpace Get / Set Real Linear

SecRowSpace Get / Set Real Linear

StartCommand Get / Set Str
getsyserrfn$

Returns the name of the system error data file used for a current or subsequent measurement if
the Subtract Sys Err control is On. If the first letter of the Sys Err File control setting is “@,” the
return value is an automatically generated file name. Otherwise, the return value is the same as
the control setting.

4-19



METROSCRIPT REFERENCE

getval( IntExpr, StrExpr )
getnum( IntExpr, StrExpr )

The two forms of this command are equivalent. Returns the numeric value of the MetroPro
control, attribute, or result referenced by ID IntExpr in the unit specified by StrExpr. This function
may be used to obtain the value of numeric, selection, and Boolean-type items. Use getstr$ or
getval$ to obtain the value of string type items and limits. The return value depends on the item
type as follows:

Numeric Value in the unit specified by StrExpr.
Selection Index of the selection (1..N). StrExpr is ignored.
Boolean 1 for "Yes," O for "No" StrExpr is ignored.

Certain numeric controls can be disabled by setting them to blank. If a numeric control is disabled,
this function returns maxreal.

getval$( IntExpr )
getstr$( IntExpr)

The two forms of this command are equivalent. Returns the string value of the MetroPro control,
attribute, result, or limits referenced by ID IntExpr. This function may be used to obtain the value
of string, selection, and Boolean type items as well as limits. Use getnum or getval to obtain the
value of numeric type items. The return value depends on the item type as follows:

String The displayed string.

Selection The displayed selection name.

Boolean "Yes" or "No".

Limits Limits description as in a MetroPro settings file.

Example: "[1.23, 4.56] uin"

getwinid( StrExpr )
Returns an integer that is the ID of a window within a MetroPro application. The ID can then be
used in calls to getid and the various window control functions. The StrExpr parameter specifies
the title of the window. Note that blanks and slash "/" characters are not significant in StrExpr. An

error is generated if there is no window with the specified title, or if there are multiple windows
with the specified title.

Example: wid = getwinid( “Surface Map” )

openwind( wid )

getwrkdir$
Returns the name of the MetroPro working directory.

getxpos
Returns the current position of the X Stage Axis in the current linear unit.

4-20



METROSCRIPT REFERENCE

getypos
Returns the current position of the Y Stage Axis in the current linear unit.

getzernikes
This function is equivalent to clicking on the Get Zernikes button in MetroPro.

getzoom
Returns the current image zoom value as a real number.

getzpos
Returns the current position of the Z Stage Axis in the current linear unit.

gosub Lineld

This statement executes a subroutine beginning at the specified line. An error occurs if the
specified line does not exist. The location of the statement following the gosub is saved, and when
a return statement is executed, execution proceeds from the saved location. (See also, loadsub in
Appendix B.)

goto Lineld

This statement executes the statements beginning at the specified line. An error occurs if the
specified line does not exist.

gotopatorg

Moves the programmable stage X and Y axes to the pattern origin position. Equivalent to clicking
the MetroPro Goto Origin button.

gotopatpos( IntExpr)
Moves the stage X and Y axes to a pattern position. The IntExpr parameter specifies the pattern

position as an index into the array of included pattern positions. A value of 1 specifies the first
position that is visited when the pattern is run.

homeaxis( StrExpr )

homeaxis( IntExpr)
These functions cause a programmable stage axis to establish a “home” position. The axis may be
specified as a label using StrExpr, or as an axis number using IntExpr. Axis labels are normally ‘X,’
Y, ‘2" etc. Axis numbers are normally in the range [0,7]. The operation may or may not cause
stage movement, depending on how the axis is configured. These functions return no value.

homemicrolynx

Causes the Micro LYNX stage to establish the “home” position in the Z axis. This operation is
equivalent to clicking on the MetroPro Home button in the Micro LYNX window.

4-21



METROSCRIPT REFERENCE

homestage

Causes the programmable stage to establish the “home” positions of the X and Y axes. Each of the
X and Y axes will move to one extreme of travel. This operation is equivalent to clicking on the
MetroPro Home Stage button.

homezoom

On systems with the motorized zoom option, this command cycles through the available image
zoom lenses and updates the image zoom list. This command is ignored if the zoom is not
motorized.

if LogicExpr then Stmt1 [else Stmi2 ]

This statement is the single-line form of the "if-then" statement. The LogicExpr is evaluated. If
LogicExpr is true, Stmt1 is executed. Otherwise, Stmt2 is executed, if it is specified. The block form
of this statement is described below.

if LogicExpr then
[else ]
endif

This statement is the block form of the "if-then" statement. The LogicExpr is evaluated. If
LogicExpr is true, subsequent statements are executed up to the corresponding else statement or
endif statement if the else statement is omitted. Otherwise, execution continues with statements
after the corresponding else statement, after the corresponding endif statement if the else
statement is omitted. See also the single-line version of this statement described above.

input StrConst, Var [, Var | ...

This statement is the same as the input statement except that the user is prompted with StrConst
followed by a question mark.

input Var [, Var ]

This statement prompts the user with a question mark and the values of the specified Vars are
read from the terminal. If a string value is expected, quotes are not required, and the string may
contain C language escape codes. For input from files, use the enter statement.

int( RealExpr)
Returns the integer part of the RealExpr parameter.

invertdata

Causes MetroPro to invert the current data. Equivalent to clicking on the MetroPro Invert Data
button. Returns no value.

4-22



METROSCRIPT REFERENCE

isaxisactive( StrExpr)
isaxisactive( IntExpr)

This command checks whether or not the specified stage axis is active. The axis may be specified
as a label using StrExpr, or as an axis number using IntExpr. Axis labels are: X,Y,Z,P,R,r, T, A, and
B. Axis numbers range from 0 to 7. The return value is zero (0) if the axis is inactive, and one (1) if
the axis is active.

ismcafenabled

This command checks whether or not the motion controller’s auto focus feature is enabled. The
return value is zero (0) if disabled, and one (1) if enabled.

ismcafzeroset

This command checks whether or not the motion controller’s auto focus zero position is set. The
return value is zero (0) if the zero position is not set, and one (1) if the zero position is set.

israsactive

This command checks whether or not the script is being run through remote access. The return
value is zero (0) if remote access is not running, or if the server is suspended, and one (1) if remote
access is running.

isstageclamped( StrExpr)
isstageclamped( IntExpr)

This command checks whether or not the specified stage axis is clamped. The axis may be
specified as a label using StrExpr, or as an axis number using IntExpr. Axis labels are: X,Y,Z, P, R,
r, T, A, and B. Axis numbers range from zero (0) to 7. The return value is zero (0) if the axis is not
clamped, and one (1) if the axis is clamped.

joyoff
Disables the Motion Controller joysticks.

joyon
Enables the Motion Controller joysticks. If this function is called while stage motion is in progress,
an error is generated.

len( StrExpr)
Returns the number of characters in the StrExpr parameter.

Igt( RealExpr)
Returns the base 10 logarithm of the RealExpr parameter.

4-23



METROSCRIPT REFERENCE

licdialog

load

Opens the MetroPro Light Level for Measure window and allows user interaction. Completes
when the window is closed. It is equivalent to pressing the F4 function key. This command should
only be used within a script. Using llcdialog in the interactive mode of MetroScript as a single
instruction may yield unexpected results. Returns no value.

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

loadapp( FileNameExpr)

Causes MetroPro to load the application file specified by the FileNameExpr parameter. Equivalent
to selecting the Load Application item in the desktop pop-up menu and then selecting
FileNameExpr as the file name in the dialog box. Returns no value.

loadbitmap( IntExpr, StrExpr)

This command loads and displays a bitmap file. IntExpr must be the ID of a MetroPro object that
supports display of a bitmap, such as a bitmap window, button, or an icon. The ID may be
obtained using either the getid or getwinid functions. StrExpr specifies the the bitmap filename.
The file must be located in MetroPro’s current working directory. A bitmap cannot be resized
from within MetroScript. This must be done with an external image editing program prior to
loading.

loaddata( FileNameExpr)

Causes MetroPro to load the data file specified by the FileNameExpr parameter. Equivalent to
clicking on the Load Data button and then selecting FileNameExpr as the file name in the dialog
box. Returns no value.

loaddata( /ntExpr, FileNameExpr)

With this form of the command, the value of the IntExpr parameter is the ID of a data cell returned
by the getid function. It provides a means to load data from a file into a specific data window. The
only allowed target data windows are those that provide a Load Data button. This form of the
command is primarily intended for future use since the only supported target data window
currently available is the Rotationally Variant Surface map, which is part of the Asphere
measurement applications.

loadftpsi( IntExpr, FileNameExpr )

4-24

Causes MetroPro to load the MST data file specified by the FileNameExpr parameter.

IntExpr specifies the destination of the MST data. For all MST applications besides Homogeneity,
the destination must be zero (0). When loading data into the Homogeneity application, set IntExpr
to zero for full cavity, and one (1) for empty cavity data. This function is equivalent to clicking on
the LoadAcqgData button within a Data Acquisition window and then selecting FileName Expr as
the file name in the dialog box. Returns no value. An MST data file contains the raw data needed
to calculate height maps. MST data is normally only saved or loaded for diagnostic purposes.



METROSCRIPT REFERENCE

This function is available in the following MST applications: Two Surface, Parallel Surface,
Homogeneity, and Custom Cavity.

loadmasks( FileNameExpr)

Causes the MetroPro Mask Editor to load the mask file specified by the FileNameExpr parameter.
Equivalent to clicking on the Load button and then selecting FileNameExpr as the file name in the
dialog box. Returns no value.

loadmstcalmarkers( FileNameExpr )

This command loads the calibration marker file (*.clm) specified by the FileNameExpr parameter.
It is equivalent to clicking the Load button within the Mask Editor while in Cal Markers mode and
then selecting FileNameExpr as the file name in the dialog box. This function does not return a
value.

This function is available in all MST applications.

loadpartconfig( FileNameExpr )

Loads into MetroPro the settings file specified by FileNameExpr. Equivalent to clicking on the

MetroPro Load Part Config button and then selecting FileNameExpr as the file name in the dialog

box. Returns no value. For most application types, this is equivalent to the loadsettings function.

For the FTP application only, this function performs additional operations, including:

= The state of the Mask Editor is established as follows. If an Auto Load Masks file is specified, a
mask file is loaded. Otherwise all masks are cleared.

= The FTP instrument left and right axes are adjusted to match the Setup Type control and the
relevant Measure Pos controls.

loadpatpos( FileNameExpr)

Causes the MetroPro Pattern Position Editor to load the pattern position file specified by the
FileNameExpr parameter. Equivalent to selecting the Load item in the Position Editor pop-up menu
and then selecting FileNameExpr as the file name in the dialog box. Returns no value.

loadpatstatus( FileNameExpr )

Causes the MetroPro Pattern Position Status window to load the pattern position status file

specified by the FileNameExpr parameter. There is no equivalent operation in MetroPro. Returns
no value.

loadpattern( FileNameExpr)

Causes the MetroPro Pattern Editor to load the pattern file specified by the FileNameExpr
parameter. Equivalent to clicking on the Load button in the Pattern Editor and then selecting
FileNameExpr as the file name in the dialog box. Returns no value.

4-25



METROSCRIPT REFERENCE

loadsettings( FileNameExpr)

Loads the settings file specified by FileNameExpr into MetroPro. Equivalent to clicking on the
MetroPro Load Settings button and then selecting FileNameExpr as the file name in the dialog box.
It also updates the Settings File attribute in MetroPro. Returns no value.

loadsub
Refer to Appendix B, Interactive Mode, for information on using this command.

loadsubpat( FileNameExpr )

Causes the pattern file specified by the FileNameExpr parameter to be loaded into the hidden
subpattern holding area. There is no equivalent in MetroPro. Returns no value. (Refer to
Appendix D for additional information on subpattern functions.)

loadswli( FileNameExpr )

Causes MetroPro to load the SWLI (scanning white light interferometry) data file specified by the
FileNameExpr parameter and then perform FDA (frequency domain analysis) to obtain a height
map. This function is equivalent to clicking on the Load SWLI button and then selecting
FileNameExpr as the file name in the dialog box. Returns no value. A SWLI data file contains the
raw data needed by FDA to calculate a height map. SWLI data is normally only saved or loaded for
diagnostic purposes.

lockgpizoom

Locks the position of a GPl encoded zoom lens so that it cannot be inadvertently changed. This
also prevents any variation of the effective magnification value due to encoder noise.

(This command applies to GPIl or MST instruments with an encoded zoom lens.)

log( RealExpr)
Returns the natural logarithm of the RealExpr parameter.

log2( RealExpr)
Returns the base 2 logarithm of the RealExpr parameter.

logfile is FileNameExpr
This statement duplicates terminal output to a new file specified by FileNameExpr.

If FileNameExpr is a zero length string, any previous logfile is file is closed. This statement allows
the “S” character within the file/path name.

logreports
Causes MetroPro to log reports in all Report windows in which the Logging control is turned on.

Iwc$( StrExpr )
Returns a copy of the StrExpr parameter with all upper case letters converted to lower case.

4-26



METROSCRIPT REFERENCE

makefid( RealExpr1, RealExpr2, StrExpr, IntExpr1, IntExpr2 )

Makes a new fiducial. The center (X,Y) coordinates are specified by RealExprl and RealExpr2,
respectively. The measurement unit is specified by the StrExpr parameter. If null, the default unit
is pixels. The IntExpr2 and IntExpr2 parameters are reserved for future use.

The coordinate system is consistent with the Mask Editor display that corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system
depends on the measurement unit.

If the unit is pixels, the origin of the coordinate system is the lower left corner of the image. X and
Y are more positive to the right and up, respectively. If the unit is other than pixels, the origin of
the coordinate system is the center of the image. X and Y are more positive to the right and up,
and more negative to the left and down, respectively.

Returns the ID of the fiducial as an integer. See also delfid.

makemstcalmark( /ntExpr1, IntExpr2, RealExpr1, RealExpr2, StrExpr)

This command instructs the Mask Editor to create a new calibration marker. The center (X, Y)
coordinates are specified by RealExpr1 and RealExpr2, respectively. The measurement unit is
specified by the StrExpr parameter. If null, the default unit is pixels. IntExprl specifies the type of
marker to make zero (0) for Test and one (1) for Reference. The IntExpr2 parameter is reserved
for future use.

The coordinate system is consistent with the Mask Editor display that corresponds to the image
from an actual or virtual camera. The location of the origin (0, 0) of the coordinate system
depends on the measurement unit. If the unit is pixels, the origin of the coordinate system is the
lower left corner of the image. X and Y are more positive to the right and up, respectively. If the
unit is other than pixels, the origin of the coordinate system is the center of the image. Xand Y
are more positive to the right and up, and more negative to the left and down, respectively.

This function is available in all MST applications.

maskdata

Causes MetroPro to apply the current default mask to the current data and replace the current
data with the result. Returns no value.

max( RealExpr, RealExpr )
Returns the maximum of the two RealExpr parameters.

maxreal

Returns the maximum value of a real number. This value prints as “1.#INF.” This value is useful to
mark an invalid or undefined real number. See the description for functions getval and setnum.

measure

Causes MetroPro to perform a measurement. Equivalent to clicking on the MetroPro MEASURE
button. Returns no value.

4-27



METROSCRIPT REFERENCE

message( StrExpr, IntExpr, RealExpr)

Displays a MetroPro message box containing the specified StrExpr parameter. Returns no value.
The message box is displayed for RealExpr seconds. There are three modes selectable by IntExpr:

1 Normal — green title bar

2 Error — red title bar

3 Warning — yellow title bar
metric

Sets millimeters as the current linear unit for stage axis positions. (Refer to the english
statement.)

min( RealExpr, RealExpr)

Returns the minimum of the two RealExpr parameters.

moveaxis( StrExpr, IntExpr2, RealExpr, IntExpr3)
moveaxis( IntExpr1, IntExpr2, RealExpr, IntExpr3)

These functions move a programmable stage axis to a specified position.

The axis may be specified as a letter (a one-character string) using StrExpr or as an axis number
using IntExprl. Axis letters are normally “X,” “Y,” “P,” “R,” “T,” “Z,” “r,” “A,” or “B.” Axis
numbers are normally in the range [0,7].

The IntExpr2 parameter specfies the unit. If the value of IntExpr2 is negative one
(1), the position is in stepping motor controller counts. Otherwise the position is in the unit
appropriate for the axis type.

The position is specified by RealExpr.

The IntExpr3 parameter is a wait-for-stop flag. If IntExpr3 is zero (0), the function returns without
waiting for the motion to complete. Note that this leaves the Motion Controller joysticks disabled.
If IntExpr3 is non-zero, the function returns only after the motion is complete.

These functions return no value.

movemask ( IntExpr, RealExpr1, RealExpr2, StrExpr)

4-28

This function moves a mask figure. Returns no value.

The IntExpr parameter specifies the ID of a mask figure obtained via getmaskid. If the maskid is
zero (0), all figures are affected.

The destination X and Y coordinates are specified by RealExpr1 and RealExpr2, respectively. The
measurement unit is specified by StrExpr. If null, the default unit is pixels.

The coordinate values are for the center of the minimal enclosing rectangle for the figure. The
coordinate system is consistent with the Mask Editor display, which corresponds to the image
from an actual or virtual camera. The location of the origin (0,0) of the coordinate system depends
on the measurement unit.



METROSCRIPT REFERENCE

If the unit is pixels, the origin (0,0) of the coordinate system is the lower left corner of the image. X
and Y are more positive to the right and up, respectively. If the unit is other than pixels, the origin
(0,0) of the coordinate system is the center of the image. X and Y are more positive to the right
and up, and more negative to the left and down, respectively.

The dimensions of the coordinate system are as described for the getcamsizx and getcamsizy
functions.

movemicrolynx( RealExpr )
Moves the Micro LYNX stage to the position specified by RealExpr in inches or millimeters.

moverp( RealExpr1, RealExpr2)
moverp( RealExpr1, RealExpr2, IntExpr)

These functions move the programmable stage Roll and Pitch axes to the position specified by
RealExprl and RealExpr2 in degrees or radians. In the first form, the function returns only after the
motion is complete. In the second form, IntExpr is a wait-for-stop flag. If IntExpr is zero, the
function returns without waiting for the motion to complete. Note that this leaves the Motion
Controller joysticks disabled. If IntExpr is nonzero, the function returns only after the motion is
complete. These functions return no value.

movet( RealExpr )
movet( RealExpr, IntExpr )

These functions move the programmable stage Theta axis to the position specified by RealExpr in
degrees or radians. In the first form, the function returns only after the motion is complete. In
the second form, IntExpr is a wait-for-stop flag. If IntExpr is zero, the function returns without
waiting for the motion to complete. Note that this leaves the Motion Controller joysticks disabled.
If IntExpr is nonzero, the function returns only after the motion is complete. These functions
return no value.

movetur( /ntExpr1)
movetur( IntExpr1, IntExpr2)

This function moves the objective turret on a microscope to the position specified by IntExpr.
The turret must be motorized for this command to work. For the NewView 6000 instrument,
the valid IntExpr range is one through six (1—6). For the NewView 5000 instrument, the valid
range is one through five (1—5). If IntExpr2 is nonzero or missing, the function returns only

after the movement is completed.

movexy( RealExpr1, RealExpr2)
movexy( RealExpr1, RealExpr2, IntExpr )

These functions move the programmable stage X and Y axes to the position specified by
RealExprl and RealExpr2 in inches or millimeters. In the first form, the function returns only
after the motion is complete. In the second form, IntExpr is a wait-for-stop flag. If IntExpr is zero
(0), the function returns without waiting for the motion to complete. Note that this leaves the
Motion Controller joysticks disabled. If IntExpr is nonzero, the function returns only after the
motion is complete. These functions return no value.

4-29



METROSCRIPT REFERENCE

movexyz( RealExpr1, RealExpr2, RealExpr3)
movexyz( RealExpr1, RealExpr2, RealExpr3, IntExpr)

These functions move the programmable stage X, Y, and Z axes to the position specified by
RealExprl, RealExpr2, and RealExpr3 in inches or millimeters. In the first form, the function
returns only after the motion is complete. In the second form, IntExpr is a wait-for-stop flag. If
IntExpr is zero, the function returns without waiting for the motion to complete. Note that this
leaves the Motion Controller joysticks disabled. If IntExpr is nonzero, the function returns only
after the motion is complete. These functions return no values.

movez( RealExpr)
movez( RealExpr, IntExpr)

These functions move the programmable stage z axis to the position specified by RealExpr in
inches or millimeters. In the first form, the function returns only after the motion is complete. In
the second form, IntExpr is a wait-for-stop flag. If IntExpr is zero (0), the function returns without
waiting for the motion to complete. Note that this leaves the Motion Controller joysticks

disabled. If IntExpr is nonzero, the function returns only after the motion is complete. These
functions return no values.

A Warning! Always set the Motion Controller Z-stop to protect the
microscope objective in case of an inadvertent Z axis movement.

movezoom( RealExpr)

On systems with the motorized zoom option, this command will move to the specified image
zoom. (RealExpr is the value of the desired zoom—e.g. 1,.75, etc.). An error is reported if the

system does not have the zoom option, or if the zoom value is not recognized or is not available in
the system.

next RealVar

This statement is always used with a corresponding for statement. It jumps to the specified
instructions. Let Step and Limit be hidden variables associated with this statement and the
corresponding for statement.

The Step value is added to RealVar. If Step is greater than zero (0)and RealVar is less than or equal
to Limit, or if Step is less than zero (0)and RealVar is greater than or equal to Limit, then execution
reverts to the statement following the for statement.

Otherwise, execution proceeds with the following statement. This statement may also be used
with an IntVar.

num( StrExpr)

Returns the ASCIlI numeric value of the first character in the StrExpr.
numtok( StrExpr1, StrExpr2)

This function is used when parsing a string. Returns the number of tokens found in StrExpr1.
StrExpr2 specifies the characters that act as token separators. Refer to the postok function.

4-30



METROSCRIPT REFERENCE

off error
This statement cancels the effect of an on error statement.

ofmti( StrExpr)

Sets the format string used by the print and output statements and the val$() function for
formatting integers. The syntax is the same as for the printf() function in the C programming
language. The default format is "%d". Passing a null string restores the default. Returns no value.

ofmtr( StrExpr)

Sets the format string used by the print and output statements and the val$() function for
formatting real numbers. The syntax is the same as for the printf() function in the C programming
language. The default format is "%g". Passing a null string restores the default format. Returns no
value.

on error gosub Lineld

This statement sets up to recover from a subsequent error. The gosub statement is executed
when a recoverable error occurs. If the gosub returns with a return statement, execution reverts
to the same line where the error occurred. If the gosub returns with an error return statement,
execution proceeds with the statement immediately after the line where the error occurred.

on error goto Lineld

This statement sets up to recover from a subsequent error. The goto statement is executed when
a recoverable error occurs. When on error goto is executed, the states of the gosub and for
statement nesting are saved. If an error goto occurs, the saved states are restored.

on IntExpr gosub Lineld [, Lineld ] ...

This statement branches to one of several specified lines. The IntExpr is evaluated and the
corresponding Lineld (1=first, 2=second,...) is used as the destination of a gosub statement.

on IntExpr goto Lineld [, Lineld ] ...

This statement branches to one of several specified lines. The IntExpr is evaluated and the
corresponding Lineld (1=first, 2=second,...) is used as the destination of a goto statement.

openapp( IntExpr)

This function opens a closed (iconized) application. Returns no value. The IntExpr parameter
specifies the ID of the application, obtained via getappid. This function does nothing if the
application is already open. This function can only be used in a top-level MetroScript.

openwin( IntExpr )
This function opens a closed (iconized) window within an application. Returns no value. The
IntExpr parameter specifies the ID of the window, obtained via getwinid. A window opened with
this function is not locked even if the application was locked.

4-31



METROSCRIPT REFERENCE

output @FileVar ; Expr ...

This statement outputs the Expr values to the file associated with FileVar. FileVar must have been
created by a previous assign statement.

pause

This statement pauses the program and places it in single-step mode. The next statement to be
executed is printed on the terminal. Then control returns to the MetroScript prompt. To execute
the next one or more statements, use the continue command. To leave single-step mode and
resume execution from the stopping point, use the run command.

pos( StrExpr1, StrExpr2)
Returns the position of StrExpr2 within StrExpr1, or zero (0)if not found.

postok( StrExprl, StrExpr2, IntExpr)

This function is used when parsing a string. It returns the character position of the specified
token. StrExprl specifies the string to be parsed. StrExpr2 specifies the characters that act as
token separators. IntExpr specifies the token number. See also the numtok function.

postok, continued-
StrExprl = “The,Brown,Dog,Ran” (Separators are the commas.)
StrExpr2 =“,"

IntExpr = 0 for “The”
1 for “Brown”
2 for “Dog”
3 for “Ran”

print Expr [, Expr ] ...

print Expr [; Expr | ... ;
Outputs the values of the specified Exprs. If the “printer is” command was used to specify a
filename, output is sent to a text file. Otherwise, in interactive mode, output is sent to the console
window. In noninteractive mode, only the first 10 lines of output are accumulated and displayed
in a dialog box when the script ends.

The use of commas and semicolons is significant. Comma separators cause values to be output on
14-character field boundaries with at least one blank between fields. Semicolon separators cause
values to be output with no added blanks. Normally each print statement outputs one line
terminated by carriage-return and line-feed characters. A trailing semicolon causes the line
terminators to be omitted so that a subsequent print statement outputs the same line.

A shorthand for print is a question mark “?”, which is convenient when using the interactive mode
to query values of variables.

printer is(FileNameExpr)

This statement redirects the output of print statements to a new file with pathname
FileNameExpr. If FileNameExpr is a zero length string, any previous redirection is canceled. This
statement allows the “S” character within the file/path name.

4-32



METROSCRIPT REFERENCE

printwin( IntExpr1, IntExpr2, IntExpr3, IntExpr4, IntExpr5, IntExpr6, IntExpr7, FileNameEXxpr)

This function is used to print any open MetroPro window with all the options available
interactively in the various print dialogs. Options include Source, Destination, Image Format, Data
Format, and Range. Either a bitmap or tiff file can be printed with a black (default), or white
background.

IntExpr1 is the ID of a window obtained via the getwinid function.

IntExpr2 specifies the source (if relevant): zero (0) for image; one (1) for data. If image is specified,
the window must be open and completely visible.

IntExpr3 specifies the destination: 0 for printer; 1 for file.
IntExpr4 specifies the output format (if relevant). If the source is a bitmap image (.bmp), itis 0. If

the source is a .tif image, then itis a 1. If the source is data as displayed, it is 1. If the source is
data comma separated, it is a 2. If the source is data tab separated, it is a 3.

IntExpr5 and IntExpr6 specify the range of data items (if relevant). If either IntExpr5 or IntExpr6 is
0, then all data items are printed. Otherwise, IntExpr5 and IntExpr6 specify the indices for the
selected first and last data items respectively.

IntExpr7 specifies whether a heading is to be printed before the data items (if relevant). When set
to 1, the image will be printed with a white background. When set to 0, the image will be printed
with a black background.

File nameExpr specifies the destination file (if relevant).

promptentry( /ntExpr)

Displays a MetroPro prompt for the entry of the item referenced by ID IntExpr. Returns no value.
The ID must reference one of these controls: Lot Num, Part Ser Num, or Auto Save Data File.

promptstr$( StrExpr1, StrExpr2, IntExpr )

quit

rad

Displays a MetroPro prompt for the entry of a string. StrExpr1 is the prompt. StrExpr2 is the
default entry. IntExpr is the maximum length of the entry. Returns the entered string.

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

Sets radians as the current angle unit for the trigonometric functions and for stage axis positions.
(See also the deg statement.)

randomize [ RealExpr ]

This statement resets the random number function (rnd) with a random seed derived from
RealExpr. This is useful when identical results are desired from every run of a program using
random numbers. If RealExpr is omitted, the random seed is derived from the real-time clock in
the computer. Returns no value.

4-33



METROSCRIPT REFERENCE

read Var [, Var ] ..
This statement assigns the next unused values in previous data statements to the specified Vars.

readdmi( StrExpr)

This function initiates a continuous display of the position reported by a Displacement Measuring
Instrument (DMI). A readout box is displayed on both the console and the video monitor until the
operator presses a key or mouse button. This is similar to clicking the Read button in a MetroPro
DMI Test data window in the Radius Scale Application.

The StrExpr parameter specifies an optional message string. If non-null, the string is displayed in a
message box below the readout box. Returns no value.

rem Remark

This statement is used for comments. Remark is any text. This statement has no effect on the
execution of the program. See also the exclamation character "!".

renum

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

resaveapp( IntExpr)

This function resaves an application. Returns no value. The IntExpr parameter specifies the ID of
the application, obtained via getappid. The application is saved to the same file from which it was
last loaded, or to which it was last saved. If the application was not loaded or saved, the default
file is “MyApp.app.”

reset

Resets the current MetroPro application. Equivalent to clicking the MetroPro Reset button.
Returns no value.

resetdata

Clears any data from MetroPro. Equivalent to clicking on the MetroPro Reset Data button.
Returns no value.

resetdmi

Resets and initializes the distance measuring instrument. Returns no value. This function should be
called before using functions setdmimode, getdmipos or trackdmi.

resetmasks

Resets MetroPro masks to the default state. Equivalent to clicking the Mask Editor Clear button.
Returns no value.

4-34



METROSCRIPT REFERENCE

resetmc

Resets the programmable stage Motion Controller. Equivalent to clicking on the MetroPro Reset
MC button. Returns no value.

resetmicrolynx

Resets the Micro LYNX. This operation is equivalent to clicking the Reset button in the MetroPro
Micro LYNX window.

resizemask( IntExpr, RealExpr)
This function resizes a mask figure. Returns no value.

The IntExpr parameter specifies the ID of a mask figure obtained via getmaskid. If the maskid is
zero (0), all figures are affected. The new size is specified by RealExpr as a percentage. If the
resulting size is zero, the mask figure is deleted.

restore

This statement restarts the pointer for read statements at the beginning of the available data
statements.

return
This statement causes execution to proceed to the line saved by the previous gosub statement.

rnd
Returns a random number in the range zero (0) to one (1), including 0 but excluding 1.

rotatedata( RealExpr)

Causes MetroPro to rotate the current data counterclockwise by the angle specified by the
RealExpr parameter in the current angle unit. Equivalent to clicking on the MetroPro Rotate Data
button. Returns no value.

rotatemask( IntExpr, RealExpr, StrExpr)
This function rotates one or all mask figures. Returns no value.

The IntExpr parameter specifies the ID of a mask obtained via getmaskid. If the ID is zero (0), all
figures are affected.

The RealExpr parameter specifies the angle.
The StrExpr parameter specifies the angle unit, either “deg” or “rad.”

A positive angle rotates counterclockwise; a negative angle rotates clockwise.

run

This command is only usable in the interactive mode. Refer to Apendix B, Interactive Mode, for
information on this command.

4-35



METROSCRIPT REFERENCE

runpattern

Causes MetroPro to run the current stage control pattern. Equivalent to clicking on the MetroPro
Run Pattern button. Returns no value.

runscript( IntExpr, FileNameExpr)

This function runs another script. In this case, the IntExpr parameter specifies the ID of an
application obtained via the getappid function. The function runscript can also be called from
within an application-level script. In this case the value of IntExpr should be zero (0).

The FileNameExpr specifies the script file name. Returns no value.

save

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

saveautolatcalinfo( FileNameExpr)

This command outputs statistics from the last auto lateral calibration. Refer to OMP-0484 and
OMP-0347. A sample output file is shown below.

The FileNameExpr parameter specifies the name of the file to create.
# Zygo Auto Lateral Calibration Statistics File

# Modified Thu Mar 20 14:26:04 2003
# User "zygo" on host "ZYGO"

#

## System magnification

Sys_mag: 9.918764

## Grid size statistics, calibration size

n _cal rows: 13

n _cal cols: 13

## Grid size statistics, actual size

n_rows: 13

n _cols: 18

## Grid centroid spacing statistics (units: camera pixels)

## Overall

ovl mean: 36.190870

ovl max: 36.915086

ovl min: 35.629488

## Horizontal

hor mean: 36.170838

hor max: 36.627774

hor min: 35.879635

## Vertical

ver mean: 36.210902

ver max: 36.915086

ver min: 35.629488

##

## Grid area statistics (units: camera pixels)

area mean: 292.260684
area_ sdev: 12.198343
area max: 319.018519
area min: 255.997230

4-36



METROSCRIPT REFERENCE

sys_mag: Calculated nominal magnification of the instrument.
n_cal_rows: Number of rows of features used within the lateral calibration routine.
n_cal_cols: Number of columns of features used within the lateral calibration routine.

n_rows:Total number of rows detected on the standard.

n_rows:Total number of columns detected on the standard.

ovl_mean: Average of all the spacing between features. This result is the measured pitch of
the standard in pixels.

ovl_max: Maximum calculated spacing between the centroid of two features.

ovl_min: Minimum calculated spacing between the centroid of two features.

hor_mean: Average of the horizontal spacing between all features. The spacing is
calculated as the horizontal distance between the centroid of two features. This
result indicates the average spacing between columns of features.

hor_max: Maximum calculated horizontal distance between any two features.

hor_min: Minimum calculated horizontal distance between any two features.

ver_mean: Average of the vertical spacing between all features. The spacing is calculated as
the vertical distance between the centroid of two features. This result indicates
the average spacing between rows of features.

ver_max: Maximum calculated vertical distance between any two features.

ver_min: Minimum calculated vertical distance between any two features.

area_mean:  The mean area size of the isolated data regions found on the standard (usually
individual features). Area is expressed as the total number of pixels that make
up each individual isolated data regions.

area_sdev: Standard deviation of the area size.

area_max: Maximum area size of any standard dot or other item detected on the standard.

area_min: Minimum area size of any standard dot or other item detected on the standard.

savedata( IntExpr, FileNameExpr)

Causes the MetroPro application or data window to save the current data to the file specified by
the FileNameExpr parameter. If IntExpr is zero (0), the save operation is performed by the
MetroPro app at the top level. Otherwise IntExpr must specify the ID of a data window, obtained
via function getid (not getwinid). Then the save operation is performed in that data window. This
function is equivalent to clicking on the MetroPro Save Data button and then selecting
FileNameExpr as the file name in the dialog box. Returns no value.

saveftpsi( IntExpr, FileNameExpr)
Causes MetroPro to save the MST data to the file specified by the FileNameExpr parameter.

4-37



METROSCRIPT REFERENCE

IntExpr specifies the source of the MST data. For all MST applications besides Homogeneity, the
source must be zero (0). When loading or saving data from the Homogeneity application, set
IntExpr to zero (0) for full cavity, and one (1) for empty cavity data. This function is equivalent to
clicking on the SaveAcqData button within an Acquisition Data window and then selecting
FileNameExpr as the file name in the dialog box. Returns no value. An MST data file contains the
raw data needed to calculate height maps. MST data is normally only saved or loaded for
diagnostic purposes.

This function is available in the following MST applications: Two Surface, Parallel Surface,
Homogeneity, and Custom Cavity.

savemasks( FileNameExpr )
This command saves the current masks to a file specified by FileNameExpr. Returns no value.

savemstcalmarkers( FileNameExpr)

This command saves the calibration markers to a calibration marker file (*.clm). The FileNameExpr
parameter specifies the filename. It is equivalent to clicking the Save button within the Mask
Editor while in the Cal Markers mode and then selecting FileNameExpr as the file name in the
dialog box. This function does not return a value.

This function is available in all MST applications.

savepatpos( FileNameExpr)

Causes the MetroPro Pattern Position Editor to save the current pattern position map to the file
specified by FileNameExpr. Equivalent to selecting the Save item in the Position Editor pop-up
menu and then selecting FileNameExpr as the current selection field of the dialog box. Returns no
value.

savepatstatus( FileNameExpr)

Causes the MetroPro Pattern Position Status window to save the current pattern position status
map to the file specified by FileNameExpr. Equivalent to clicking on the Zygo icon in the title bar of
the Pattern Position Status window(to access the Print Panel) and then selecting ‘Data’ and ‘File’
followed by FileNameExpr as the current selection field of the dialog box. Returns no value.

savepattern( FileNameExpr )

Causes the MetroPro Pattern Editor to save the current pattern to the file specified by the
FileNameExpr parameter. This function is equivalent to clicking on the Pattern Editor Save button
and then selecting FileNameExpr as the file name in the dialog box. Returns no value.

saveprocstats( FileNameExpr, IntExpr )

Causes MetroPro to save the information in all currently open Process Stats windows to the file
specified by the FileNameExpr parameter. This includes Process Stats as well as Profile Stats. The
IntExpr parameter specifies the file format as follows:

4-38



METROSCRIPT REFERENCE

0 As displayed (columns).
1 Comma separated fields.
2 Tab separated fields.

This function is similar to clicking on the zveo button in a Process Stats window, selecting the Data
and File buttons in the Print Panel, selecting a Data Format, clicking on Print, and then entering
FileNameExpr in the Current Selection field of the Save dialog box. Returns no value.

savesettings( FileNameExpr)
Causes the MetroPro application to save the current settings to the file specified by FileNameExpr.
Equivalent to clicking on the MetroPro Save Settings button and then selecting FileNameExpr as
the file name in the dialog box. Returns no value.

savesubpat( FileNameExpr )
Causes the pattern currently in the hidden subpattern holding area to be saved to the file specified
by the FileNameExpr parameter. There is no equivalent in MetroPro. Returns no value. (Refer to
Appendix D for additional information on subpattern functions.)

saveswli( FileNameExpr )

If there is scanning white light interferometry (SWLI) data available following a measurement, this
command saves the data file specified by the FileNameExpr parameter. This function is equivalent
to clicking on the Save SWLI button and then selecting FileNameExpr as the file name in the dialog
box. No value is returned. A SWLI data file contains the raw data needed by FDA to calculate a
height map.

savetobmp( IntExpr, FileNameExpr, datatype, [top %], [bottom %)])

This command is used to convert and save the current data to the file specified by the
FileNameExpr parameter. If IntExpr is zero, the save operation is performed by the MetroPro app
at the top level. Otherwise, IntExpr must specify the ID of a data window, obtained via the getid
function (not getwinid). Then the save operation is performed in that data window. The datatype
parameter specifies how to convert the source data as follows:

0 Converts intensity.
1 Converts height data.
2 Converts height data to 128 if data is valid; 0 if it is not data.

The optional parameters, top% and bottom%, specify a percentage of the height data used to
define the top and bottom limits. Only valid for datatypes 1 and 2. Defaultis 1%. Returns no
value.

4-39



METROSCRIPT REFERENCE

savetovpscam( IntExpr, datatype, [top%], [bottom%)])

Saves and converts MetroPro data to the VisionPro “virtual” camera. In IntExpr is zero, the save
operation is performed by the MetroPro application at the top level. Otherwise, IntExpr must
specify the ID of a data window obtained via the getid function (not getwinid). Then, the save
operation is performed in that data window. The data type parameter specifies how to convert
the source data as follows:

0 Converts intensity

1 Converts height data

2 Converts height data to 128 if data is valid; 0 if it is not data.
The optional parameters, top% and bottom% specify a percentage of the data used to define the
top and bottom limits.

scaledata( RealExpr)

Causes MetroPro to multiply the current data by the value of the RealExpr parameter. Equivalent
to clicking on the MetroPro Scale Data button. Returns no value.

scratch

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
additional information.

setavmode( IntExpr1)
setavmode( IntExpr1, IntExpr2 )

These functions set the Align/View mode for the GPI and similar instruments. If IntExpr1 is zero
(0), the instrument is set to View mode. If IntExprl is 1, the instrument is set to Align mode. In
the second form, IntExpr2 is a wait-for-stop flag. If IntExpr2 is zero, the function returns without
waiting for the mode change to complete. These functions return no value.

setcalinfo

This function sets system calibration information specified by StrExpr, which has the same format
as a line in the system calibration file. Returns no value.

setcamaoi( RealExprl, RealExpr2 )

Sets the camera Area-of-Interest origin. This function is only applicable to instruments using the
SMD4M15 camera. The (X,Y) coordinates are specified in pixels by RealExprl and RealExpr2
respectively.

4-40



METROSCRIPT REFERENCE

setcamres( RealExpr, StrExpr)

Sets the camera resolution (effective pixel spacing) for subsequent measurements. This is
equivalent to using the interactive Lateral Calibrator and entering the resolution. The resolution is
specified by the RealExpr parameter, and the unit is specified by the StrExpr parameter. The
specified resolution must be reasonable and consistent with the magnification of the instrument,
the current objective, the Camera Mode control, and the Image Zoom control.

setdir( StrExpr1, StrExpr2)

This command sets the directory path used by MetroPro to save or load all file types. Returns no
value. The file type is specified by StrExpr1 and must be either a null string or one of the names
listed under getdir$. If StrExpr1 is a null string, then the directory path is set for all file types. A
directory path can be either of two forms. The first form begins with a drive letter, colon, and
backslash characters. The second form specifies a network directory. It begins with double-
backslash characters and a computer name (the UNC syntax).

Note that when specifying backslash characters in a string constant, it is necessary to double each
one since the first in each pair is interpreted as an escape character. Examples:
“c:\\users\\zygo\\temp” \\\\athena\\c_drive\\data

setdistsys( RealExpr)

Sets the Dist Sys value for a Simetra FTP instrument to RealExpr. This value is normally specified in
the system calibration file.

setdmimode( /ntExpr, RealExpr )

This function sets parameters which affect the operation of a Displacement Measuring Instrument
(DMI) that utilizes interferometry, such as a ZYGO ZMI. Returns no value.

The IntExpr parameter sets the frequency mode. The valid values are 1 and 2. The default value is
1. The RealExpr parameter specifies the index of refraction of air. The default value is 1.0002714.

setdmiscale( RealExpr)

Sets the DM scale factor for a Simetra FTP instrument to RealExpr. This value is normally specified
in the system calibration file.

setfidpat( FileNameExpr, IntExpr)

This function specifies a fiducial pattern which will control the subsequent operation of function
findfid when the mode set by function setfidthresh is 2. The FileNameExpr parameter specifies a
data file containing the centered fiducial pattern. The IntExpr parameter is reserved for future use;
the value must be zero (0). Returns no value.

4-41



METROSCRIPT REFERENCE

setfidsize( IntExpr1, IntExpr2, RealExpr1, RealExpr2, StrExpr)

This function sets fiducial size parameters that will control the subsequent operation of the
function findfid when the mode set by function setfidthresh is either zero (0) or one (1). Returns
no value.

The minimum and maximum number of valid data points in a fiducial is specified by IntExpr1 and
IntExpr2, respectively. These parameters may be set to zero (0) to cause findfid to disregard the
number of valid data points in candidate regions.

The maximum X and Y dimensions of a fiducial are specified by RealExpr1 and RealExpr2,
respectively, in the measurement unit specified by StrExpr. If null, the default unit is pixels. These
parameters may be set to zero to cause findfid to disregard the dimensions of candidate regions.

setfidthresh( IntExpr, RealExpr1, RealExpr2, StrExpr)

4-42

This function sets fiducial thresholding parameters which will control the subsequent operation of
the function findfid. Returns no value.

The IntExpr parameter specifies the mode of operation: 0, 1, or 2.

Mode 0 causes findfid to search for a region of dropouts. The remaining parameters to this
function are ignored. The parameters specified by function setfidsize are applied. The parameters
specified by function setfidpat are ignored.

Mode 1 causes findfid to search for a region of high values. The remaining parameters establish a
cutoff value; data points below the cutoff value are ignored. The RealExprl parameter specifies a
"sigma" value. The RealExpr2 parameter specifies a "cutoff" value in the unit specified by StrExpr.

If the sigma value is greater than zero (0), the cutoff passed parameter is ignored and a cutoff
value is calculated as follows:

cutoff = mean + (sigma ¢ rms)

where mean and rms are obtained from a best-fit piston surface to the data. Otherwise, the
cutoff passed parameter is used directly. To specify a cutoff value for intensity data, the unit
specification must be a null string. The parameters specified by function setfidsize are also
applied. The parameters specified by function setfidpat are ignored.

Mode 2 causes findfid to search for a region by using convolution with a pattern specified by
function setfidpat. The RealExprl parameter specifies the minimum number of valid data points as
a percentage of the number of points in the pattern. The remaining parameters to this function
and the parameters specified by function setfidsize are ignored.

Mode 3 causes findfid to search for a region of low values. The remaining parameters establish a
cutoff value; data points above the cutoff value are ignored. The RealExprl parameter specifies a
“sigma” value. The RealExpr2 parameter specifies a “cutoff” value in the unit specified by StrExpr.
If the sigma value is greater than zero, the cutoff passed parameter is ignored and a cutoff value is
calculated as follows:

cutoff = mean + (sigma e rms)
where mean and rms are obtained from a best-fit piston surface to the data. Otherwise, the cutoff
passed parameter is used directly. To specify a cutoff value for intensity data, the unit
specification must be a null string. The parameters specified by function setfidsize are also
applied. The parameters specified by function setfidpat are ignored.



METROSCRIPT REFERENCE

setgpizoom (RealExpr, IntExpr)
Sets a GPl encoded zoom lens to the position specified by RealExpr. Returns no value.
If IntExpr is zero, the position RealExpr value is in motor counts. An error is generated if the
position is out of range.
Otherwise, if IntExpr is non-zero, the position RealExpr value is a magnification. An error is
generated if magnification calibration data does not exist, or if the corresponding motor position is
out of range.

(This command applies to GPI or MST instruments with an encoded zoom lens.)

setlight( RealExpr)

setlight( RealExpr, IntExpr1 )

setlight( RealExpr, IntExpr1, IntExpr2 )
These functions set the instrument light level for viewing and/or measuring. MetroPro provides
two settings for the light level control (LLC Options) in the calibration file located in
c:\metropro\cfg\***.1. A value of 0 indicates that the light levels for viewing and measuring are
different, and they can be set separately. A value of 1 indicates that the light levels for viewing
and measuring are the same. Returns no value.

Oor 0to 100 Ignored Sets the light level for viewing to

missing percent RealExpr.

1 0to 100 Ignored Sets the light level for viewing and
percent measuring to RealExpr.

2 Ignored Ignored Automatically adjusts the light level for

viewing to the highest level with no
saturated pixels. This is the same as
pressing F5 if the LLC Option in the
calibration file is 0.

3 Ignored Ignored Automatically adjusts the light level for
measuring to the highest level with no
saturated pixels. This is the same as
pressing Ctrl F5 if the LLC Option in the
calibration file is 1.

4 Ignored Oto 20step If acquisition mode is set to scan, a scan
amount is run as if performing a measurement

and checks the frame for saturation. If
there are saturated pixels, the light level
is reduced by IntExpr2, and the process
is repeated until there are not saturated
pixels. If IntExpr2 is missing, a default
value of 3 is used. If the acquisition
mode is not set to scan, the light level is
set using IntExprl = 3. This is the same
as pressing Shift F5.

4-43



METROSCRIPT REFERENCE

setmcafzero
Instructs the motion controller to save the current position as the auto focus zero position. This
command must be called for the motion controller’s auto focus feature to be enabled.

setnum( IntExpr, RealExpr, StrExpr )
Sets the value of the MetroPro control referenced by ID IntExpr to RealExpr in the unit specified by
StrExpr. This function may be used to set the value of numeric, selection, and Boolean type items.
Use setstr to set the value of string type items and limits. Returns no value.

The operation depends on the item type as follows:

Numeric The value is set to RealExpr in the unit specified
by StrExpr. Certain numeric controls can be
disabled by setting them to blank. To disable a
numeric control, use maxreal as the RealExpr.

Selection Uses the integer part of RealExpr as a selection
index (1..N). StrExpr is ignored.
Boolean Sets "Yes" if the value of RealExpr is non-zero,

otherwise "No". StrExpr is ignored.

setpatorg
Sets the pattern origin to the current stage position. Equivalent to clicking on the Pattern Editor
Set Origin button. Returns no value.

setpatpos( RealVar1, RealVar2, IntExpr, StrExpr )
This function sets positions in a Free Rect type stage control pattern. Varl is a one-dimensional
real array containing X coordinates. Var2 is a one-dimensional real array containing Y coordinates.
IntExpr specifies the number of positions. StrExpr specifies the unit. Returns no value.

setpatposstat( IntExpr1, IntExpr2, StrExpr)

This function sets the row and column position status for the current pattern. IntExprl specifies
the row index. IntExpr2 specifies the column index. StrExpr specifies the status to set the pattern
position to. (Refer to “Example 10” in the Example Scripts section for a sample script using this
function.)

setpatval( StrExpr1, Expr, StrExpr2 )
This function sets a value in the current stage control pattern. (This is the pattern viewable in the
Pattern Editor.) StrExprl specifies the value name. (See the table of pattern values following the
getsubpatval command.). Expr specifies the value to be assigned. StrExpr2 specifies the unit, if
relevant. Returns no value.

4-44



METROSCRIPT REFERENCE

setrsmode( IntExpr1)
setrsmode( IntExpr1, IntExpr2 )

These functions set the ring/spot mode for the GPI and similar instruments. If IntExpr1 is O, the
instrument is set to Ring mode. If IntExprl is 1, the instrument is set to Spot mode. In the second
form, IntExpr2 is a wait-for-stop flag. If IntExpr2 is zero (0), the function returns without waiting
for the mode change to complete. These functions return no value.

setscancal( RealExpr)

Sets the scan calibration factor to RealExpr. This value is normally specified in the system
calibration file.

setstr( IntExpr, StrExpr)

Sets the value of the MetroPro control or limits referenced by ID IntExpr to StrExpr. This function
may be used to set the value of numeric, string, selection, and Boolean type items. The value of
numeric type items may also be set using setnum. StrExpr is used the same way as the values in a
MetroPro settings file. Extra blanks and the case of letters are not significant. Units specifications
may be abbreviated. Returns no value.

The operation depends on the item type as shown in the following table.

Numeric The value is set by parsing StrExpr which should look like one of
these: "1.23 um" or "1.23". A units specification is required if the
item has an internal unit. Reasonable unit conversion is performed.

String The value is set to StrExpr.
Selection The selection is set to match StrExpr.
Boolean The value is set using StrExpr which must be one of: "On", "Off",

"Yes", "No", "True", or "False".

Limits The limits are set by parsing StrExpr which should look like one of
these: "[ 1.23,4.56] um", "[ *,*] um", "1.23,4.56 um", "1.23 4.56
um", or "1.23 4.56".
The order of the numbers is low then high limit. The brackets and
comma are optional. An asterisk in place of a number disables that
limit. A units specification is required if the associated control
provides the Units menu selection. Reasonable unit conversion is
performed.

setsubpatval( StrExpr1, Expr, StrExpr2 )

This function sets a value in the hidden subpattern holding area. StrExprl specifies the value
name. (See the table of pattern values following the getsubpatval command). Expr specifies the
value to be assigned. StrExpr2 specifies the unit, if relevant. Returns no value. (Refer to Appendix
D for additional information on subpatterns.)

sgn( RealExpr)
Returns -1, 0, or +1 depending on whether RealExpr is less than, equal to, or greater than zero.

4-45



METROSCRIPT REFERENCE

sherlockemd( StrExpr )

The string parameter is passed to the Surveyor/Sherlock software and is executed as a lightsout
command. This command returns the string results of the Surveyor/Sherlock software command.
(Refer to the Sherlock User’s Reference manual for a complete list of lightsout commands.) If the
string parameter is “shutdown,” it causes Surveyor/Sherlock to shutdown.

showcalmarkers
This command causes the mask editor to switch to the calibration markers mode.

This function is available in all MST applications.

showfids
Opens the mask editor and displays the fiducials.

showmasks
Displays the mask editor.

sin( RealExpr)
Returns the sine of the RealExpr parameter.

sinh( RealExpr)
Returns the hyperbolic sine of the RealExpr parameter.

sqr( RealExpr)
sqrt( RealExpr)
Both forms return the square root of the RealExpr parameter.

step

This command is only usable in the interactive mode. Refer to Appendix B, Interactive Mode, for
information on using this command.

stop [ Expr]
This statement halts program execution. The value of the optional Expr is returned to MetroPro.

Expr may be numeric or string type. The stop statement without Expr is equivalent to the end
statement.

storeprocstats

Causes MetroPro to store the current results into the process stats. This is equivalent to clicking on
the Store button in a Process Stats window. Returns no value.

strerror$( IntExpr )

Returns a string describing the system error specified by IntExpr. This can be used to interpret a
value returned by the execute function.

4-46



METROSCRIPT REFERENCE

strrepl$( StrExpr1, StrExpr2, StrExpr3)

This function performs a string replacement operation. It looks for the first occurrence of StrExpr2
in StrExpr1 and replaces it with StrExpr3. It returns the result. An error is generated if StrExpr2 is
not found in StrExprl1.

subtractdata( StrExpr)

Causes MetroPro to subtract from the current data the data file specified by the StrExpr
parameter. Equivalent to clicking on the MetroPro Subtract Data button. Returns no value.

tan( RealExpr)
Returns the tangent of the RealExpr parameter.

tanh( RealExpr)
Returns the hyperbolic tangent of the RealExpr parameter.

then
Refer to the if command.

time$( IntExpr )

Returns a string containing the time corresponding to IntExpr number of seconds. The format is
HH:MM:SS. If IntExpr is greater than the number of seconds in one year, the result will include the
usual correction for time zones and daylight saving.

timedate

Returns the time in seconds since January 1, 1970. This may be used to time events or may be
converted to time and date strings using the time$() and date$() functions.

tobackwin( IntExpr )

This function pushes an open window back within an application. This means that the window will
be displayed behind any other intersecting windows. The IntExpr parameter specifies the ID of the
window obtained via getwinid. An error is generated if the window is not open. Returns no value.

tofrontwin( IntExpr )

This function brings to the front an open window within an application. This means that the
window will be displayed on top of any other intersecting windows. The IntExpr parameter
specifies the ID of the window, obtained via getwinid. An error is generated if the window is not
open. Returns no value.

translatedata( StrExpr )

Translates the current data set in the camera coordinate system. The delta coordinate pair is
specified as a string containing two numbers separated by blank, comma, or tab characters.

4-47



METROSCRIPT REFERENCE

trim$( StrExpr )
Returns a copy of StrExpr without leading or trailing spaces.

trimdata( RealExpr )

Causes MetroPro to trim the current data by the number of pixels specified by the RealExpr
parameter . Returns no value.

unclampstage( IntExpr )

Causes the motion controller to unclamp a single stage or all stages as indicated by IntExpr. The
stage must have clamping enabled in the motor configuration file for this command to have any
effect. For unclamping a single stage, IntExpr has a valid range of zero (0) to 7. To unclamp all
stages, set IntExpr to -1.

unlockgpizoom
Unlocks the position of a GPl encoded zoom lens so that it can be changed.

(This command applies to GPI or MST instruments with an encoded zoom lens.)

upc$( StrExpr )
Returns a copy of StrExpr with all lower case letters converted to upper case.

val( StrExpr )

Returns the numeric value of the leading part of StrExpr. Returns zero (0) if the leading part of
StrExpr is non-numeric.

val$( IntExpr)
val$( RealExpr)

This function returns the string obtained by formatting the value of IntExpr or RealExpr using the
format determined by function ofmti or ofmtr, respectively.

viewpatstatus( Real Expr)

Opens the MetroPro Pattern Position Status window and allows user interaction. Completes when
the user closes the window, or presses the ESC key. Pressing the ESC key produces the "Processing
aborted" error. Equivalent to clicking on the MetroPro View Pos button.

If RealExpr is al or larger, then the script will wait for the status window to close.
If RealExpr is zero (0), then the script will not wait for the window to close.

vpscmd( StrExpr)
Issues a VisionPro Server command. The string parameter is passed to the VisionPro Server and is
executed. Results of the command are returned as a string. The following commands are used
with this function. All parameters are case sensitive.

¢ RT [ToolName]

4-48



METROSCRIPT REFERENCE

Runs the tool with the specified name. If a name is not specified, the entire tool group is run.
Tool names cannot contain any whitespace.

¢ LT ToolGroupName

Loads the tool group specified by ToolGroupName.
¢ Sl InputPath Value

Sets the tool group input specified by InputPath to the value specified by Value.
¢ QO OutputPath

Queries the tool group output specified by Output Path.

vpsconnect
Connects to the VisionPro Server application. It starts the application if it isn’t already running.

vpsdisconnect
Disconnects from the VisionPro Server application.

wait RealExpr
This statement suspends program execution for RealExpr seconds.

waitrp
Waits for movement of the programmable stage Roll and Pitch axes to complete. Returns no
value. This function is normally called after calling the movet function with the wait-for-stop flag
set to zero (0).

waitt
Waits for movement of the programmable stage Theta axis to complete. Returns no value. This
function is normally called after calling the movet function with the wait-for-stop flag set to zero
(0).

waitxy
Waits for movement of the programmable stage X and Y axes to complete. Returns no value. This
function is normally called after calling the movexy function with the wait-for-stop flag set to zero
(0).

waitxyz
Waits for movement of the programmable stage X, Y, and Z axes to complete. Returns no value.
This function is normally called after calling the movexyz function with the wait-for-stop flag set to
zero (0).

waitz

Waits for movement of the programmable stage Z axis to complete. Returns no value. This
function is normally called after calling the movez function with the wait-for-stop flag set to zero

(0).

4-49



METROSCRIPT REFERENCE

wandoff
Disables the CAN wand buttons.

wandon
Enables the CAN wand buttons.

writecalfile( FileNameExpr )
Writes the system calibration file for the instrument to FileNameExpr. If FileNameExpr is a null
string, this function overwrites the startup system calibration file that normally resides in directory
c:\metropro\cfg. Returns no value.

zerogage
Performs a zero gage operation for the Simetra FTP instrument. Equivalent to clicking on the zero
gage button in an FTP application. Returns no value.

4-50



Appendix A
Functional Cross-Reference

Many MetroScript commands are used specifically for control of instruments or for manipulating data
acquired with an instrument. These commands are associated with MetroPro functions. Other
commands within MetroScript reflect programming functions traditionally found in most programming
languages. Therefore, this reference section is divided into two categories: MetroScript Language
Commands and MetroPro Related Commands. Within each of these two categories, commands are
grouped according to similar functionality.

Generic Language Commands

Math Program Control
abs( RealExpr) dim Dimltem [ , Dimltem ] ...
acs( RealExpr) for RealVar = RealExprl to
asn( RealExpr) RealExpr2 [ step RealExpr3 ]
atn( RealExpr) end
atn( RealExpr ) execute( StrExpr )
atn2( RealExprli, RealExpr?2 ) exitmp( IntExpr)
cos( RealExpr) gosub Lineld
cosh( RealExpr ) goto Lineld
deg if LogicExpr then Stmtl
exp( RealExpr) [ else Stmt2 ]
int( RealExpr) if LogicExpr then
lgt( RealExpr) [ else ]
log( RealExpr ) endif
log2( RealExpr) next RealVar
max( RealExpr, RealExpr) on IntExpr gosub Lineld
maxreal [, Lineld | ...
min( RealExpr, RealExpr ) on IntExpr goto Lineld
rad [, Lineld | ...
randomize [ RealExpr | pause
rnd rem Remark
sgn( RealExpr) return
sin( RealExpr) runscript( IntExpr, FileNameExpr )
sinh( RealExpr ) stop [ Expr |
sqr( RealExpr) wait RealExpr
sqrt( RealExpr)
tan( RealExpr)
tanh( RealExpr)



FUNCTIONAL CROSS-REFERENCE

Generic Language Commands, continued-

File and Serial Port Input/Output  String Manipulation

assign @FileVar to FileNameExpr
[ StrConst |

disable abort @FileVar

enable abort @FileVar

enter @FileVar ; Var [, Var ] ..

enterline @FileVar,; StrVar

output @FileVar ; Expr ...

logfile is FileNameExpr

print Expr [, Expr | ...

print Expr [; Expr | ... ;

printer is FileNameExpr

printwin( IntExprl, IntExpr2, IntExpr3,
IntExpr4, IntExpr5, IntExpr6, IntExpr7,
FileNameExpr )

Error Handling

errl( Lineld )

errln

errm$

errn

error return

on error gosub Lineld
on error goto Lineld
off error

Program Data

data Const [ , Const] ...
read Var [, Var | ...
restore

chr$( RealExpr )

date$( RealExpr )

len( StrExpr)

lwe$( StrExpr)

num( StrExpr )

numtok( StrExprli, StrExpr2 )
ofmti( StrExpr )

ofmtr( StrExpr )

pos( StrExprl, StrExpr2 )
postok( StrExprli, StrExpr2, IntExpr )
strerror$( IntExpr )

strrepl$( StrExprli, StrExpr2, StrExpr3 )
StrVar [ StartIndex, EndIndex ]
StrVar [StartIndex; Length ]
StrVar [StartIndex ]

time$( IntExpr )

timedate

trim$( StrExpr )

upc$( StrExpr)

val$( RealExpr)

val( StrExpr)

Debugging Commands
(Interactive Mode)

break

continue

del

edit

exit

input StrConst, Var [, Var | ..
iput Var [, Var |
load

loadsub FileNameConst
print Expr [, Expr | ..
printer is FileNameExpr
renum

run

save

scratch

step

MetroPro Related Commands

A-2



METROSCRIPT REFERENCE

Interaction with MetroPro Objects Motion/Stage Control

clickon( IntExpr )

closeapp( IntExpr )

closewin( IntExpr)

getannotid( IntExpr, StrExpr )

getappid( StrExpr)

getid( StrExpr)

getnum( IntExpr, StrExpr)

getstr$( StrExpr )

getval$( IntExpr )

getval( IntExpr, StrExpr )

getmaskid( RealExprl, RealExpr?2,
StrExpr )

getwinid( StrExpr )

loadapp( StrExpr )

openapp( StrExpr)

openwin( IntExpr )

resaveapp( IntExpr )

setnum( IntExpr, RealExpr, StrExpr)

setstr( IntExpr, StrExpr)

sherlockemd( StrExpr )

tobackwin( IntExpr )

tofrontwin( IntExpr )

MetroPro Related Commands, continued-

Displacement Measuring
Instrument

getdmipos( StrExpr )

autofocus
autofocustilt
autotilt
english
getppos
getrpos
gettpos
getxpos
getypos
getzpos
homeaxis( StrExpr )
homeaxis( IntExpr )
homestage
isaxisactive( StrExpr )
isaxisactive( IntExpr )
joyoff
joyon
logreports
metric
moveaxis( StrExpr, IntExprl, RealExpr,
IntExpr2)
moveaxis(IntExprl, IntExpr2, RealExpr,
IntExpr3 )
moverp( RealExpri, RealExpr?2
( RealExprl, RealExpr2, IntExpr )
movet( RealExpr )
movet( RealExpr, IntExpr )
movexy( RealExprl, RealExpr?2)
( RealExprl, RealExpr2, IntExpr)
movez( RealExpr)
( RealExpr, IntExpr)
resetme
waitt
waitxy
waitrp
waitz

Directories and Operating
Systems

getbindir$



FUNCTIONAL CROSS-REFERENCE

getdmiscale

getdmitype$

readdmi( StrExpr)

resetdmi

setdmimode( IntExpr, Real Expr)
setdmiscale( RealExpr )

Reports
logreports

Settings Files

loadpartconfig( FileNameExpr )
loadsettings(FileNameExpr )
savesettings( FileNameExpr )

Fiducials

delfid( IntExpr )
findfid( IntExpr, RealExprl, RealExpr2,
RealExpr3, RealExprd4, StrExpr)
getfidetrx( IntExpr, StrExpr )
getfidctry( IntExpr, StrExpr )
getfidorgx( IntExpr, StrExpr )
getfidorgy( IntExpr, StrExpr )
getfidsizx( IntExpr, StrExpr )
getfidsizy( IntExpr, StrExpr)
setfidpat( FileNameExpr, IntExpr)
setfidsize( IntExprl, IntExpr2,
RealExprl, RealExpr2, StrExpr )

makefid( RealExprl, RealExpr2, StrExpr,

IntExprl, IntExpr2)
setfidthresh( IntExpr, RealExprl,
RealExpr2, StrExpr )
showfids

MetroPro Related Commands, continued-

Instrument

acquire
analyze
autofocus

getdir$( StrExpr )
getdiskfree( StrExpr )
getosname$

getramsize

getwrkdir$

setdir( StrExpri, StrExpr2)

Loading/Saving Data

loadbitmap( IntExpr, StrExpr )

saveautolatcalinfo( FileNameExpr )

savetobmp( IntExpr, FileNameExpr,
datatype, [top%], [bottom %])

Process Data

clearprocstats
saveprocstats( StrExpr, IntExpr)
storeprocstats

Masks

adjustmask( IntExpr, RealExprl,
RealExpr2, StrExpr)
editmasks( IntExpr )
getmaskcetrx( IntExpr, StrExpr )
getmasketry( IntExpr, StrExpr )
getmaskid( RealExprl, RealExpr2,
StrExpr)
getmasksizx( IntExpr, StrEXpr )
getmasksizy( IntExpr, StrExpr)
loadmasks( FileNameExpr )
maskdata
movemask( IntExpr, RealExprl,
RealExpr2, StrExpr)
resetmasks
resizemask( IntExpr, RealExpr)
savemasks( FileNameExpr )
showmasks

Stage Control Patterns

contpattern
editpatpos
editpattern



autofocustilt

autolatcal( IntExpr, RealExpr, StrExpr)
autotilt

gensyschar( FileNameExpr)
gensyschar( FileNameExpr,

SwliFileNameExpr )
getavmode
getlight
getrsmode
getscancal
getsyserrfn$
getturpos
getzoom
homezoom
llcdialog
measure
movetur( IntExpr )
movezoom( RealExpr )
reset
setavmode( IntExpr 1)

(IntExprl, IntExpr2 )
setcalinfo
setcamaio ( RealExprl, RealExpr2)
setcamres( RealExpr, StrExpr )
setdistsys( Real Expr )
setlight( RealExpr)
setrsmode( IntExprl )

( IntExprl, IntExpr2 )
setscancal( RealExpr )
writecalfile( FileNameExpr )
zerogage

MetroPro Related Commands, continued--

Data Manipulation

adddata( StrExpr )
convinten
flipdatax

flipdatay

METROSCRIPT REFERENCE

getpatval( StrExpl, Var, StrExpr2)
getsubpatval( StrExpl, Var, StrExpr2)
gotopatorg

gotopatpos( IntExpr)

loadpatpos( FileNameExpr)
loadpatstatus ( FileNameExpr )
loadpattern( FileNameExpr )
loadsubpat( FileNameExpr )

runpattern

savepatpos( FileNameExpr )
savepatstatus( FileNameExpr )
savepattern( FileNameExpr )
savesubpat( FileNameExpr)
setpatposstat( IntExpr, IntExpr, StrExpr)
setpatorg

setpatpos( Varl, Var2, Exprl, Expr2)
setpatval( StrExprl, Expr, StrExpr2)
setsubpatval( StrExprl, Expr, StrExpr2)
viewpatstatus( RealExpr )

Camera and Data Attributes

getcamres( StrExpr )
getcamsiz( StrExpr )
getcamsizy( StrExpr )
getdatactrx( IntExpr, StrExpr )



FUNCTIONAL CROSS-REFERENCE

generate getdatactry( IntExpr, StrExpr )

gensyschar( FileNameExpr) getdataorgx( IntExpr, StrExpr)

gensyschar( FileNameExpr, getdataorgy( IntExpr, StrExpr )
SwliFileNameExpr) getdatasizx( IntExpr, StrExpr)

getzernikes getdatsizy( IntExpr, StrExpr )

invertdata

resetdata Turret Control

rotatedata( RealExpr )

savedata( FileNameExpr ) getturpos( IniExpr )

movetur( IntExpr )
scaledata( RealExpr )

subtractdata( StrExpr )
translatedata( StrExpr )

trimdata( RealExpr )
Messaging/Prompting Data Files
dialog( StrExpr, IntExpr ) autosavedata
message( StrExpr, IntExpr, RealExpr) loaddata( FileNameExpr )
promptentry( IntExpr ) loadswli( FileNameExpr )
promptstr$( StrExpr1, StrExpr2, savedata( IntExpr, FileNameExpr )
IntExpr) saveswli( FileNameExpr )



Appendix B
Interactive Mode

MetroScript interactive mode is used to test, debug, and edit script

files. Script files can be executed a line at a time, helping you to MetroScript
eliminate bugs and problems in your script file. This mode is especially ?:Tltéon
useful for long scripts. Edit..
Debug...
Entering the Interactive Mode Move
Name—
Select the MetroScript button's menu Debug command. A console Font—
window will pop up. gg{gg
Working in the Interactive Mode
When the Debug MetroScript Console =]
command is Welcome to MetroScript o
selected, the script | Type 'help' if you need it
file linked to the 'MyScript.scr', 9 lines loaded ||
Metro-Script MetroScript>
button is
automatically
loaded. Lines with
a leading tab are
assigned line
numbers at this
time.
~|

Make sure the console window does not cover the center of the screen if your script uses the
promptstrS$ or promptentry functions.

Enter commands at the MetroScript prompt. The most common commands are:

run Execute the script file; like clicking the MetroScript button.

step Enters the single-step mode for executing the script one line at a time.
Press [enter] to execute the next line.
Type ¢ Num to execute that number of lines.

list Displays on screen the number of lines specified.
List 10-20 displays lines 10 through 20.

Interactive Mode Command Listing

This section describes MetroScript commands that are used in the interactive mode. Most of the
commands described in this section are usable only at the MetroScript prompt; they are not

B-1



APPENDIX B

allowed within a MetroScript program. Any command can be abbreviated as long as it is
unambiguous. For example, "q" is an acceptable form for quit, "c" for continue, and "st" for
step.

Almost any MetroScript statement that could appear in a program can be used interactively.
That is, the statement can be entered at the MetroScript prompt without a line number or
leading Tab character to cause it to be executed immediately.

! [SysCmd ]

A command line beginning with an exclamation mark provides immediate access to operating
system commands (without opening another console window).

The optional SysCmd is anything that would be typed at a command (or 'shell') prompt.

Under WindowsNT, SysCmd is attempted to be executed first as an 'external' program. If that
fails, SysCmd is passed to the WindowsNT command interpreter.

After executing SysCmd, the MetroScript prompt is restored.

If no SysCmd is specified, a command interpreter is invoked that takes control of the console
window.

The command prompt is displayed and any operating system commands may be entered. Type
exit to return to the MetroScript prompt.

LineNum [ LineLabel | [ Stmt ] [ ! Comment ]
Enters a program line into the workspace with a fixed line number LineNum. If a
line with the same LineNum already exists in the workspace, it is deleted.

Tab [ Linelabel | [ Stmt ] [ ! Comment ]
Enters a program line into the workspace with automatic line numbering. The
line will be given a number 10 higher than the highest existing line number,
rounded off to a multiple of 10. Mixing fixed and automatically numbered lines
in the same program file is undesirable because lines may be unexpectedly
deleted or placed in a different order. When any program is saved using the save
command, line numbers are included.

break Lineld
Sets a breakpoint to cause the program to enter single-step mode when the line
corresponding to Lineld is about to be executed.

continue [ /ntConst ]
In single-step mode, the next IntConst statements are executed. If IntConst is
omitted, one statement is executed. Note that continue can be abbreviated "c".
In single-step mode, entering a blank line is equivalent to continue 1.

del LineNumRange
Deletes the specified lines from the workspace.

B-2



edit

exit

help

gosub

goto

THE INTERACTIVE MODE

This command runs an editor on the contents of the workspace (with line
numbers).

The editor program is NotePad. After the editor is exited, the result is loaded
back into the workspace. This is one way to perform non-trivial program editing.
See also the “Writing Script Files” section in Chapter 2.

This command exits Interactive Mode.

Outputs a list of the essential interactive mode commands.

The gosub and goto statements (described in Chapter 4) are normally used
within programs. They are also useful as interactive commands. They can be
used to initiate execution of statements without resetting program variables (in
contrast to the run command). They are also useful in conjunction with the step
command.

list [ LineNumRange |

Outputs all or specified program lines to the display.

load [ FileNameConst ]

The workspace is cleared and the specified file is loaded into the workspace. If
the file contains embedded commands (lines without a line number or leading
Tab), they are executed as they are read and not placed in the workspace. The
workspace is assigned the name FileNameConst. If FileNameConst is omitted, the
workspace is cleared and the file last saved or loaded is loaded back into the
workspace.

loadsub FileNameConst

quit

The specified file is loaded into the workspace at the end of the existing
program. The line numbers of the new lines are adjusted to begin at the next
1000 line boundary. This command allows the “$” character within the file/path
name.

Exit MetroScript and return to MetroPro (same as exit).

B-3



APPENDIX B

renum [ LineNum1 ] [ in LineNumRange ]

Renumbers program lines. If LineNum1 is specified, the renumbered lines will
start with LineNum1 if specified otherwise 100. If in LineNumRange is specified,
only those lines are renumbered. Otherwise, all program lines are renumbered.
Corresponding line numbers referenced in goto, gosub, if, and on statements
are adjusted. But the renumbering process cannot adjust integer arguments to
the errl() function or integers compared to the returned value from the errin
function.

run
The workspace variables are cleared and the program in the workspace is run. If
the program was in single-step mode, run resumes execution from the stopping
point in normal run mode.

run loop N

Repeats the run command N times.

save [ FileNameConst ]

Saves the current program to the specified file. If the workspace had no name, it
becomes FileNameConst. If FileNameConst is omitted, the current workspace
name is used as a default. An exception is if the loaded file contained commands,
"I" shell escapes, or "#" comments, or if a loadsub was done; in these cases, the
default filename usage is prevented to avoid unintended results.

scratch

step

Clears the workspace program and variables.

Begin single-step mode. A goto or gosub command can be entered to change
the next statement to be executed. Single-step mode remains in effect until
program execution is halted by a stop or end statement, either in the program or
entered at the MetroScript prompt.

stop (or end)

B-4

The stop and end statements (described in Chapter 4) are normally used within

programs. In interactive mode, use stop or end to terminate the single-step
mode (see the step command).



Appendix C
Available Controls

Controls in the GPI Application

The following table is a list of control boxes found in the Control window in the basic GPI application.
They are listed to help you find a less-used or unused control that can be taken over when writing a
script file. Refer to Chapter 2 for more information on using input from Control boxes.

The Off Limits and Okay columns identify some of the instruments and/or conditions involved in using
the control. "All" means that it is either off limits (or okay) for all instruments. "All others" means that
other conditions are listed. The Units column identifies the units used with the control if you are looking
for a particular type of control box, such as Numeric, alpha, or on/off.

@ Note: MetroPro now includes a Custom Result option. It can be used to
output a measurement result that is customized for a specific measurement. A
Custom result may be Boolean (on/off), numeric, or text. Refer to the “Results”
section of the MetroPro Reference Guide, OMP-0347, for additional information.
The controls listed as Okay in this section can still be used as well.

C-1



APPENDIX C

Sub-menu/Control Off Limits Okay Units Comments
Interferometer
Instrument All
Camera Mode All
Image Zoom All
Intf Scale Factor All
Wavelength-In All
Acquisition
Acquisition Mode All
Intens Avgs All
AGC All others SWLI microscopes Y/N
AGC Mode All others SWLI microscopes List Not particularly useful
Light Level All
Light Level Pct All
LLC Delay All 0-10
Target Range All others SWLI microscopes Numeric  0-100
Max Sat Pts All others SWLI microscopes Numeric  >=0
Ignore Bright Pts All others SWLI microscopes Y/N
PZT Cal All others SWLI microscopes Y/N
PZT Gain All others SWLI microscopes and Numeric  0-4095
GPI in Intens Acquisition
Mode
PZT Scale Factor All others SWLI microscopes and Numeric  0.125-2.0
GPI in Intens Acquisition
Mode
Min Mod (%) All
Min Mod Pts All
Remove Fringes All
Phase Processing
Fringe Threshold GPI for fringe analysis All others Numeric 0-1
Fringe Limit GPI for fringe analysis All others Numeric  0-10
Fringe Spacing GPI for fringe analysis All others Numeric 0-1

Phase Processing
Trim
Trim Mode
Phase Avgs
Phase Avg Pause
Phase Res
Min Area Size
Max Area Size
Pre-Connect Filter
Connection Type
Connection Order
Discon Action
Discon Filter
Remove Tilt Bias
Remove
Data Sign

C-2

All
All
All
All
All
All
All
All
All
All
All
All
All
All
All



Controls in the GPI Application (continued)

Generate
Surface Type
Camera Size X
Camera Size Y
Camera Res
Generate/Zernike
Zernike Terms
Center X
CenterY
Radius
Coefs 0-15

Coefs 16-35
System Error
Subtract Sys Err
Sys Err File
Manipulate
Alignment

Alignment Tol
Alignment Scaling
Auto Sequence
Auto Seq Operation
Auto Save Data
Auto Save Data File
Auto Seq Max Count
Auto Seq Delay
Auto Seq Interval
Auto Tilt
Auto Tilt
Auto Tilt Mode
Auto Tilt Roll Offset
Auto Tilt Pitch Offset
Auto Tilt Roll Tol
Auto Tilt Pitch Tol
Auto Tilt Min Contrast
Auto Tilt Domain
Auto Tilt Max Adjust
Environmental
Temperature (C)
Pressure (Torr)
Relative Humidity (%)
Index of Air
Masks

All
If Subtract Sys Err On

If adding/subtracting
data sets

If using Fiducials
If using Fiducials

If using Auto Sequence
If using Auto Sequence
If Auto Save Data On

If using Auto Sequence
If using Auto Sequence
If using Auto Sequence

All

If Auto Tilt On
If Auto Tilt On
If Auto Tilt On
If Auto Tilt On
If Auto Tilt On
If Auto Tilt On
If Auto Tilt On
If Auto Tilt On

If using IRS
If using IRS
If using IRS

Except when generating
Except when generating
Except when generating
Except when generating

Except when generating
Except when generating
Except when generating
Except when generating
Except when generating

Except when generating

If Subtract Sys Err Off

All others

All others
All others

All others
All others
If Auto Save Data Off
All others
All others
All others

All others
All others
All others
All others
All others
All others
All others
All others

All others
All others
All others

AVAILABLE CONTROLS

List
Numeric
Numeric
lateral

List
Numeric
Numeric
Numeric
Height

Height

Alpha

Y/N

Numeric
List

List

Y/N
Alpha
Numeric
Numeric
Numeric

List

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

Numeric
Numeric
Numeric
Attribute

Limited usefulness
50-10500

50 - 10500

>=0

Limited usefulness

Scaled by Wavelength-
In and Wavelength-
Out, number will
change if either of
these values change.

Same as Coefs 0-15.

Limit of 14 characters

>=0
Limited usefulness

Limited usefulness

Limit of 14 characters
>0
>0
>0

Limited usefulness
-2 - 2 degrees

-2 - 2 degrees

0 - 2 degrees

0 -2 degrees
0-100

0.1- 2 degrees

0 - 4 degrees

-99-99
0-99999
0-100

Cannot be used

C-3



APPENDIX C

c-4

Show Masks All
Auto Load Masks All
Masks File If Auto Load Masks On If Auto Load Masks Off Alpha Limit of 14 characters
Controls in the GPI Application (continued)
Pattern
Auto Load Pattern All
Pattern File If Auto Load Pattern On  If Auto Load Pattern Off  Alpha Limit of 14 characters
Pattern Number If using pattern function  All others Numeric 0-99
Stitch
Type If using stitching All others List Limited usefulness
Display Measurements If using stitching All others Y/N
Auto Save Seq If using stitching All others Y/N
Seq File If using stitching All others Alpha Limit of 14 characters
Failure Action If using stitching All others List Limited usefulness
Auto Focus If using stitching All others Y/N
Store Process Stats If using stitching All others Y/N
Scanning Seq If using stitching All others List Limited usefulness
Stitch Processed Data If using stitching All others Y/N
Average Overlap If using stitching All others Y/N
Regions
Diagnostics Y/N
Auto Load Masks If using stitching All others Y/N
Masks File If using stitching All others Alpha Limit of 14 characters
N Cols If using stitching All others Numeric  1-50
N Rows If using stitching All others Numeric  1-50
Overlap (%) If using stitching All others Numeric  10-90
Size X If using stitching All others Linear >=0
Size Y If using stitching All others Linear >=0
Zip Stitch
Zip Distance If using stitching All others Linear >=0
Auto Load Masks If using stitching All others Y/N
Masks File If using stitching All others Alpha Limit of 14 characters
Store Prrocess Stats If using stitching All others Y/N
Lower Overlap (%) If using stitching All others Numeric ~ 10-90
Zip Stitch
Lower Size X If using stitching All others Linear >=0
Lower Size Y If using stitching All others Linear >=0
Use Lower Seq File If using stitching All others Y/N
Lower Seq File If using stitching All others Alpha Limit of 14 characters
Upper Overlap (%) If using stitching All others Numeric  10-90
Upper Size X If using stitching All others Linear >=0
Upper Size Y If using stitching All others Linear >=0
Use Upper Seq File If using stitching All others Y/N
Upper Seq File If using stitching All others Alpha Limit of 14 characters
Upper Offset X If using stitching All others Linear
Upper Offset Y If using stitching All others Linear
Script
Auto Run Script All



AVAILABLE CONTROLS

Script File If Auto Run Script On If Auto Run Script Off Alpha Limit of 14 characters

Controls in the GPI Application (continued)
Miscellaneous

f-number If using PSF or MTF All others Numeric >=0
Exit Pupil Diam If using PSF or MTF All others Linear >=0
Refractive Index If using Angles or PHOM  All others Numeric >=0
application
Part Thickness If using PHOM app All others Linear >=0
Step Trim If using Step Height app  All others Linear >=
Lot Num All Alpha
Part Num All Alpha
Part Ser Num All Alpha
Measurement Id All Numeric  >=0
Comment All Alpha
SC Pattern List If using Pattern function  All others Alpha
CODE V Type If exporting data to All others List Limited usefulness
Code V
Limits Error All Y/N
Master Units
Lateral Units All
Linear Units All
Height Units All
Angle Units All
Slope Units All
Volume Units All
Wavelength-Out All
Mouse
Mouse Threshold All
Mouse Acceleration All

Controls in the Microscope Application

The following table is a list of control boxes found in the Control window in the basic Microscope
application. They are listed to help you find a less-used or unused control that can be taken over when
writing a script file. Refer to Chapter 2 for more information on using input from Control boxes.

The Off Limits and Okay columns identify some of the instruments and/or conditions involved in using
the control. "All" means that it is either off limits (or okay) for all instruments. "All others" means that
other conditions are listed. The Units column identifies the units used with the control if you are looking
for a particular type of control box, such as Numeric, alpha, or on/off.

Sub-menu/Control Off Limits Okay Units Comments
Interferometer

Instrument All

Camera Mode All

Image Zoom All

Intf Scale Factor All

C-5



APPENDIX C

Wavelength-In
Wavelength-In 1

Wavelength-In 2

Wavelength-In 3

Wavelength-In 4

Acquisition
Acquisition Mode
Scan Type
Scan Length
Extended Scan Length

Wavelength Select
Two Wavelength

Wavelength Fold

Intens Avgs
AGC
AGC Mode

Light Level

Light Level Pct
LLC Delay
Target Range
Max Sat Pts
Ignore Bright Pts
PZT Cal

PZT Gain

PZT Scale Factor

Min Mod (%)
Min Mod Pts
Remove Fringes
Phase Processing
Fringe Threshold
Fringe Limit
Fringe Spacing

C-6

All

2 wavelength
microscopes

2 wavelength
microscopes

2 wavelength
microscopes

2 wavelength
microscopes

All
All
SWLI microscopes

SWLI microscopes with
extended range

All

Two wavelength
microscopes

All others
All others

All

All

All others
All others
All others
All others
All others
All others

All others

All
All
All

GPI for fringe analysis
GPI for fringe analysis
GPI for fringe analysis

All others

All others

All others

All others

Not accessible
All others

All others

Two wavelength
microscopes

All
SWLI microscopes

"SWLI microscopes, not
particularly useful"

SWLI microscopes
SWLI microscopes
SWLI microscopes
SWLI microscopes
SWLI microscopes

SWLI microscopes and
GPI in Intens Acquisition
Mode

SWLI microscopes and
GPl in Intens Acquisition
Mode

All others
All others
All others

Linear

Linear

Linear

Linear

List
List
List
Linear

Alpha
Y/N

All
others

Y/N
List

Numeric
Numeric
Numeric
Numeric
Numeric
Y/N

Y/N

Numeric

Numeric

Numeric
Numeric
Numeric

0.1 - 100 microns

0.1 - 100 microns

0.1 - 100 microns

0.1 - 100 microns

75 - 5308 microns

Y/N

Numeric

0-10
0-100
>=0

0-4095

0.125-2.0



Controls in the Microscope Application (continued)

Trim
Trim Mode
Phase Avgs
Phase Avg Pause
Phase Res
FDA Res
Min Area Size
Max Area Size
Pre-Connect Filter
Connection Type
Connection Order
Discon Action
Discon Filter
Remove Tilt Bias
Remove
Data Sign
Phase Correction
Phase Correction
Test Region n
Test Region k
Test Region Offset
Ref Region n
Ref Region k
Ref Region Offset
Generate
Surface Type
Camera Size X
Camera Size Y
Camera Res
Generate/Zernike
Zernike Terms
Center X
CenterY
Radius
Coefs 0-15

Coefs 16-35

System Error
Subtract Sys Err
Sys Err File

All
All
All
All
All
SWLI microscopes
All
All
All
All
All
All
All
All
All
All

All

If Phase Correction On
If Phase Correction On
If Phase Correction On
If Phase Correction On
If Phase Correction On
If Phase Correction On

All others
All others
All others
All others

All
If Subtract Sys Err On

All others

If Phase Correction Off
If Phase Correction Off
If Phase Correction Off
If Phase Correction Off
If Phase Correction Off
If Phase Correction Off

Except when generating
Except when generating
Except when generating
Except when generating

Except when generating
Except when generating
Except when generating
Except when generating
Except when generating

Except when generating

If Subtract Sys Err Off

AVAILABLE CONTROLS

List

Numeric
Numeric
Height
Numeric
Numeric
Height

List
Numeric
Numeric
Lateral

List
Numeric
Numeric
Numeric
Height

Height

Alpha

Limited usefulness

0.1-10
-10-10

0.1-10
-10-10

Limited usefulness
50-10500
50-10500

>=0

Limited usefulness

Scaled by Wavelength-
In and Wavelength-
Out, number will
change if either of
these values change

Same as Coefs 0-15

Limit of 14 characters

C-7



APPENDIX C

Controls in the Microscope Application (continued)
Auto Sequence

C-8

Alignment If Adding/Subtracting All others Y/N
data sets
Alignment Tol If using Alignment All others Numeric >=0
Fiducials
Alignment Scaling If using Alignment All others List Limited usefulness
Fiducials
Auto Seq Operation If using Auto Sequence All others List Limited usefulness
Auto Save Data If using Auto Sequence All others Y/N
Auto Save Data File If Auto Save Data On If Auto Save Data Off Alpha Limit of 14 characters
Auto Seq Max Count If using Auto Sequence All others Numeric >0
Auto Seq Delay If using Auto Sequence All others Numeric >0
Auto Seq Interval If using Auto Sequence All others Numeric >0
Auto Focus
Focus All
Focus Mode If Focus On All others List Limited usefulness
Focus Drop If Focus On and using All others Linear 0 - 25.4 microns
Phase Acquisition Mode
Focus Light Level Offset  If Focus On All others Numeric -50-50
Pct
Focus Min Mod (%) If Focus On All others Numeric  1-100
Focus Min Contrast If Focus On and using All others Numeric  0-100
Phase Acquisition Mode
Focus Depth If Focus On and using All others Linear 1.27 - 508 microns
Phase Acquisition Mode
Focus Max Adjust If Focus On All others Linear 0-2.54 mm
Focus Retry Max Adjust  If Focus On All others Linear 0-2.54 mm
Focus Offset If Focus On All others Linear -2.54-2.54 mm
Focus/Tilt X Offset If Focus On All others Linear -25.4 -25.4 mm
Focus/Tilt Y Offset If Focus On All others Linear -25.4 -25.4 mm
Focus/Tilt Delay If Focus On All others Numeric 0-5
Auto Tilt
Auto Tilt All
Auto Tilt Mode If Auto Tilt On All others List Limited usefulness
Auto Tilt Roll Offset If Auto Tilt On All others Slope -2 - 2 degrees
Auto Tilt Pitch Offset If Auto Tilt On All others Slope -2 - 2 degrees
Auto Tilt Roll Tol If Auto Tilt On All others Slope 0 - 2 degrees
Auto Tilt Pitch Tol If Auto Tilt On All others Slope 0- 2 degrees
Auto Tilt Min Contrast If Auto Tilt On All others Numeric  0-100
Auto Tilt Domain If Auto Tilt On All others Slope 0.1- 2 degrees
Auto Tilt Max Adjust If Auto Tilt On All others Slope 0 - 4 degrees
Environmental
Temperature (C) If using IRS All others Numeric -99-99
Pressure (Torr) If using IRS All others Numeric  0-99999
Relative Humidity (%) If using IRS All others Numeric  0-100
Index of Air Attribute Cannot



AVAILABLE CONTROLS

be used

C-9



APPENDIX C

Controls in the Microscope Application (continued)

Masks
Show Masks
Auto Load Masks
Masks File
Pattern
Auto Load Pattern
Pattern File
Pattern Number
Stitch
Type

Display Measurements

Auto Save Seq

Seq File

Failure Action
Auto Focus

Store Process Stats
Scanning Seq

Stitch Processed Data

Average Overlap
Regions
Diagnostics
Auto Load Masks
Masks File
N Cols
N Rows
Overlap (%)
Size X
Size Y

Zip Stitch
Zip Distance
Auto Load Masks
Masks File
Store Process Stats
Lower Overlap (%)
Lower Size X
Lower Size Y
Use Lower Seq File
Lower Seq File
Upper Overlap (%)
Upper Size X
Upper Size Y
Use Upper Seq File
Upper Seq File
Upper Offset X
Upper Offset Y

Script
Auto Run Script

C-10

All
All
If Auto Load Masks On

All
If Auto Load Pattern On

If using pattern function

If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching

If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching

If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching
If using stitching

All

If Auto Load Masks Off

If Auto Load Pattern Off

All others

All others
All others
All others
All others
All others
All others
All others
All others
All others
All others

All others
All others
All others
All others
All others
All others
All others
All others

All others
All others
All others
All others
All others
All others
All others
All others
All others
All others
All others
All others
All others
All others
All others
All others

Alpha

Alpha
Numeric

List
Y/N
Y/N
Alpha
List
Y/N
Y/N
List
Y/N
Y/N

Y/N

Y/N
Alpha
Numeric
Numeric
Numeric
Linear
Linear

Linear
Y/N
Alpha
Y/N
Numeric
Linear
Linear
Y/N
Alpha
Numeric
Linear
Linear
Y/N
Alpha
Linear
Linear

Limit of 14 characters

Limit of 14 characters
0-99

Limited usefulness

Limit of 14 characters
Limited usefulness

Limited usefulness

Limit of 14 characters
1-50

1-50

10-90

>=0

>=0

>=0

Limit of 14 characters
10-90

>=0

>=0

Limit of 14 characters
10-90

>=0

>=0

Limit of 14 characters



AVAILABLE CONTROLS

Script File If Auto Run Script On If Auto Run Script Off Alpha Limit of 14 characters

C-11



APPENDIX C

Controls in the Microscope Application (continued)

Miscellaneous
f-number
Exit Pupil Diam
Refractive Index

Part Thickness

Step Trim

Lot Num

Part Num

Part Ser Num
Measurement Id
Comment

SC Pattern List
CODE V Type

Limits Error
Master Units
Lateral Units
Linear Units
Height Units
Angle Units
Slope Units
Volume Units
Wavelength-Out
Mouse
Mouse Threshold
Mouse Acceleration

C-12

If using PSF or MTF
If using PSF or MTF

If using Angles or PHOM
applications

If using PHOM
applications

If using Step Height
application

If using Pattern function

If exporting data to
Code V

All

All
All
All
All
All
All
All

All
All

All others
All others
All others

All others

All others

All
All
All
All
All
All others
All others

Numeric
Linear
Numeric

Linear

Linear

Alpha
Alpha
Alpha
Numeric
Alpha
Alpha
List

Y/N

>=0

Limited usefulness



Appendix D

Programmable Stage Pattern
Functions

Patterns are used to control programmable stage hardware and to automate multiple measurements. In
addition to the MetroPro operations used with programmable stages, there are many MetroScript
functions and statements that can be used to manipulate patterns. They are listed below, and described
in Chapter 4 of this manual.

Function or Statement

contpattern runpattern

editpatpos savepatpos( FileNameExpr )

editpattern savepatstatus( FileNameExpr )
getpatval( StrExp1, Var, StrExpr2) savepattern( FileNameExpr)
egetsubpatval( StrExp1, Var, StrExpr2 ) esavesubpat( FileNameExpr)
gotopatorg setpatorg

gotopatpos( IntExpr ) setpatpos( Varl, Var2, Exprl, Expr2)
loadpatpos( FileNameExpr ) setpatposstat( IntExprl, IntExpr2, StrExpr )
loadpatstatus( FileNameExpr ) setpatval( StrExpr1, Expr, StrExpr2)
loadpattern( FileNameExpr ) esetsubpatval( StrExprl, Expr, StrExpr2 )
eloadsubpat( FileNameExpr ) viewpatstatus

(» Indicates functions and/or statements that are associated with subpatterns.)

Subpatterns

Some of the important MetroScript functions and statements listed above are associated with a “sub”
pattern. This is a subordinate pattern that is intended to be invoked at each position within a top-level
pattern. Note that scripting is required to use the subpattern facilities; it is not possible to use the
facilities via the MetroPro graphical user interface.

Within MetroScript, effectively hidden from view is a subpattern “holding area.” There are statements
for loading a pattern into the subpattern holding area and for accessing the subpattern values.

A typical use of the subpattern function is as follows. A subpattern is prepared using the Pattern Editor
and saved to a file. Then a top-level pattern is prepared with the operation control set to Run Script.
The Script Filename control specifies a custom script written by the user or an applications engineer.
When the top-level pattern is run, the stage is moved to each top-level pattern position, and the script is
invoked to perform the subpattern. The script must load the subpattern, move to each subpattern
position and perform each measurement using functions such as movexy, acquire, analyze,
storeprocstats, etc.

D-1



INDEX

A

Absolute Path Name, 2-6
Accepting Parameters at Run Time, 2-22
Accessing MetroPro Objects, 2-15
Acquire Function, 2-15
Ampersand Character (&), 2-8
Analyze Function, 2-15

And (conjunction), 2-8
Annotations, 2-20

Arrays, 2-7

Assignments, 2-7

At sign (@), 2-27

B

Backslash character (\), 2-5
Backspace, 2-5

Branching Functions, 2-12

C
Carriage Return (\r), 2-5
Commands, 2,2, 2-24
Comments, 2-3
COM Ports, 2-27
Concurrent Motion, 2-30
Const see also, IntConst, RealConst, HexConst,
StrConst
Constants, 2-5
Control Boxes, hints for, 2-23
input from, 2-23
used in GPI Application, C-1
used in Microscope Application, C-5
Controlling the Mask Editor, 2-26

D

Data Manipulation Commands, A-3
Data Types and Variables, 2-6
Debugging Commands, A-5

Debug Mode, see Interactive Mode
Decision Making Functions, 2-11
Default Directory, 2-13

Dialog Box, 2-20

Disable the Joystick, 2-30

DIV, 2-8

Division Operator, 2-8

Dollar Sign Character (S), 2-7
Double Quotation Marks, 2-5

E

Error Handling

Commands, A-2

for Motion Control, 2-30
Escape Sequences, 2-5
Example Scripts, 3-1
Exponentiation, 2-8
Expressions, 2-9
Exprs, 2-2

F

Fiducial Location Commands, A-3
File/Serial/IO Commands, A-2

File Var, 2-1, 2-7

Finding Controls to Take Over, 2-22
Finding Object Path Names, 2-16
Flow Control, 2-11

Formatting Output of Numbers, 2-26
Formfeed, 2-5

G

Getting Started, 1-2

Greater than (>), 2-8

Greater than or equal to (>=>)

H

Hex Const, 2-1
Horizontal Tab, 2-5

|
Identifiers, 2-3
Identifying Masks, 2-17
Ignore the Joysticks, 2-30
IntConst, 2-1, 2-5
Input and Output (Command Port), 2-28
Interacting with the Operator, 2-19
Interacting with MetroPro Files, 2-24
Interaction with MetroPro Objects, A-3
Interaction with System

and Data Parameters, A-4
Interferometer Control Commands, A-3
Integer Variables, 2-7
IntExpr, 2-2, 2-9

J

Joyon and Joyoff Commands, 2-32
Joystick Usage with Motion Controller, 2-30

K
Keywords, 2-4



INDEX

L

Language Commands, A-1
Less than (<), 2-8

Lexical Conventions, 2-2
Line Label, 2-1, 2-4
Lineld, 2-1

LineNum, 2-1
LineNumRange, 2-1

List Controls, 2-18
Loading/Saving Data Commands, A-3
Logical Expressions, 2-10
Logical Expr, 2-2, 2-10

M
Mask Editor

commands for and control of, 2-27
Mask Manipulation Commands, A-4
Math Commands, 4-1
Measure Function, 2-15
Message Box, 2-19
Messaging/Prompting Commands, A-4
MetroPro Objects,

accessing of, 2-15

definition of, 2-15

identifiers (IDs) for, 2-16

named, 2-17
MOD Operator, 2-8
Motion Controller

Commands, A-4

Basics, 2-31
Motion Related Commands, 2-32
Multiplication Operator, 2-8

N

Named Objects, 2-17
Newline, 2-5
Not(negation), 2-8
Not equal to (< >), 2-8

(o)

Object IDs, 2-16

Object Path Name, finding, 2-16
Octal Character Value, 2-5
Operator I/0O Commands, A-2
Operator Precedence, 2-9
Operators and Expressions, 2-8
Or (disjunction), 2-8

Output Functions, 2-24, 2-29

P

Parentheses and Brackets, 2-2, 2-8
Path Names in String Constants, 2-6
Path Names (Hints for typing), 2-16
Pattern Functions Commands, A-5
Pattern Related Stage Movements, 2-32
Percent Character (%), A-5
Portability of Scripts, 2-34

Process Window Commands, A-5
Program Control Commands, A-1
Programmable Stage Patterns, D-1
Program Structure, 2-14

R

Reading MetroPro Files, 2-24

Reading Controls, Results, and Attributes,
2-17

RealConst, 2-1, 2-5

RealExpr, 2-1, 2-10

RealExpr, 2-1, 2-10

RealVar, 2-1, 2-6

Reference Dictionary, 4-1
(commands listed alphabetically)

Relational Expressions, 2-10

Relative Path Name, 2-6

Remote Abort, 2-29

Remote Control of MetroPro, 2-27

Repetition Functions, 2-11

Report Window Commands, A-5

Run-Time Parameters, 2-22

S

Script Compatibility, 2-32

Script File Format, 2-14

Script File Location, 2-13

Simple File Name, 2-6

Single Quotation Mark, 2-5

Spaces, 2-3

Special Characters in String Const, 2-5
Starting a Script File, 2-13
Statements, 2-3

Status Annotation, 2-21

StrConst, 2-1, 2-5

StrExpr, 2-2, 2-9

String Expressions, 2-10

String Manipulation Commands, A-2
StrVar, 2-7, 4-1

Subroutines, 2-12

SubstrRange, 2-2

Subtraction Operator, 2-8



INDEX

T
Tabs 2-3, 2-13, B-2

Terms Defined, 2-1
Timing/Communication Failures, 2-32
Token, 2-3

Top Level Script, 2-13

Typing Path Names, 2-16

U

User-defined variable names, 2-16

V

Variables, 2-3, 2-6
Vars, 2-1

Vertical Tab, 2-5

w

Working Directory, 2-13

Writing MetroPro Controls, 2-18
Weriting MetroPro Files, 2-25
Writing a MetroScript File, 2-13

z

ZMI/Heidenhain Commands, A-5



