
MetroPro™
Remote
Access

OMP-0476F

Zygo Corporation
Laurel Brook Road
P.O. Box 448
Middlefield, Connecticut 06455

Telephone: (860) 347-8506
E-mail: inquire@zygo.com
Website: www.zygo.com

© Copyright 2005 by Zygo Corporation; All Rights Reserved. • Product or company names mentioned in this
manual are trademarks or registered trademarks of their respective companies, and are hereby acknowledged.

i

ZYGO CUSTOMER SUPPORT
For help within North America, please use the contacts listed below. For help in other countries,
please contact your local ZYGO representative. Be sure to supply the instrument model and
serial number, and the software version.

 PHONE Monday - Friday, 8 a.m. - 8 p.m. (Eastern Standard Time)

 (800) ZYGO NOW (800) 994-6669
 or (860) 704-5191

 FAX (860) 346-4188

 INTERNET www.zygo.com
 support@zygo.com

 WRITE Zygo Corporation
Laurel Brook Road
P.O. Box 448
Middlefield, CT 06455-0448
Attn: Customer Support

MANUAL REVISION INFORMATION
The document (OMP) number and the applicable revision letter for this manual appear on the title
page. The publication date appears below.

Revision Publication Date Software Version
A February 2003 7.11.0
B July 2003 7.12.0
C August 2004 8.0.1
D May 2005 8.1.0
E September 2005 8.1.4
F October 2005 8.1.4

MANUAL NOTATIONS

Warning!
Denotes a hazard that could cause injury to personnel, and can also cause
damage to the equipment.

 Note, provides helpful information.

NOTICE: The descriptions, drawings, and specifications contained herein are subject to change.
ZYGO is not responsible for errors or omissions herein or for incidental damages in connection
with the furnishing or use of this information. This document shall not be reproduced,
photocopied, or duplicated, in whole or in part, without prior written approval of Zygo
Corporation.

ii

ZYGO SOFTWARE LICENSE AGREEMENT
The following is a legal agreement between you and Zygo Corporation. This software is licensed to you and not sold. You
may use this software only according to the terms of this License.

1. GRANT OF LICENSE. You may use the software only on a single computer at a time. You may not network the
software or otherwise use it on more than one computer or computer terminal at the same time. The License covers
all users on the single system.

2. OWNERSHIP OF SOFTWARE. The software is owned by ZYGO and is protected by United States copyright
laws and international treaty provisions. Therefore, you must treat the software like any other copyrighted material.

3. USE RESTRICTIONS. You may transfer the software to a hard disk and make copies of the software solely for
backup or archival purposes. You may not alter, modify, or adapt any part of the software or documentation. This
means you may not reverse-engineer, decompile, disassemble this software, or create derivative works from it.

4. TRANSFER RESTRICTIONS. This Software is licensed only to you, and may not be transferred to anyone
without prior written consent of ZYGO. The terms and conditions of this Agreement shall bind any authorized
transferee of software. In no event may you transfer, assign, rent, lease, sell, or otherwise dispose of the software on a
temporary or permanent basis except as expressly provided herein.

5. TERMINATION. This License is effective until terminated. This License will terminate automatically without
notice from ZYGO if you fail to comply with any provision of this License. Upon termination you shall destroy the
written materials and all copies of the software, including modified copies, if any.

Disclaimer of Warranty on Software

THE SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ZYGO EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES. ZYGO DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE SOFTWARE OR ANY
ACCOMPANYING WRITTEN MATERIALS IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY,
CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE AND WRITTEN MATERIALS IS ASSUMED BY YOU.

Software Limited Warranty

ZYGO warrants the magnetic media on which the software is recorded to be free from defects in materials and faulty
workmanship under normal use for a period of 90 days from the date of delivery. ZYGO will replace the media, provided
you return the faulty media to ZYGO with return authorization. ZYGO shall have no responsibility to replace magnetic
media damaged by accident, abuse, or misapplication.

Limitation of Liability

IN NO EVENT SHALL ZYGO, OR ITS EMPLOYEES AND AFFILIATES BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL, INCIDENTAL, OR DIRECT DAMAGES ARISING OUT OF THE USE OR THE INABILITY TO
USE THE SOFTWARE OR ACCOMPANYING WRITTEN MATERIALS, EVEN IF ZYGO OR A ZYGO
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITED
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE
TO STATE.

U.S. Government Restricted Rights

The software and documentation are provided with restricted rights. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at 52.227-7013. Contractor/manufacturer is Zygo Corporation, Laurel Brook Road, Middlefield, CT 06455.

Should you have any questions concerning this Agreement, or if you wish to contact ZYGO for any reason, please write:
ZYGO Service Department, Laurel Brook Road, P.O. Box 448, Middlefield, CT 06455-0448.

11/2002

C O N T E N T S

iii

ZYGO CUSTOMER SUPPORT .. i
ZYGO SOFTWARE LICENSE AGREEMENT.. ii

Introduction...1
MetroPro Remote Access ...1
Assumptions ...1
Software and Hardware Requirements ...2

Remote Access Using a Local Area Network (Named Pipe Interface)2
MetroPro Remote Access Files ..2

MetroProRemoteAccess.dll..2
mraClient.cfg..4
mraServer.cfg ...4

Getting Started..5
Overview...5

MetroPro (Server) Instructions...5
Client Process Instructions ...6
Remote Control of Multiple ZYGO Instruments ...7
Remote Access Server Suspend and Resume ..9

Configuration Settings ..11
Local Area Network Settings (Named Pipe Interface)...11

Default Configuration Files ..12
Default mraserver.cfg...12
Default mraClient.cfg...12
Sample mraClient.cfg Edited for Controlling Multiple Instruments........................13

DLL Function Reference ...15
int mraAbortCheck (char errBuf[BUFSIZ]) ..15
void mraClearLastError () ...15
int mraClose (char errBuf[BUFSIZ]) ...16
int mraDisableAbortCheck () ..16
int mraEnableAbortCheck () ...17
int mraFlushPipe (char errBuf[BUFSIZ]) ..17
char mraGetAbortFlag () ...18
int mraGetClientAccessInterface ()...18
HWND mraGetClientWindow () ..19
int mraGetCurrentServer () ...19
int mraGetFile (char source_fn[BUFSIZ], char destination_fn[BUFSIZ],

char errBuf[BUFSIZ]) ..20
char mraGetLocalAbortFlag ()..21
int mraGetLastError ()...21
int mraGetScriptResults (char mpErrMsg[BUFSIZ], char mpOutput[BUFSIZ],

char errBuf[BUFSIZ]) ..22
int mraGetScriptStatus (bool poll, char errBuf [BUFSIZ])....................................23
int mraGetServerStatus ()..25

C O N T E N T S

iv

char mraGetRemoteAbortFlag () ..26
double mraGetTotalBytesReceived () ...26
double mraGetTotalBytesSent ()...27
int mraInitialize (char errBuf[BUFSIZ],

char username[MAX_USERNAME_LENGTH],
char password[MAX_PASSWORD_LENGTH],
int serverGuiMsgs, bool_t log_operations) ...28

int mraIsClientOnline () ..29
int mraIsScriptDone (char errBuf[BUFSIZ]) ...30
int mraLoadScript (char scriptFileName[BUFSIZ], char errBuf[BUFSIZ])30
int mraKillMetroProServer (char errBuf[BUFSIZ]) ..31
int mraPutFile (char source_fn[BUFSIZ], char destination_fn[BUFSIZ],

char errBuf[BUFSIZ]) ..32
int mraRunLoopBackTest (char errBuf[BUFSIZ])..33
int mraRunScript (char scriptFileName[BUFSIZ], char errBuf[BUFSIZ])...........34
int mraSendMetroScriptCommand (char *metroScriptCommand,

char errBuf[BUFSIZ]) ..35
int mraSetAbortFlag (int value) ...36
int mraSetClientWindow (HWND clientProcessWindow)....................................36
int mraSetConnectionPolling (int flag, int interval)...37
int mraSetCurrentServer (char errBuf[BUFSIZ], int serverId)38
int mraSetLoggingParameters (bool_t setPath, char path[BUFSIZ],

bool_t overwriteLogFile, bool_t createNewLogFile, bool_t enableLogging,
char errBuf[BUFSIZ]) ..39

int mraSetSuspendPermissions (int permission, char errBuf[BUFSIZ])40
int mraStopMetroProProcessing (char errBuf[BUFSIZ])41
int mraSuspendServer (char errBuff[BUFSIZ])...42
int mraTurnClientLogOnOff (bool_t log) ..43
int mraTurnOnOffGuiMessages (char errBuf[BUFSIZ], int messages)44
int mraWaitScriptDone (char errBuf[BUFSIZ]) ..45

Example User Programs ...47
Sample C Header File...47
Example 1 - Transfer and Run a MetroScript File ...51
Example 2 – Transfer, Run, and Query a MetroScript File..58
Example 3 – Transfer, Run and Query a MetroScript Command65

Error Codes..73

Glossary ..79

1

Introduction
Chapter

1

MetroPro Remote Access
This document explains the use of the
MetroProRemoteAccess.dll (Dynamic Link Library).
This library provides the ability for one computer to
control and access other computers running MetroPro
software. The computers must be connected through
a local area network (LAN)1. The remote access
dynamic link library functions are accessed with a
user-written software program in C, C++, or Visual
Basic.

For example, one computer can send MetroScript commands, such as Measure or
Analyze, effectively taking control of MetroPro running on another computer.
MetroScript commands as well as MetroScript files, pattern files, mask files, and data
files can be exchanged. Results and outputs obtained on one computer can be viewed on
a second computer.

The remote access function is primarily for the manufacturing environment where one
computer can control up to 32 other computers and interferometers running MetroPro
software.

Assumptions
In this document, “Client” refers to the remote controlling computer or process. “Server”
refers to MetroPro.

This manual makes the following assumptions:

• you are familiar with MetroPro

• you are familiar with MetroScript

• you have used the text editing programs included with the computer

• you have an understanding of programming concepts

• you have familiarity with C, C++, or Microsoft Visual Basic

1 TCP/IP should be used as the primary network protocol in both server and client computers. The use of
NetBEUI and NWLink as network protocols even though valid, is not recommended. Remote access for
MetroPro has been tested extensively with TCP/IP only.

M E T R O P R O R E M O T E A C C E S S

2

Software and Hardware Requirements
Remote Access Using a Local Area Network (Named Pipe Interface)

• Microsoft Windows NT/2000 operating system.
• MetroPro 7.11.0 or later.
• MetroProRemoteAccess.dll, mraClient.cfg, and mraServer.cfg files.
• Connection to a Local Area Network that supports Named Pipes.

MetroPro Remote Access Files
All of the Remote access files (MetroProRemoteAccess.dll, mraClient.cfg, and
mraSserver.cfg) are installed into the Metropro\cfg directory.

MetroProRemoteAccess.dll
This file is a DLL that can be used by an application written in C, C++, or Visual Basic
for controlling MetroPro remotely. The following functions are included in the DLL.
See Chapter 3 for a detailed description of each of these functions.

• Connectivity Functions
int mraInitialize (char errBuf[BUFSIZ],

char username[MAX_USERNAME_LENGTH],
char password[MAX_PASSWORD_LENGTH],
int server_gui_msgs,
bool_t log_operations)

int mraClose (char errBuf[BUFSIZ])

int mraIsClientOnline ()

int mraGetServerStatus ()

int mraSetConnectinPolling (int flag, int interval)

• Remote Control of Multiple Interferometers
int mraSetCurrentServer (char errBuf[BUFSIZ],

int newServer)

int mraGetCurrentServer ()

• Control of MetroPro Functions
int mraSendMetroScriptCommand (char * metroScriptCommand,

char errBuf[BUFSIZ])
int mraLoadScript (char scriptFileName[BUFSIZ],

char errBuf[BUFSIZ])
int mraRunScript (char scriptFileName[BUFSIZ],

char errBuf[BUFSIZ])
int mraIsScriptDone (char errBuf[BUFSIZ])
int mraWaitScriptDone (char errBuf[BUFSIZ])
int mraGetScriptResults (char mpErrMsg[BUFSIZ],

char mpOutput[BUFSIZ],
char errBuf[BUFSIZ])

I N T R O D U C T I O N

3

int mraGetScriptStatus (bool poll,
char errBuf[BUFSIZ])

int mraKillMetroProServer (char errBuf[BUFSIZ])
int mraStopMetroProProcessing (char errBuf[BUFSIZ])
int mraTurnOnOffGuiMessages (char errBuf[BUFSIZ],

bool_t messages)
int mraSuspendServer (char errBuff[BUFSIZ])
int mraSetSuspendPermissions (int permission,

char errBuf[BUFSIZ])

• Data Transfer Functions
int mraPutFile (char source_fn[BUFSIZ],

char destination_fn[BUFSIZ],
char errBuf[BUFSIZ])

int mraGetFile (char source_fn[BUFSIZ],
char destination_fn[BUFSIZ],
char errBuf[BUFSIZ])

• Diagnostics Functions
int mraGetClientAccessInterface ()
int mraRunLoopBackTest (char errBuf[BUFSIZ])
int mraFlushPipe (char errBuf[BUFSIZ])
int mraTurnClientLogOnOff (bool_t log)
int mraSetLoggingParameters (bool_t setPath,

char path[BUFSIZ],
bool_t overwriteLogFile,
bool_t createNewLogFile,
bool_t enableLogging,
char errBuf[BUFSIZ])

void mraClearLastError ()
int mraGetLastError ()
char mraGetAbortFlag ()
char mraGetLocalAbortFlag ()
char mraGetRemoteAbortFlag ()
HANDLE mraGetClientHandle ()
HWND mraGetClientWindow ()
double mraGetTotalBytesReceived ()
double mraGetTotalBytesSent ()

• Abort Functions
int mraEnableAbortCheck ()
int mraDisableAbortCheck ()
int mraAbortCheck (char errBuf[BUFSIZ])
int mraSetClientWindow (HWND clientProcessWindow)
int mraSetAbortFlag (int value)

M E T R O P R O R E M O T E A C C E S S

4

mraClient.cfg
This configuration file contains all of the settings needed for establishing a valid
connection with MetroPro through a Local Area Network. This file is read by
MetroProRemoteAccess.dll. The parameter settings in this must match the settings in
mraServer.cfg except for the Connection Timeout value.

mraServer.cfg
This file contains all of the settings needed for establishing a valid connection with
MetroPro through a Local Area Network. This file is read by MetroPro. The parameter
settings in this must match the settings in mraClient.cfg except for the Connection
Timeout value.

5

Getting Started
Chapter

2

Overview
To put MetroPro into Remote Access Mode, create a Remote Access button with the
New Button → Miscellaneous → Remote Access menu. When this button is pressed,
MetroPro becomes a Named Pipe Server based on the configuration parameters
established in mraServer.cfg. The Remote Access button remains depressed until the
connection closes or an abort occurs.

The mraClient.cfg file contains the settings for Remote Access for the Client side. After
the access interface has been determined, the Server will wait for a Client to connect.
Once in Remote Access Mode, MetroPro cannot be used interactively (with the mouse or
keyboard) unless terminated or suspended. The only operations that can be done on the
Server are Abort and Suspend. Abort is accomplished by pressing <ESCAPE>. Suspend
is accomplished by pressing F11. When the Remote Access is aborted on the server side,
the server notifies the Client of the abort, the remote connection is closed, and MetroPro
is returned to interactive mode.

All information transferred between MetroPro and the Client application is tested with a
Cyclic Redundancy Check (CRC). This ensures data integrity and avoids many inter-
process communications problems.

The Client computer must be visible from the MetroPro Server computer in order for the
Client process to connect to MetroPro if using a Local Area Network.

MetroPro (Server) Instructions
1. Modify file mraServer.cfg to your preferences if needed.

2. Make sure that all settings in mraClient.cfg are the same; only the
ConnectionTimeout parameter may differ.

3. Start up MetroPro on the Server computer. Click on the Remote Access button
(New Button → Miscellaneous → Remote Access) to put MetroPro in Remote
Access Mode. MetroPro will wait for client connections and commands.

M E T R O P R O R E M O T E A C C E S S

6

Client Process Instructions
1. Make sure that all of the relevant settings in mraClient.cfg match those in

mraServer.cfg; only the Connection Timeout parameter may differ. Copy (not
move) mraClient.cfg and MetroProRemoteAccess.dll from MetroPro\cfg to the
same directory as the client application.

2. From the Client application, establish a communications link with MetroPro by
calling function mraInitialize. If successful, the Client may now do any of the
following:

a. Send a MetroScript script file
Call function mraPutFile. MetroPro will receive the MetroScript file.

b. Load a MetroScript script file
Call function mraLoadScript. This function is used to load a MetroScript file
that had previously been transferred from the client computer into MetroPro,
making the script available for execution.

c. Run a MetroScript script
Call function mraRunScript. MetroPro will load and execute the specified
MetroScript file. The file must have been transferred to the Server prior to
calling this.
Call function mraWaitScriptDone to wait for MetroPro to finish executing the
script.
Call mraIsScriptDone to query whether or not MetroPro has finished
executing the script.
Call function mraGetScriptResults to receive the results from the execution of
the script. This call is required to close out the script execution cycle.

 MetroPro will not be able to receive new data, process a new run
script request, or receive a single MetroScript command until the
script execution has been completed and all outbound data
produced during the current script execution has been successfully
transferred to the client process.

d. Send a single MetroScript Command
Call function mraSendMetroScriptCommand. This function will transfer and
execute a string containing a single MetroScript command.
Call function mraWaitScriptDone to wait for MetroPro to finish executing the
script command.
Call mraIsScriptDone to query whether or not MetroPro has finished
executing the script command.
Call function mraGetScriptResults to receive the results from the execution of
the script command. This call is required to close out the command execution
cycle.

G E T T I N G S T A R T E D

7

 MetroPro will not be able to receive new data, process a new run
script request, or receive a single MetroScript command until the
script execution has been completed and all outbound data
produced during the current script execution has been successfully
transferred to the client process.

e. Send a data file
Call function mraPutFile. MetroPro will receive the MetroScript file.

f. Send a pattern or mask file
Call function mraPutFile. MetroPro will receive the MetroScript file.

g. Abort Check
Call function mraAbortcheck. This function will check for an Escape key
press if abort check is enabled.

h. Enable abort check
Call function mraEnableAbortCheck. This will allow background processing
to capture any press of the Escape key.

i. Disable abort check
Call function mraDisableAbortCheck. This causes the Escape key to be
ignored.

j. Stop MetroPro Processing
Call function mraStopMetroProProcressing. This function will stop the
execution of a script in MetroPro.

k. Kill MetroPro Server
Call function mraKillMetroProServer. This function will kill the MetroPro
server and pop up the Remote Access button in MetroPro. You will have to
restart the server in MetroPro and connect again to control MetroPro.

3. Close the communications link with MetroPro by calling function mraClose.

Remote Control of Multiple ZYGO Instruments
MetroPro Remote Access DLL provides functionality for remote controlling of more than
one ZYGO instrument in real time. Up to 32 interferometers can be controlled
simultaneously. The following functions are available for this purpose.

• mraSetCurrentServer
• mraGetCurrentServer

M E T R O P R O R E M O T E A C C E S S

8

With these functions, a Client application can switch between different links to different
MetroPro Servers. To run simultaneous measurements on two separate ZYGO
instruments, follow these steps.

1. Connect to Server instrument 1 running MetroPro.
Use function mraInitialize.

2. Send Measure MetroScript command.
Use function mraSendMetroScriptCommand.

3. Switch link to Server instrument 2 running MetroPro.
Use function mraSetCurrentServer.

4. Connect to Server instrument 2 running MetroPro.
Use function mraInitialize.

5. Send Measure MetroScript command.
Use function mraSendMetroScriptCommand.

6. Switch link to Server instrument 1.
Use function mraSetCurrentServer.

7. Query for Measure command completion.
Use function mraIsScriptDone.

8 Switch link to Server instrument 2.
Use function mraSetCurrentServer.

9. Query for Measure completion.
Use function mraIsScriptDone.

10. Repeat steps 6 – 9 until both measurements are completed.
Use a loop.

11. Switch link to Server instrument 1.
Use function mraSetCurrentServer.

12. Get measurements results.
Use function mraGetScriptResults.

13. Switch link to Server instrument 2.
Use function mraSetCurrentServer.

14. Get measurements results.
Use function mraGetScriptResults.

15. Switch link to Server instrument 1.
Use function mraSetCurrentServer.

16. Close connection to Server instrument 1.
Use function mraClose.

17. Switch link to Server instrument 2.
Use function MraSetCurrentServer.

18. Close connection to Server instrument 2.
Use function mraClose.

G E T T I N G S T A R T E D

9

Remote Access Server Suspend and Resume
A suspend/resume mechanism allows local interaction with MetroPro while the remote
access server is running without having to terminate the server or close a remote
connection with a client.
1. Suspending the Remote Access Server

When the remote access server is running and there are no clients connected, the
server can be suspended by pressing the F11 key. Control returns to the local user.
This allows local interaction without having to terminate the remote access server.
Remote client connection attempts will fail until the remote access server is resumed.

When a client is connected, the F11 key will only work when the server is idle and
waiting for remote commands. If the server is busy, pressing the F11 key will be
ignored. While the server is suspended, all remote client commands are also ignored.

By default, the local user will be asked to verify the suspension of the server after
pressing F11 (i.e. interactive suspend/resume). The remote client, however, can
change his default behavior by calling mraSetSuspendPermissions(). The client can
deny suspend/resume capabilities, meaning that F11 key presses will be ignored. The
client can also set the suspend/resume permissions to be non-interactive, so that the
user is not prompted when F11 is pressed.

2. Terminating the Remote Access Server
If suspended, pressing the F11 key again clicking on the Remote Access button, will
resume the server, and control returns to the remote client.

3. Terminating the Remote Access Server
The remote access server cannot be terminated while suspended. The server must be
resumed and then the <Escape> key pressed to terminate. If a client is connected,
press the <Escape> key twice to first close the connection with the client and then to
terminate the server.

4. Disconnecting a Remote Client
A remote client cannot be disconnected while the remote access server is suspended.
The server must be resumed, and then the <Escape> key pressed once to disconnect
the remote client.

5. Interactive Function Key Exceptions
Some of the F keys defined in MetroPro do not require the remote access server to be
suspended for the local user to use them. The keys F1—Measure, F2—Analyze,
F4—Light Level dialog, F5—Auto LLC, and F9—Live Display, will work as if
MetroPro were not in remote access mode. However, if a client is connected, these
function keys will not work if the remote client has denied suspend/resume
permissions.

M E T R O P R O R E M O T E A C C E S S

10

6. MetroPro Interface
The pop up messages that appeared in MetroPro while in remote access mode have
been replaced by a server information string layer attached to the title in an
application. This allows faster interaction with the client and faster execution of
remote scripts. The messages that appear on the title bare include:

a. Remote Access Offline—This message momentarily appears after the remote
access server has been created. After the communication channel has been
initialized on the server side, this message is deleted.

b. Remote Access Control –Idle -No Host—This message appears after the
communication channel has been initialized and the server is waiting for client
connections.

c. Remote Access Control – Idle- Controlled by “host”—This message appears
after a client has successfully connected to the server and the server is waiting
for remote client commands. Host is the client computer name.

d. Remote Access Control – Busy – Controlled by “host”—This message appears
when the server is processing remote client commands. These commands can
either be scripts, data transfer, or diagnostics. Host is the client computer
name.

e. Remote Access Control – Suspended—This message appears when the server
has been either locally or remotely suspended. It will remain displayed until
the server is resumed.

f. Remote Access Control – Resumed—This message will momentarily appear
after the server has been resumed. It will then be deleted and a message
corresponding to the state of the server will be displayed instead. This new
message will either be Remote Access Control – Idle No Host or Remote
Access Control – Idle –Controlled by host.

g. Remote Access Control – Unable to Create—This message appears when
MetroPro is unable to create the Remote access server. Ensure that the
configuration file exists.

7. Remote MetroPro Suspend
New functions that have been added to the MetroPro Remote Access.dll allow remote
suspending of the remote access server in MetroPro. These functions include:

a. Remotely Suspend the Remote Access Server—Use function
mraSuspendServer to remotely suspend the remote access server in MetroPro.
After suspended, the server will not be able to process remote client
commands.

b. Set Local User Suspend Permissions—Use function
mraSetSuspendPermissions to set local client suspend and resume
permissions.

 Only the local user can resume the remote access server.

c. Get Remote Access Server Status—Use function mraGetServerStatus to
obtain the current server status.

G E T T I N G S T A R T E D

11

Configuration Settings
The parameter options for each mode of remote access are described below. The settings
for all parameters must be the same in both mraClient.cfg and mraServer.cfg.

Local Area Network Settings (Named Pipe Interface)
• INTERFACE

Set to LAN to use a Named Pipe Interface to control MetroPro remotely. This is
the default setting.

• IO_MODE
Set to NON_BLOCKING to use communications operations asynchronously
(overlapped). Asynchronous read or write operations will not wait for completion
and will return immediately after being called. This mode offers more flexibility
for integration with other software. This is the default setting.
Set to BLOCKING to use communications operations synchronously (non-
overlapped). Synchronous read or write operations will block the application
until they are finished or a time-out occurs. This mode is less flexible and should
be used with single threaded applications only.

• MACHINE
Set to the name of the computer running MetroPro. This name can be obtained by
clicking on Control Panel −> Network Icon −> Identification Tab on the computer
where MetroPro is located. This parameter is blank by default.

• READ TIMEOUT
Set to the maximum amount of time (in seconds) that a read operation will wait
for a response before failing. This parameter must be set to a value greater than 1.
The default timeout is 60 seconds.

• PACKET TIMEOUT
Set to the maximum amount of time (in seconds) that the application will wait for
beginning an internal data transfer between the client and MetroPro. This
parameter must be set to a value greater than 1. The default timeout is 60
seconds.

• CONNECTION TIMEOUT
Set to the maximum amount of time (in seconds) that the application will wait for
a named pipe server to become available. The default setting for mraServer.cfg is
INFINITE. The default setting for mraClient.cfg is 30.

• SCRIPTS ALLOWED
Set to ALL for running all scripts passed by remote client.
Set to COMPATIBLE_ONLY if prohibiting scripts that require user interaction
from running in MetroPro.
The default setting is COMPATIBLE_ONLY. This setting is optional. If not
present server runs compatible scripts only.

M E T R O P R O R E M O T E A C C E S S

12

Default Configuration Files
ZYGO provides default configuration files used by MetroPro and the remote access DLL.
mraClient.cfg and mraServer.cfg are installed into the Metropro\cfg directory and have
the same matching default settings. If these files are edited, they must both be edited to
match.

Default mraserver.cfg
Zygo Corporation. All Rights Reserved.
mraserver.cfg
Remote access configuration file
To be used by client process accessing MetroPro.
Lines that begin with '#' are comments.
Access Interface Setting.
INTERFACE = LAN
IOMODE = BLOCKING or IOMODE = NON_BLOCKING
INTERFACE=LAN
IOMODE=NON_BLOCKING
READ TIMEOUT=60
CONNECTION TIMEOUT=120
PACKET TIMEOUT=60
Named Pipe Interface Settings
MACHINE=NEW_VIEW1
Script Settings. Set to ALL or COMPATIBLE_ONLY
SCRIPTS ALLOWED=COMPATIBLE_ONLY

Default mraClient.cfg
Zygo Corporation. All Rights Reserved.
mraclient.cfg
Remote access configuration file
To be used by client process accessing MetroPro.
Lines that begin with '#' are comments.
Access Interface Setting.
INTERFACE = LAN
IOMODE = BLOCKING or IOMODE = NON_BLOCKING
[SERVER 1]
INTERFACE=LAN
IOMODE=NON_BLOCKING
READ TIMEOUT=60
CONNECTION TIMEOUT=120
PACKET TIMEOUT=60
Named Pipe Interface Settings
MACHINE=NEW_VIEW1
To add an additional server, copy lines 8-17
and paste below this line. Modify server marker and parameters.

G E T T I N G S T A R T E D

13

Sample mraClient.cfg Edited for Controlling Multiple Instruments
Zygo Corporation. All Rights Reserved.
mraclient.cfg
Remote access configuration file
To Be used by client process accessing MetroPro.
Lines that begin with '#' are comments.
Access Interface Setting.
INTERFACE = LAN
IOMODE = BLOCKING or IOMODE = NON_BLOCKING
[SERVER 1]
INTERFACE=LAN
IOMODE=NON_BLOCKING
READ TIMEOUT=60
CONNECTION TIMEOUT=30
PACKET TIMEOUT=60
Named Pipe Interface Settings.
MACHINE=NEW_VIEW1
To add an additional server, copy lines 8-17
and paste below this line. Modify server marker and parameters.
[SERVER 2]
INTERFACE=LAN
IOMODE=NON_BLOCKING
READ TIMEOUT=60
CONNECTION TIMEOUT=30
PACKET TIMEOUT=60
Named Pipe Interface Settings.
MACHINE=NEW_VIEW2
To add an additional server, copy lines 8-17
and paste below this line. Modify server marker and parameters.
END

M E T R O P R O R E M O T E A C C E S S

14

15

DLL Function Reference
Chapter

3

This section describes all of the functions available in MetroProRemoteAccess.dll. They
are listed in alphabetical order. Use function mraGetLastError to retrieve and check if
any error conditions occurred after any remote access function call that has possible error
values.

int mraAbortCheck (char errBuf[BUFSIZ])

Description
This function checks for the escape key if function mraEnableAbortCheck has been
called first. It sets the abort flag and local abort flag to TRUE if the escape key was
pressed. If mraDisableAbortCheck function has been called, the return value is
always 0. The client process will not be able to communicate and control MetroPro
while the abort Flag is set to TRUE. Call mraSetAbortFlag to reset the abort flag.

Parameters
errBuf – output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns 1 if the Escape key was pressed. If there are any errors in the data
transmission process or the Escape key was not pressed, this function returns 0.

Errors
MRA_ERR_INVALID_PARAMETERS

void mraClearLastError ()

Description
Function clears the last error produced by any MetroProRemoteAccess.dll function
call.
Parameters
None
Return Values
None
Errors
Function always returns MRA_ERR_NO_ERR.

M E T R O P R O R E M O T E A C C E S S

16

int mraClose (char errBuf[BUFSIZ])

Description
This function closes the client side of the named pipe. All data located in the input or
output queues is purged, and the handle to the communications device is closed. This
function fails if there is no open handle to a communications device.

Parameters
errBuf – output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR (0) if successful. Otherwise, it returns an error code,
and errBuf will contain an error message. mraGetLastError can also be used to check
the status of this command.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_OPERATION
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE

int mraDisableAbortCheck ()

Description
This function disables the abort check. The client application will ignore the Escape
key, and function mraAbortCheck will return 0 until the abort check is re-enabled.

Parameters
None

Return Values
0

Errors
Always returns MRA_ERR_NO_ERR.

D L L F U N C T I O N R E F E R E N C E

17

int mraEnableAbortCheck ()

Description
This function enables the abort check. The client application will capture the Escape
key when function mraAbortCheck is called.

Parameters
None

Return Values
0

Errors
Always returns MRA_ERR_NO_ERR.

int mraFlushPipe (char errBuf[BUFSIZ])

Description
This function will remove all bytes available for reading in the read buffer of the client
side of the named pipe. This function fails if a named pipe client has not been created
before.

Parameters
errBuf – output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns the number of bytes that were purged from the client side of the named pipe if
successful. If there was an error in transmission, this function returns an error code,
and errBuf will contain a message explaining the error.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_OPERATION
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_NP_UNABLE_TO_READ_DATA

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

M E T R O P R O R E M O T E A C C E S S

18

char mraGetAbortFlag ()

Description
This returns the value of the abort flag. The abort flag is set to1 when any of the
following conditions occur:

• function mraEnableAbort has been called and the Escape key has been pressed;
• when the application has detected that the server has been terminated;
• when application has detected that the communication link has been broken.

Parameters
None

Return Values
Returns the value of the abort flag.

Errors
MRA_ERR_NO_ERR
MRA_ERR_NO_ACCESS_INTERFACE

int mraGetClientAccessInterface ()

Description
This function returns an integer value that represents the current communications
device used for controlling MetroPro. If connected, this function pings the server to
verify a valid connection. If the ping fails, then the client access interface is set to
zero.

Parameters
None

Return Values
Returns a 1 if at the present time the client process is controlling MetroPro through a
LAN. Returns a 0 if a communications link has not been established, if the
communication link was previously closed, or if the ping failed.

Errors
MRA_ERR_NO_ERR
MRA_ERR_NO_ACCESS_INTERFACE

D L L F U N C T I O N R E F E R E N C E

19

HWND mraGetClientWindow ()

Description
This function returns the handle to the current window in the client process if the
handle was previously set. The Client Window Handle is used to check for the Escape
key.

Parameters
None

Return Values
Returns the Handle to the current window of the client process. Otherwise, the return
value is NULL.

int mraGetCurrentServer ()

Description
This function returns the id of the current server being accessed by
MetroProRemoteAccess.dll. If there are no communications opened, this function
returns a default value of 1.

Parameters
None

Return Values.
Returns the id of the server currently being controlled by MetroProRemoteAccess.dll
or the default server id value of 1.

M E T R O P R O R E M O T E A C C E S S

20

int mraGetFile (char source_fn[BUFSIZ],
char destination_fn[BUFSIZ],
char errBuf[BUFSIZ])

Description
This function gets a file from the MetroPro computer and saves it on the client
computer. The file to get is specified by source_fn, and the file to save is specified by
destination_fn. This function fails if there are errors in the data transmission process,
the file cannot be found in MetroPro, or if there is not enough disk space in the client
computer to save the file. All data transfers are verified by a Cyclic Redundancy
Check to ensure data integrity.
Parameters
source_fn - input

Null terminated string of type char, which holds the name of the file in MetroPro to
be transferred.

destination_fn - input
Null terminated string of type char, which holds the name of the file to be saved in
the client computer.

errBuf - output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if successful. Returns an error code if function failed
and errBuf will contain a message explaining the error.
Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_INVALID_OPERATION
MRA_ERR_NP_UNABLE_TO_WRITE_DATA
MRA_ERR_PROCESS_ABORTED
MRA_ERR_SERVER_ERROR
MRA_ERR_DATA_TRANSFER_ERROR
MRA_ERR_NP_UNABLE_TO_READ_DATA
MRA_ERR_UNABLE_TO_FIND_FILE
MRA_ERR_UNABLE_TO_WRITE_TO_DISK
MRA_ERR_UNABLE_TO_PROCESS_CRC
MRA_ERR_CRC_ERROR

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

21

char mraGetLocalAbortFlag ()

Description
The local abort flag is set when the abort check has been enabled by calling function
mraEnableAbortCheck, and the Escape key has been pressed and not cleared.

Parameters
None

Return Values
Returns the value of the local abort flag.

int mraGetLastError ()

Description
This function returns the last error produced by the last MetroProRemoteAccess.dll
function called.

Parameters
None

Return Values
Returns the last error produced by the last MetroProRemoteAccess.dll function called.

Errors
None

M E T R O P R O R E M O T E A C C E S S

22

int mraGetScriptResults (char mpErrMsg[BUFSIZ],
char mpOutput[BUFSIZ],
char errBuf[BUFSIZ])

Description
This function obtains the results after a remote script or remote command has been
executed in MetroPro. It must be called after mraIsScriptDone returns true or
mraWaitScriptDone returns a zero even if the script had no output. It is used to
validate that the script or MetroScript command was run successfully. mpErrMsg
stores the error number produced by MetroPro (if any) and the message displayed in
the MetroPro GUI if the script execution failed. mpOutput stores the string produced
by the MetroScript print command. If a single command was transferred and it
contained an assignment operation, then the value will be stored in the output buffer.
If a script requires user interaction in MetroPro, a script incompatible error will be
returned unless the server configuration file allows all scripts to be executed.

Parameters
mpErrMsg - output

Null terminated string of type char, which holds any error number and error
message produced by MetroPro during the script execution.

mpOutput - output
Null terminated string of type char, which holds any output produced by the script
execution.

errBuf
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if the function completed successfully.
Returns an error code if the function failed. errBuf buffer will contain a string
explaining return value.
mpErrMsg buffer indicates whether a script has failed or not. If empty, script has
completed successfully in MetroPro. If not null, script has failed and its contents need
to be passed to the user for evaluation.
In addition to script output, the mpOutput buffer may contain script handled error
information. Evaluate if script output values are previously known.

D L L F U N C T I O N R E F E R E N C E

23

Errors
MRA_ERR_NO_ERR
MRA_ERR_GETTING_RESULTS_DATA_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_PROCESS_ABORTED
MRA_ERR_INCOMPATIBLE_SCRIPT

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

int mraGetScriptStatus (bool poll,
char errBuf [BUFSIZ])

Description

This function should only be called after calling mraRunScript or
mraSendMetroScriptCommand.

The primary use of this function should be the same as mraIsScriptDone. It should be
used inside a loop that periodically polls whether the script has completed execution in
MetroPro or not. The poll input parameter should be set to true.

The secondary use of this function should be to determine whether there are script
status messages pertaining to a particular operation in the script. These messages are
returned by this function as a numeric value greater than 1. If an immediate action
must be taken prior to the end of the script in a multi-module client application, then
this function must be inside a loop that waits for script completion. The return value
must be checked, and if a status message is returned, immediate action must be taken.

Function mraGetScriptResults must be called after this function returns a script done
status.

 As of 08/05/04, only one status message has been defined in
MetroPro. When FDA (Frequency Domain Analysis) is about to
begin a status message is sent by MetroPro and retrieved by this
function. This status message has a numeric value of 2.

M E T R O P R O R E M O T E A C C E S S

24

Parameters
Poll – input

Boolean input parameter that determines whether this function returns immediately
or waits for incoming data from the server. Pass true if an immediate return is
necessary. Else, pass false (faster throughput).

errBuf
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccessMtd.dll may produce.

Return Values
Returns 0 if the script has not completed execution in MetroPro.

Returns -1 if there was an error. Call function mraGetLastError for additional error
information.

Returns 1 (script done status) if the script completed execution.

Returns a value greater than 1 if a script status message has been received.

Errors
MRA_ERR_NO_ERR
MRA_ERR_GETTING_RESULTS_DATA_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_PROCESS_ABORTED
MRA_ERR_INCOMPATIBLE_SCRIPT

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

25

int mraGetServerStatus ()

Description
This function returns the current status of the server.

Parameters
None

Return Values
The return value is an integer value indicating the current status of the server.

0 – (SERVER UNKNOWN STATE)
This status indicates that either the connection to the remote server has not been
made, or it has been lost. Given that there is no connection, there is no way to
determine what the current server status is.

2 – (WAITING FOR COMMANDS STATE)
This status indicates that there is a valid connection with the remote access server in
MetroPro, and that the server is idle and waiting for remote commands to process.

3 – (RUNNING CLIENT SCRIPT STATE)
This status indicates that there is a valid connection with the remote access server in
MetroPro, and that the remote access server is running a remote script previously
sent by the mraRunScript() MetroPro Remote Access dll function, or
mraSendMetroScriptCommand() MetroPro Remote Access dll function.

4 – (PROCESSING COMMANDS STATE)
This status indicates that there is a valid connection with the remote access server in
MetroPro, and that the remote access server is processing a remote command other
than running a script.

5 – (SERVER SUSPENDED STATE)

This status indicates that there is a valid connection with the remote access server,
but the server is currently unavailable because it is suspended.

6 – (SERVER_SCRIPT_DONE_STATE)

This status indicates that the script previously being run has finished its execution,
and the server is waiting for script results to be retrieved.

Errors
None

M E T R O P R O R E M O T E A C C E S S

26

char mraGetRemoteAbortFlag ()

Description
The remote abort flag is set when an abort message has been received from MetroPro.
This message indicates that a user has aborted the remote access functionality on the
server side in MetroPro by pressing the Escape key twice while the Remote Access
button was pushed down. Function mraClose must be called after getting a remote
abort flag set to true. Then, if the server has not been terminated, call function
mraInitialize to reconnect.

Parameters
None

Return Values
Returns the value of the remote abort flag.

Errors
MRA_ERR_NO_ERR
MRA_ERR_NO_ACCESS_INTERFACE

double mraGetTotalBytesReceived ()

Description
This function returns the cumulative total number of bytes received from MetroPro
during the current remote access session. The total number of bytes received is reset
every time the mraInitialize function is called. The return value of this function is a
good indicator that data is actually being transferred.

Parameters
None

Return Values
Returns the cumulative total number of bytes received from MetroPro during the
current remote access session. Returns a 0 if a communications link was not
previously established.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE

D L L F U N C T I O N R E F E R E N C E

27

double mraGetTotalBytesSent ()
Description
This function returns the cumulative total number of bytes sent to MetroPro during the
current remote access session. The total number of bytes sent is reset every time the
mraInitialize function is called. The return value of this function is a good indicator
that data is actually being transferred. If a communications link was not previously
established, the return value of this function is 0.

Parameters
None

Return Values
Returns the cumulative total number of bytes sent to MetroPro during the current
remote access session. Returns a 0 if a communications link was not previously
established.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

M E T R O P R O R E M O T E A C C E S S

28

int mraInitialize (char errBuf[BUFSIZ],
char username[MAX_USERNAME_LENGTH],
char password[MAX_PASSWORD_LENGTH],
int serverGuiMsgs,
bool_t log_operations)

Description
This function must be the first function called when using MetroProRemoteAccess.dll.
It reads the configuration settings from mraClient.cfg and then tries to establish a
connection with MetroPro using a LAN, according to the configuration file. If
successful, it establishes a communications link with the remote access server in
MetroPro.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

username - input
User name for logging in to the server’s computer. Use username and password
parameters only if either the server or client computers are not logged in to the
same domain in the local area network. The username and password must have
been previously defined in the server’s computer by using Windows NT’s User
Manager. If the server and client computers are logged in the same domain in the
local network, use NULL for both the username and password.
MAX_USERNAME_LENGTH is defined as 20.

password - input
Password is used in combination with username. Do not use if username is not
applicable. The username and password must have been previously defined in the
server’s computer by using Windows NT’s User Manager.
MAX_PASSWORD_LENGTH is defined as 14.

serverGuiMsgs - input
This parameter indicates whether MetroPro will display server status messages.
These messages indicate the current status of MetroPro and hint what is happening
in the background. Use any of the following values:
 1 – (Messages on. Script output enabled)
 2 – (Messages off. Script output disabled)
 3 – (Messages on. Script output disabled)
 4 – (Messages off. Script output enabled)
Function mraTurnOnOffGuiMessages can be used to enable or disable messages
after the client has successfully connected to MetroPro.

log_operations - input
This parameter indicates whether a log file for the client usage of
MetroProRemoteAccess.dll will be kept. Set to TRUE or YES if a log is desired to
keep a record of function calls made to the DLL. Set to FALSE or NO if no log is
needed. Function mraTurnClientLogOnOff can be used to stop logging or enable it.

D L L F U N C T I O N R E F E R E N C E

29

Return Values
Returns MRA_ERR_NO_ERR if successful. Returns an error code if function fails
and errBuf will contain an error string.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_ALREADY_CONNECTED
MRA_ERR_NO_ERR
MRA_ERR_UNABLE_TO_FIND_CFG_FILE
MRA_ERR_INVALID_OPERATING_SYSTEM
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_INVALID_USERNAME_OR_PASSWD
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_NO_NP_SERVER_AVAILABLE
MRA_ERR_NP_CONNECTION_TIMEOUT
MRA_ERR_UNABLE_TO_CREATE_NP_CLIENT
MRA_ERR_UNABLE_TO_ESTABLISH_LINK

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

int mraIsClientOnline ()

Description
This function checks the communication link and determines if there is a valid
connection with the server or not.

Parameters
None

Return Values
Returns 1 if client is currently online. Returns 0 if client is offline.

Errors
None

M E T R O P R O R E M O T E A C C E S S

30

int mraIsScriptDone (char errBuf[BUFSIZ])

Description
This function queries MetroPro to know if it has finished executing a script. It returns
immediately.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR (0) if MetroPro has not finished executing a script.
Otherwise, it returns a number greater than zero. It returns a value less than zero if an
error in communications has occurred.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_QUERYING_SERVER
MRA_ERR_NP_UNABLE_TO_FIND_SERVER

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

int mraLoadScript (char scriptFileName[BUFSIZ],
char errBuf[BUFSIZ])

Description
This function sends the name of a script indicated by scriptFileName to MetroPro. To
have MetroPro run the script loaded by this function, you must call function
mraRunScript. mraLoadScript fails if there is an error in the transmission of the script
name or if the script cannot be found in MetroPro.

Parameters
scriptFileName – input

Null terminated string of type char, which holds the name of the script file to be
loaded by MetroPro.

errBuf – output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

D L L F U N C T I O N R E F E R E N C E

31

Return Values
Returns MRA_ERR_NO_ERR if successful. Otherwise, it returns an error code, and
errBuf will contain an error message.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_UNABLE_TO_SEND_COMMAND
MRA_ERR_UNABLE_TO_LOAD_SCRIPT

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

int mraKillMetroProServer (char errBuf[BUFSIZ])

Description
Use this function to stop the MetroPro remote access server. This function will
transfer a series of commands that will halt any execution in MetroPro and close the
remote access connection. The Remote Access button will pop up.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if remote access server in MetroPro was stopped and
terminated. Returns an error code if an error occurred and errBuf will contain an error
message.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_UNABLE_TO_KILL_SERVER

M E T R O P R O R E M O T E A C C E S S

32

int mraPutFile (char source_fn[BUFSIZ],
char destination_fn[BUFSIZ],
char errBuf[BUFSIZ])

Description
Use this function to send a script or other type of file to MetroPro. All information
sent is validated through a Cyclical Redundancy Check to ensure data integrity. This
function waits for a ready to receive message from MetroPro before starting the data
transfer. The file to transfer is specified by source_fn, and the target file is specified
by destination_fn. A path can be specified for either source or destination if needed.
If no path is specified then the file will be transferred to the MetroPro local directory.

Parameters
source_fn - input

Null terminated string of type char, which holds the name of the file to be
transferred.

destination_fn - input
Null terminated string of type char, which holds the name of the file to be saved to.

errBuf - output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Function returns MRA_ERR_NO_ERR if successful. Returns an error code if it fails,
and errBuf will contain a string error.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_INVALID_OPERATION
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_UNABLE_TO_PROCESS_CRC
MRA_ERR_UNABLE_TO_FIND_FILE
MRA_ERR_PROCESS_TIMEOUT
MRA_ERR_NP_UNABLE_TO_WRITE_DATA
MRA_ERR_NP_UNABLE_TO_READ_DATA
MRA_ERR_PROCESS_ABORTED
MRA_ERR_DATA_TRANSFER_ERROR
MRA_ERR_CRC_ERROR

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

33

int mraRunLoopBackTest (char errBuf[BUFSIZ])

Description
This function runs a loop back test with MetroPro, which is a diagnostic tool to ensure
that a good communication link exists between the Client process and MetroPro. The
test consists of the generation and transfer of random numbers between the client
process and MetroPro.

Parameters
errBuf – output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if successful. Otherwise, it returns an error code, and
errBuf will contain an error message.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_DATA_TRANSFER_ERR
MRA_ERR_LOOPBACKTEST_ERROR

M E T R O P R O R E M O T E A C C E S S

34

int mraRunScript (char scriptFileName[BUFSIZ],
char errBuf[BUFSIZ])

Description
This function tells MetroPro to load and run the MetroScript script specified by
scriptFileName. The script must have been transferred to the MetroPro computer
prior to calling this function. If scriptFileName is null, MetroPro will run the last
script loaded while connected. If no scripts have been loaded before, this function
fails.
If a script requires user interaction in MetroPro, a script incompatible error will be
returned unless the server configuration file allows all scripts to be executed.

Parameters
scriptFileName – input

Null terminated string of type char, which holds the name of the script to be run in
MetroPro.

errBuf – output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if successful. Otherwise, it returns an error code, and
errBuf will contain an error message.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_NP_UNABLE_TO_FIND_SERVER
MRA_ERR_DATA_TRANSFER_ERR
MRA_ERR_INCOMPATIBLE_SCRIPT

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

35

int mraSendMetroScriptCommand
(char *metroScriptCommand,
char errBuf[BUFSIZ])

Description
Use this function to send a one line, single MetroScript command to MetroPro.
MetroPro will execute the script command as soon as it receives it. MetroPro will
interpret every remote command as a different script. Call function
mraWaitScriptDone and mraGetScriptResults to obtain the results of the execution of
the command.
If a command requires user interaction in MetroPro, a script incompatible error will be
returned unless the server configuration file allows all scripts to be executed.

Parameters
MetroScriptCommand - input

Null terminated string that holds the MetroScript command to be transferred. The
maximum size of the string is 512 characters.

errBuf – output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if successful, otherwise, it returns an error code and
errBuf will have an error message in it.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_INVALID_OPERATION
MRA_ERR_UNABLE_TO_SEND_COMMAND
MRA_ERR_STRING_TOO_LONG
MRA_ERR_UNABLE_TO_FIND_FILE
MRA_ERR_INCOMPATIBLE_SCRIPT

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

M E T R O P R O R E M O T E A C C E S S

36

int mraSetAbortFlag (int value)
Description
This function sets the abort Flag to TRUE if value is greater than 0. If value is equal
or less than 0, the abort Flag is set to FALSE. This function must be used carefully.
You will not be able to communicate with MetroPro while the abort Flag is set to
TRUE.

Parameters
value – input

Integer parameter used to set the abort Flag.

Return Values
Always returns 0.

int mraSetClientWindow (HWND clientProcessWindow)

Description
This function sets the window handle of the client process to be used by function
mraAbortCheck.

Parameters
ClientProcessWindow - input

A value of type HWND, which holds the window handle of the client process.

Return Values
Returns MRA_ERR_NO_ERR if successful. Returns an error code if it fails.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_OPERATION

D L L F U N C T I O N R E F E R E N C E

37

int mraSetConnectionPolling (int flag,
int interval)

Description
Enables or disables the connection polling from the client to the server (i.e. MetroPro)
and sets the polling interval. A background thread is used in
MetroProRemoteAccess.dll to constantly check the connection with the server. This
assures that even though the client may not be communicating with the server
constantly, the connection is being verified in a continuous base. It is not
recommended that the connection polling be disabled. The default polling interval is
2000 milliseconds.

Parameters
flag - input

Set to 1 to enable connection polling. Set to 0 for disabling connection polling.
interval - input

Set to the number of milliseconds between connection checks.

Return Values
Returns MRA_ERR_NO_ERR if successful. Otherwise, returns an error.

Errors
MRA_ERR_NO_ERR
MRA_ERR_UNABLE_TO_SUSPEND_POLLING
MRA_ERR_UNABLE_TO_RESUME_POLLING

M E T R O P R O R E M O T E A C C E S S

38

int mraSetCurrentServer (char errBuf[BUFSIZ],
int serverId)

Description
Use this function only when remotely controlling more than one ZYGO
interferometers.
This function switches the communication link to the server specified by serverId.
This parameter must be a valid id value already defined as a tag in mraClient.cfg.
mraSetCurrentServer checks file mraClient.cfg to verify that serverId is defined in the
configuration file prior to allowing the switching of the communications link. The
default serverId is 1.
After calling mraSetCurrentServer, the communications link will continue to point to
the specified server until another call to mraSetCurrentServer is made or the
connection terminates. The maximum number of interferometers that can be
controlled simultaneously from MetroProRemoteAccess.dll is 32.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

serverId - input
Integer value specifying the id of the server to control. This value must be greater
than zero and less than 32.

Return Value
Returns MRA_NO_ERR if the communications link was switched successfully to the
server specified by serverId. Returns an error otherwise.

Errors
MRA_ERR_NO_ERR
MRA_ERR_UNABLE_TO_FIND_CFG_FILE
MRA_ERR_UNABLE_TO_FIND_SERVER_TAG
MRA_ERR_INVALID_SERVER_INDEX

D L L F U N C T I O N R E F E R E N C E

39

int mraSetLoggingParameters
(bool_t setPath, char path[BUFSIZ],
bool_t overwriteLogFile,
bool_t createNewLogFile,
bool_t enableLogging,
char errBuf[BUFSIZ])

Description
This function sets remote access DLL logging parameters. It allows setting a new log
file path, overwriting and creating a new log file, and enabling and disabling logging.

Parameters

setPath — input
Boolean parameter that indicates whether a new log path is to be used. If set to
TRUE, path parameter is used as new log file path. If set to FALSE, path parameter
is ignored.

path — input
Null terminated string of type char which holds the new log path to be used.

overwriteLogFile — input
Boolean parameter that indicates whether current log file is to be overwritten. If set
to TRUE, current log file’s contents are erased. If logging is enabled, subsequent
logging will continue to be done in same log file.

createNewLogFile — input
Boolean parameter that indicates whether to start logging in a new log file. If set to
TRUE, subsequent logging will be done in a new log file if logging is enabled.
Current log file’s contents are not erased.

enableLogging — input
Boolean parameter that indicates whether to enable or disable logging. If set to
TRUE, MetroPro Remote Access DLL function calls are logged to current log file
or it creates a new log file if not previously created. If set to FALSE, it does not log
Remote Access DLL function calls. If createNewLogFile parameter is set to
TRUE, it continues to log in new log file.

errBuf — output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR (0) if successful. Otherwise, it returns an error code,
and errBuf will contain an error message. mraGetLastError can also be used to check
the status of this command.

Errors
MRA_ERR_STRING_TOO_LONG
MRA_ERR_INVALID_OPERATION

M E T R O P R O R E M O T E A C C E S S

40

int mraSetSuspendPermissions (int permission,
char errBuf[BUFSIZ])

Description
This function sets permissions allowing or denying local suspend and resume
capabilities. A valid connection with the remote access server in MetroPro must have
been established prior to calling this function. The remote access server must not
already be suspended in order for this function to operate correctly.

Parameters
permission — input

Integer value which sets the suspend/resume permissions for the local user in
MetroPro. The values can be any of the following:
0 – (DENY LOCAL USER SUSPEND PERMISSION)
This permission denies the local user in MetroPro access to suspend and resume
capabilities. The F11 key press will not function.

1 – (ALLOW LOCAL USER SUSPEND PERMISSION INTERACTIVE)
This permission allows the local user in MetroPro access to suspend and resume
capabilities, but it prompts with a confirmation dialog first.

2 – (ALLOW LOCAL USUER SUSPEND PERMISSION)
This permission allows the local user in MetroPro access to suspend and resume
capabilities. There is no prompt for confirmation dialog.

errBuf — output
Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR (0) if successful. Otherwise, it returns an error code,
and errBuf will contain an error message. mraGetLastError can also be used to check
the status of this command.

Errors
MRA_ERR_SERVER_SUSPENDED
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_NACK_RECEIVED
MRA_ERR_NO_ERR
MRA_ERR_UNABLE_TO_SEND_COMMAND

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

41

int mraStopMetroProProcessing (char errBuf[BUFSIZ])

Description
Use this function to stop a script executing in MetroPro. This function should only be
used after function mraRunScript() has been previously called.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if processing in MetroPro was stopped. Returns an
error code if an error occurred, and errBuf will contain an error message.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_QUERYING_SERVER
MRA_ERR_UNABLE_TO_STOP_SERVER

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

M E T R O P R O R E M O T E A C C E S S

42

int mraSuspendServer (char errBuff[BUFSIZ])

Description
This function suspends the remote access server in MetroPro if the server is running
and idle when this function is called. A valid connection to the remote access server
in MetroPro must exist prior to calling this function.

Parameters
errBuf – output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR (0) if successful. Otherwise, it returns an error code,
and errBuf will contain an error message. mraGetLastError can also be used to check
the status of this command.

Errors
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_SERVER_SUSPENDED
MRA_ERR_NO_ERR
MRA_ERR_NP_UNABLE_TO_WRITE_DATA
MRA_ERR_SERIAL_UNABLE_TO_WRITE_DATA
MAR_ERR_INVALID_OPERATION
MRA_ERR_NACK_RECEIVED
MRA_ERR_UNABLE_TO_SEND_COMMAND

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

43

int mraTurnClientLogOnOff (bool_t log)

Description
Use to enable or disable logging function calls made to MetroProRemoteAccess.dll
once a communication has been established. The log file is stored in the directory
where the DLL is located. The log file name has an ‘mrac’ prefix, which stands for
MetroPro Remote Access Client, the current date and time, and a ‘.log’ extension (e.g.
mrac040402115002.log). Every time a MetroProRemoteAccess.dll function is called,
it is stored in the log file with the parameters passed, the return value, error buffer
received, and a token indicating whether the function succeeded or failed. Each entry
in the log file is given an index number. The date and time the function was called is
also recorded.

Parameters
log - input

Use TRUE or YES to begin logging function calls or to resume logging activities.
If parameter log_operations in mraInitialize was set to FALSE, this function creates
a new log file and begins recording function calls made. Use FALSE or NO for
stopping logging activities. Subsequent function calls made will not be recorded.

Return Values
Returns MRA_ERR_NO_ERR if successful. Otherwise an error code is returned.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_OPERATION

M E T R O P R O R E M O T E A C C E S S

44

int mraTurnOnOffGuiMessages (char errBuf[BUFSIZ],
int messages)

Description
Use this function for turning on or off the server’s status messages in MetroPro. This
function should only be used after communications have been established with the
server. Do not use while waiting for script or single command results. MetroScript’s
‘print’ command will not display information on the screen if the messages are turned
off.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

messages - input
Integer value used for determining server GUI information display. Use any of the
following values.
1 – (Messages on. Script output enabled)
2 – (Messages off. Script output disabled)
3 – (Messages on. Script output disabled)
4 – (Messages off. Script output enabled)

Return Values
Returns MRA_ERR_NO_ERR if successful. Otherwise an error code is returned.

Errors
MRA_ERR_NO_ERR
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_NO_ACCESS_INTERFACE
MRA_ERR_INVALID_OPERATION
MRA_ERR_UNABLE_TO_SEND_COMMAND

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

D L L F U N C T I O N R E F E R E N C E

45

int mraWaitScriptDone (char errBuf[BUFSIZ])

Description
This function waits until MetroPro has finished executing a script.

Parameters
errBuf - output

Null terminated string of type char, which holds any error messages that
MetroProRemoteAccess.dll may produce.

Return Values
Returns MRA_ERR_NO_ERR if script was executed. Returns an error code if an
error occurred, and errBuf will contain an error message.

Errors
MRA_ERR_NO_ERR
MRA_ERR_QUERYING_SERVER
MRA_ERR_INVALID_PARAMETERS
MRA_ERR_INVALID_HANDLE
MRA_ERR_INVALID_OPERATION
MRA_ERR_SERVER_ERROR
MRA_ERR_DATA_TRANSFER_ERROR

 Use function mraGetLastError to retrieve errors produced by
MetroPro Remote Access DLL functions.

M E T R O P R O R E M O T E A C C E S S

46

47

Example User Programs
Chapter

4

Sample C Header File
This is a C header file used with samples in this chapter. It is referred to as mpClient.h.

/*

 * mpClient.h

 */

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include <winbase.h>

#include <time.h>

#include <conio.h>

#include <io.h>

#include <ctype.h>

#include <winnt.h>

#include <malloc.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <math.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <winnetwk.h>

#include <sys/timeb.h>

#include <mmsystem.h>

#include <winuser.h>

#define MRA_NP_INTERFACE 1

#define MRA_NO_INTERFACE 0

#ifndef _BOOL_T

define _BOOL_T

 typedef unsigned char bool_t;

#endif

#define YES ((bool_t) 1)

#define NO ((bool_t) 0)

#define ON YES

#define OFF NO

#define MAX_USERNAME_LENGTH 20

#define MAX_PASSWORD_LENGTH 14

#define CALLBACK __stdcall

/* Define Error Codes*/

#define MRA_ERR_NO_ERR 0

M E T R O P R O R E M O T E A C C E S S

48

#define MRA_ERR_INVALID_PARAMETERS 1

#define MRA_ERR_PROCESS_ABORTED 2

#define MRA_ERR_INVALID_HANDLE 3

#define MRA_ERR_NO_ACCESS_INTERFACE 4

#define MRA_ERR_NP_PACKET_TIMEOUT 6

#define MRA_ERR_NP_READ_TIMEOUT 8

#define MRA_ERR_NP_CONNECTION_TIMEOUT 10

#define MRA_ERR_NP_UNABLE_TO_FIND_SERVER 11

#define MRA_ERR_NP_UNABLE_TO_READ_DATA 12

#define MRA_ERR_NP_UNABLE_TO_WRITE_DATA 15

#define MRA_ERR_UNABLE_TO_FIND_CFG_FILE 16

#define MRA_ERR_INVALID_OPERATING_SYSTEM 17

#define MRA_ERR_UNABLE_TO_ESTABLISH_LINK 18

#define MRA_ERR_NO_NP_SERVER_AVAILABLE 19

#define MRA_ERR_UNABLE_TO_CREATE_NP_CLIENT 20

#define MRA_ERR_SERVER_ERROR 21

#define MRA_ERR_DATA_TRANSFER_ERROR 22

#define MRA_ERR_UNABLE_TO_FIND_FILE 23

#define MRA_ERR_PROCESS_TIMEOUT 24

#define MRA_ERR_UNABLE_TO_PROCESS_CRC 25

#define MRA_ERR_CRC_ERROR 26

#define MRA_ERR_UNABLE_TO_WRITE_TO_DISK 27

#define MRA_ERR_ALREADY_CONNECTED 28

#define MRA_ERR_LOOPBACKTEST_ERROR 29

#define MRA_ERR_UNABLE_TO_ECHO_DATA 30

#define MRA_ERR_UNABLE_TO_SEND_COMMAND 31

#define MRA_ERR_STRING_TOO_LONG 32

#define MRA_ERR_UNABLE_TO_STOP_SERVER 33

#define MRA_ERR_UNABLE_TO_KILL_SERVER 34

#define MRA_ERR_INVALID_OPERATION 35

#define MRA_ERR_INVALID_USERNAME_OR_PASSWD 36

#define MRA_ERR_INVALID_SERVER_INDEX 37

#define MRA_ERR_UNABLE_TO_FIND_SERVER_TAG 38

#define MRA_ERR_UNABLE_TO_LOAD_SCRIPT 39

#define MRA_ERR_UNABLE_TO_DELETE_FILE 40

#define MRA_ERR_UNABLE_TO_RESUME_POLLING 41

#define MRA_ERR_UNABLE_TO_SUSPEND_POLLING 42

#define MRA_ERR_GETTING_RESULTS_DATA_ERR -1

#define MRA_ERR_QUERYING_SERVER -2

/* define function pointers data type*/

typedef int (CALLBACK* MRAINITIALIZE) (char errBuf[BUFSIZ],

 char username[MAX_USERNAME_LENGTH],

 char password[MAX_PASSWORD_LENGTH],

 int messages,

 bool_t log_operations);

typedef int (CALLBACK* MRARUNSCRIPT) (char scriptFileName[BUFSIZ],

char errBuf[BUFSIZ]);

E X A M P L E U S E R P R O G R A M S

49

typedef int (CALLBACK* MRAPUTFILE) (char source_fn[BUFSIZ],

 char destination_fn[BUFSIZ],

 char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAGETFILE) (char source_fn[BUFSIZ],

 char destination_fn[BUFSIZ],

 char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAGETSCRIPTRESULTS) (char mpErrMsg[BUFSIZ],

 char mpOutput[BUFSIZ],

 char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRALOADSCRIPT) (char scriptFileName[BUFSIZ],

char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRATURNONOFFGUIMESSAGES) (char errBuf[BUFSIZ], int messages);

typedef int (CALLBACK* MRASETCURRENTSERVER) (char errBuf[BUFSIZ], int server);

typedef int (CALLBACK* MRAWAITSCRIPTDONE) (char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRARUNLOOPBACKTEST) (char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRACLOSE) (char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAABORTCHECK) (char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAFLUSHPIPE) (char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAISSCRIPTDONE) (char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRASTOPMETROPROPROCESSING)(char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAKILLMETROPROPROSERVER)(char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRASETCLIENTWINDOW) (HWND clientProcessWindow);

typedef char (CALLBACK* MRAGETABORTFLAG) ();

typedef int (CALLBACK* MRASETABORTFLAG) (int value);

typedef char (CALLBACK* MRAGETLOCALABORTFLAG) ();

typedef char (CALLBACK* MRAGETREMOTEABORTFLAG) ();

typedef int (CALLBACK* MRAENABLEABORTCHECK) ();

typedef int (CALLBACK* MRADISABLEABORTCHECK) ();

typedef int (CALLBACK* MRAGETCURRENTSERVER) ();

typedef HANDLE (CALLBACK* MRAGETCLIENTHANDLE) ();

typedef HWND (CALLBACK* MRAGETCLIENTWINDOW) ();

typedef double (CALLBACK* MRAGETTOTALBYTESRECEIVED) ();

typedef double (CALLBACK* MRAGETTOTALBYTESSENT) ();

typedef int (CALLBACK* MRATURNCLIENTLOGONOFF) (bool_t log);

typedef int (CALLBACK* MRASETCONNECTIONPOLLING) (int flag, int interval);

typedef int (CALLBACK* MRAGETLASTERROR) ();

typedef void(CALLBACK* MRACLEARLASTERROR) ();

typedef int (CALLBACK* MRAISCLIENTONLINE) ();

typedef int (CALLBACK* MRASENDMETROSCRIPTCOMMAND) (char * metroScriptCommand,

 char errBuf[BUFSIZ]);

typedef int (CALLBACK* MRAGETCLIENTACCESSINTERFACE) ();

/* declare extern function pointers. */

MRAINITIALIZE mra_Initialize;

MRASENDMETROSCRIPTCOMMAND mra_SendMetroScriptCommand;

MRARUNSCRIPT mra_RunScript;

MRAPUTFILE mra_PutFile;

MRAGETFILE mra_GetFile;

MRALOADSCRIPT mra_LoadScript;

MRAWAITSCRIPTDONE mra_WaitScriptDone;

MRAGETSCRIPTRESULTS mra_GetScriptResults;

MRARUNLOOPBACKTEST mra_RunLoopBackTest;

MRACLOSE mra_Close;

M E T R O P R O R E M O T E A C C E S S

50

MRAABORTCHECK mra_AbortCheck;

MRAFLUSHPIPE mra_FlushPipe;

MRAISSCRIPTDONE mra_IsScriptDone;

MRASETCLIENTWINDOW mra_SetClientWindow;

MRAGETABORTFLAG mra_GetAbortFlag;

MRASETABORTFLAG mra_SetAbortFlag;

MRAGETLOCALABORTFLAG mra_GetLocalAbortFlag;

MRAGETREMOTEABORTFLAG mra_GetRemoteAbortFlag;

MRAENABLEABORTCHECK mra_EnableAbortCheck;

MRADISABLEABORTCHECK mra_DisableAbortCheck;

MRAGETCLIENTHANDLE mra_GetClientHandle;

MRAGETCLIENTWINDOW mra_GetClientWindow;

MRAGETTOTALBYTESRECEIVED mra_GetTotalBytesReceived;

MRAGETTOTALBYTESSENT mra_GetTotalBytesSent;

MRAGETCLIENTACCESSINTERFACE mra_GetClientAccessInterface;

MRASTOPMETROPROPROCESSING mra_StopMetroProProcessing;

MRAKILLMETROPROPROSERVER mra_KillMetroProServer;

MRATURNONOFFGUIMESSAGES mra_TurnOnOffGuiMessages;

MRATURNCLIENTLOGONOFF mra_TurnClientLogOnOff;

MRASETCURRENTSERVER mra_SetCurrentServer;

MRAGETCURRENTSERVER mra_GetCurrentServer;

MRASETCONNECTIONPOLLING mra_SetConnectionPolling;

MRAGETLASTERROR mra_GetLastError;

MRACLEARLASTERROR mra_ClearLastError;

MRAISCLIENTONLINE mra_IsClientOnline;

/* End of File*/

E X A M P L E U S E R P R O G R A M S

51

Example 1 - Transfer and Run a MetroScript File

This C program uses MetroProRemoteAccess.dll to run a script remotely in MetroPro and wait for the execution
to finish.
/* runscript.c

 * Algorithm:

 * 1. Load MetroProRemoteAccess.DLL

 * 2. Get Process Addresses for function needed.

 * 3. Verify all functions were loaded.

 * 4. Establish connection with MetroPro.

 * 5. Transfer script file to MetroPro. (if script file is not in MetroPro computer).

 * 6. Send Run Script command to MetroPro.

 * 7. Wait for script to be done.

 * 8. Get Script Results.

 * 9. Close Connection.

 * 10.Close DLL.

 */

#include "mpClient.h"

int main()

{

 int fail = 0,

 ok = 0,

 scriptDone = 0,

 dll_ok = 0,

 err = 0;

 char errBuf[BUFSIZ];

 char MpErrorMsg[BUFSIZ], MpOutput[BUFSIZ],

 in_script[BUFSIZ], out_script[BUFSIZ],

 username[MAX_USERNAME_LENGTH], password[MAX_PASSWORD_LENGTH];

 int messages;

 bool_t log_operations;

 HINSTANCE mpClientLib;

 memset(errBuf, '\0', BUFSIZ);

 // STEP 1

 // Load DLL.

 mpClientLib = LoadLibrary("MetroProRemoteAccess.dll");

 if (mpClientLib != NULL)

 {

 // DLL loaded!

 printf("\nDLL loaded successfully.");

 // STEP 2

 // Get Process Addresses for DLL functions needed.

 mra_Initialize = (MRAINITIALIZE) GetProcAddress(mpClientLib, "mraInitialize");

mra_RunScript = (MRARUNSCRIPT) GetProcAddress(mpClientLib, "mraRunScript");

 mra_WaitScriptDone = (MRAWAITSCRIPTDONE) \

GetProcAddress(mpClientLib, “mraWaitScriptDone");

M E T R O P R O R E M O T E A C C E S S

52

mra_GetScriptResults = (MRAGETSCRIPTRESULTS) \

GetProcAddress(mpClientLib, "mraGetScriptResults");

 mra_Close = (MRACLOSE) GetProcAddress(mpClientLib, "mraClose");

 mra_PutFile = (MRAPUTFILE) GetProcAddress(mpClientLib, "mraPutFile");

 mra_GetLastError = (MRAGETLASTERROR) GetProcAddress(mpClientLib, "mraGetLastError");

 mra_ClearLastError = (MRACLEARLASTERROR) \

GetProcAddress(mpClientLib, "mraClearLastError");

mra_IsClientOnline = (MRAISCLIENTONLINE) \

GetProcAddress(mpClientLib, "mraIsClientOnline");

 // STEP 3

 // Verify that all functions were loaded.

 if(! mra_Initialize || ! mra_RunScript ||

 ! mra_WaitScriptDone || ! mra_GetScriptResults ||

 ! mra_Close || ! mra_PutFile ||

 ! mra_GetLastError || ! mra_ClearLastError ||

 ! mra_IsClientOnline)

 {

 // Not all functions were loaded. Check spelling.

 dll_ok = 0;

 }

 else

 {

 // All functions were loaded successfully.

 dll_ok = 1;

 }

 }

 else // Error loading DLL. Check file.

 {

 printf("\nError. Unable to load MetroProRemoteAccess.dll");

 }

 // Begin Remote Control of MetroPro.

 if(dll_ok)

 {

 // STEP 4

 // Establish Connection with MetroPro.

 // Set username and password.

 strcpy(username, "my_username");

 strcpy(password, "my_pwd");

 // Turn server info messages on.

 messages = 1;

 // Turn client logging on.

 log_operations = TRUE;

 mra_ClearLastError();

 err = mra_Initialize (errBuf, username, password, messages, log_operations);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

E X A M P L E U S E R P R O G R A M S

53

 case MRA_ERR_ALREADY_CONNECTED:

 // Already connected to MetroPro.

 case MRA_ERR_UNABLE_TO_FIND_CFG_FILE:

 // Can't find mraClient.cfg. Make sure it is in the local directory.

 case MRA_ERR_INVALID_OPERATING_SYSTEM:

 // Must use Windows NT.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER:

 // Machine with name as specified in mraClient.cfg cannot be found on network.

 case MRA_ERR_INVALID_USERNAME_OR_PASSWD:

 // User could not be authenticated.

 case MRA_ERR_NO_NP_SERVER_AVAILABLE:

 // A Named Pipe server cannot be found on machine specified in mraClient.cfg

 case MRA_ERR_NP_CONNECTION_TIMEOUT:

 // A named pipe connection timeout has occurred.

 // Named pipe server is currently not available.

 case MRA_ERR_UNABLE_TO_CREATE_NP_CLIENT:

 // Internal error. Cannot create named pipe client.

 case MRA_ERR_UNABLE_TO_ESTABLISH_LINK:

 // Unable to perform initial software handshake. Disconnect and reconnect.

 fail = 1;

 break;

 }

 }

 else // Connection was established successfully.

 {

 fail = 0;

 }

 if(! fail)

 {

 // STEP 5

 // Transfer script to Metropro.

 mra_ClearLastError();

 strcpy(in_script, "c:\\remotehost\\zygo\\measure.scr");

 strcpy(out_script, "c:\\metropro\\cur_dir\\measure.scr");

 err = mra_PutFile(in_script, out_script, errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE:

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_INVALID_OPERATION:

 // A script is running in MetroPro and its results need to be obtained

// prior to performing any other operation.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER:

 // Connection has been lost. Disconnect and reconnect.

 case MRA_ERR_UNABLE_TO_PROCESS_CRC:

 // Unable to process Cyclic Redundancy Check on data.

 // Verify a valid file is being transferred.

 case MRA_ERR_UNABLE_TO_FIND_FILE:

M E T R O P R O R E M O T E A C C E S S

54

 // Unable to find file in provided pathname.

 case MRA_ERR_PROCESS_TIMEOUT:

 // Error. Disconnect and reconnect.

 case MRA_ERR_NP_UNABLE_TO_WRITE_DATA:

 // A Named Pipe error occurred. Unable to write data. Disconnect and reconnect.

 case MRA_ERR_NP_UNABLE_TO_READ_DATA:

 // A Named Pipe error occurred. Unable to read data. Disconnect and reconnect.

 case MRA_ERR_PROCESS_ABORTED:

 // Process has been aborted by local user.

 case MRA_ERR_DATA_TRANSFER_ERROR:

 // Unable to transfer all bytes in file. Retry.

 case MRA_ERR_CRC_ERROR:

 // Data has been corrupted. Unable to verify Cyclic Redundancy Check. Retry.

 fail = 1;

 break;

 }

 }

 else

 fail = 0;

 if (fail)

 goto close;

 // STEP 6

 // Run Script "c:\\metropro\\cur_dir\\measure.scr"

 mra_ClearLastError();

 err = mra_RunScript(out_script, errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_NO_ACCESS_INTERFACE :

 // There is no communication channel with MetroPro. Connect first.

 case MRA_ERR_INVALID_OPERATION :

 // A script is running in MetroPro and its results need to be obtained

// prior to performing any other operation.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER :

 // Connection has been lost. Disconnect and reconnect.

 case MRA_ERR_DATA_TRANSFER_ERROR :

 // Unable to transfer data. Retry.

 fail = 1;

 break;

 }

 }

 else

 fail = 0;

 if (fail || errBuf[0] != '\0')

 {

 // There was an error loading and/or opening the script and/or sending the command.

E X A M P L E U S E R P R O G R A M S

55

 printf("\nError = %s", errBuf);

 }

 if (! fail)

 {

 // STEP 7

 // If run script request did not fail and was received by MetroPro successfully,

 // then wait for results.

 mra_ClearLastError();

 err = mra_WaitScriptDone(errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch(err)

 {

 case MRA_ERR_QUERYING_SERVER :

 // Fatal Error. Process is unable to get information from server. Make sure

// functions are being called in the right order. Retry.

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_INVALID_OPERATION :

 // A script is running in MetroPro and its results need to be obtained prior

// to performing any other operation.

 case MRA_ERR_SERVER_ERROR :

 // Disconnect and reconnect.

 case MRA_ERR_DATA_TRANSFER_ERROR :

 // Unable to transfer data. Retry.

 fail = 1;

 break;

 }

 }

 else

 {

 // STEP 8

 mra_ClearLastError();

 err = mra_GetScriptResults(MpErrorMsg, MpOutput, errBuf);

 if (errBuf[0] != '\0' && err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch(err)

 {

 case MRA_ERR_GETTING_RESULTS_DATA_ERR :

 // Process is unable to get results from script execution.

 // Disconnect, reconnect and retry.

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_NO_ACCESS_INTERFACE :

 // There is no communication channel with MetroPro. Connect first.

 case MRA_ERR_INVALID_OPERATION :

 // A script must be completed in MetroPro in order for this function to

M E T R O P R O R E M O T E A C C E S S

56

 // work properly. Functions mraRunScript and mraWaitScriptDone or

 // mraIsScriptDone must have been called first in order to obtain

 // script results.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER :

 // Connection has been lost.

 case MRA_ERR_PROCESS_ABORTED :

 // Process has been aborted by user.

 fail = 1;

 break;

 }

 }

 else

 {

 // Script execution was successful.

 if (MpErrorMsg[0] == '\0')

 {

 printf("\nCommand execution was successful!");

 if (MpOutput[0] != '\0')

 {

 // If output expected from script execution.

 printf ("\nMetroPro output = %s", MpOutput);

 }

 }

 // In case that MetroPro doesn't report an error code.

 if (MpErrorMsg[0] != '\0')

 printf("\nReceived Error = %s", MpErrorMsg);

 if (err > 0)

 {

 // Script execution failed.

 if (MpErrorMsg[0] != '\0')

 {

 // There were errors in script execution.

 printf ("\nMetroPro error = %s", MpErrorMsg);

 }

 }

 }

 }

 }

 }

 // Step 9

 // Close connection.

 mra_ClearLastError();

 err = mra_Close(errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_OPERATION:

E X A M P L E U S E R P R O G R A M S

57

 // Connection already closed.

 case MRA_ERR_INVALID_HANDLE:

 // Unable to close connection. Invalid handle.

 case MRA_ERR_NO_ACCESS_INTERFACE:

 // There is no connection to close.

 break;

 }

 }

 } // end of “if(dll_ok)”

 close:

 // STEP 10

 // Close DLL.

 FreeLibrary(mpClientLib);

 mpClientLib = NULL;

 mra_Initialize = NULL;

 mra_RunScript = NULL;

 mra_WaitScriptDone = NULL;

 mra_GetScriptResults = NULL;

 mra_Close = NULL;

 mra_PutFile = NULL;

 return 0;

}

M E T R O P R O R E M O T E A C C E S S

58

Example 2 – Transfer, Run, and Query a MetroScript File
This C program uses MetroProRemoteAccess.dll to run a script in MetroPro remotely and query MetroPro to see
if the script execution has finished. This program is more flexible than Example 1.

/* runscript2.c

 * Algorithm:

 * 1. Load MetroProRemoteAccess.DLL.

 * 2. Get Process Addresses for function needed.

 * 3. Verify all functions were loaded.

 * 4. Establish connection with MetroPro.

 * 5. Transfer script file to MetroPro.

 * (if script file is not in MetroPro computer).

 * 6. Send Run Script command to MetroPro.

 * 7. Query MetroPro to see if script is done.

 * 8. Get Script Results.

 * 9. Close Connection.

 * 10.Close DLL.

 */

#include "mpClient.h"

int main()

{

 int fail = 0,

 ok = 0,

 scriptDone = 0,

 dll_ok = 0,

 err = 0,

 nbytes = 0;

 char errBuf[BUFSIZ];

 char MpErrorMsg[BUFSIZ],

 MpOutput[BUFSIZ],

 in_script[BUFSIZ],

 out_script[BUFSIZ],

 username[MAX_USERNAME_LENGTH],

 password[MAX_PASSWORD_LENGTH];

 int messages;

 bool_t log_operations;

 HINSTANCE mpClientLib;

 memset(errBuf, '\0', BUFSIZ);

 // STEP 1

 // Load DLL.

 mpClientLib = LoadLibrary("MetroProRemoteAccess.dll");

 if (mpClientLib != NULL)

 {

 // DLL loaded

 printf("\nDLL loaded successfully.");

 // STEP 2

 // Get Process Addresses for DLL functions needed.

 mra_Initialize = (MRAINITIALIZE) GetProcAddress(mpClientLib, "mraInitialize");

mra_RunScript = (MRARUNSCRIPT) GetProcAddress(mpClientLib, "mraRunScript");

mra_IsScriptDone = (MRAISSCRIPTDONE) GetProcAddress(mpClientLib, "mraIsScriptDone");

E X A M P L E U S E R P R O G R A M S

59

mra_GetScriptResults = (MRAGETSCRIPTRESULTS) \

GetProcAddress(mpClientLib, "mraGetScriptResults");

 mra_Close = (MRACLOSE) GetProcAddress(mpClientLib, "mraClose");

 mra_PutFile = (MRAPUTFILE) GetProcAddress(mpClientLib, "mraPutFile");

 mra_GetLastError = (MRAGETLASTERROR) GetProcAddress(mpClientLib, "mraGetLastError");

 mra_ClearLastError = (MRACLEARLASTERROR) \

GetProcAddress(mpClientLib, "mraClearLastError");

mra_IsClientOnline = (MRAISCLIENTONLINE) \

GetProcAddress(mpClientLib, "mraIsClientOnline");

 // STEP 3

 // Verify that all functions were loaded.

 if(! mra_Initialize || ! mra_RunScript ||

 ! mra_IsScriptDone || ! mra_GetScriptResults ||

 ! mra_Close || ! mra_PutFile ||

 ! mra_GetLastError || ! mra_ClearLastError ||

 ! mra_IsClientOnline)

 {

 // Not all functions were loaded. Check spelling.

 dll_ok = 0;

 }

 else

 {

 // All functions were loaded successfully.

 dll_ok = 1;

 }

 }

 else

 {

 // Error loading DLL. Check file.

 printf("\nError. Unable to load MetroProRemoteAccess.dll");

 }

 // Begin Remote Control of MetroPro.

 if(dll_ok)

 {

 // STEP 4

 // Establish Connection with MetroPro.

 // Set username and password.

 strcpy(username, "my_username");

 strcpy(password, "my_pwd");

 // Turn server info messages on.

 messages = 1;

 // Turn client logging on.

 log_operations = TRUE;

 mra_ClearLastError();

 err = mra_Initialize (errBuf, username, password, messages, log_operations);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

M E T R O P R O R E M O T E A C C E S S

60

 case MRA_ERR_ALREADY_CONNECTED:

 // Already connected to MetroPro.

 case MRA_ERR_UNABLE_TO_FIND_CFG_FILE:

 // Can't find mraClient.cfg. Make sure it is in the local directory

 case MRA_ERR_INVALID_OPERATING_SYSTEM:

 // Must use Windows NT.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER:

 // Machine with name as specified in mraClient.cfg cannot be found in network.

 case MRA_ERR_INVALID_USERNAME_OR_PASSWD:

 // User could not be authenticated.

 case MRA_ERR_NO_NP_SERVER_AVAILABLE:

 // A Named Pipe server cannot be found on machine specified in mraClient.cfg

 case MRA_ERR_NP_CONNECTION_TIMEOUT:

 // A named pipe connection timeout has occurred.

 // Named pipe server is currently not available .

 case MRA_ERR_UNABLE_TO_CREATE_NP_CLIENT:

 // Internal error. Cannot create named pipe client.

 case MRA_ERR_UNABLE_TO_ESTABLISH_LINK:

 // Unable to perform initial software handshake. Disconnect and reconnect.

 fail = 1;

 break;

 }

 }

 else

 {

 // Connection was established successfully.

 fail = 0;

 }

 if(! fail)

 {

 // STEP 5

 // Transfer script to Metropro.

 mra_ClearLastError();

 strcpy(in_script, "c:\\remotehost\\zygo\\measure.scr");

 strcpy(out_script, "c:\\metropro\\cur_dir\\measure.scr");

 err = mra_PutFile(in_script, out_script, errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE:

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_INVALID_OPERATION:

 // A script is running in MetroPro and its results

 // need to be obtained prior to performing any other operation.

E X A M P L E U S E R P R O G R A M S

61

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER:

 // Connection has been lost. Disconnect and reconnect.

 case MRA_ERR_UNABLE_TO_PROCESS_CRC:

 // Unable to process Cyclic Redundancy Check on data.

 // Verify a valid file is being transferred.

 case MRA_ERR_UNABLE_TO_FIND_FILE:

 // Unable to find file in provided pathname.

 case MRA_ERR_PROCESS_TIMEOUT:

 // Error. Disconnect and reconnect.

 case MRA_ERR_NP_UNABLE_TO_WRITE_DATA:

 // A Named Pipe error occurred. Unable to write data. Disconnect and reconnect.

 case MRA_ERR_NP_UNABLE_TO_READ_DATA:

 // A Named Pipe error occurred. Unable to read data. Disconnect and reconnect.

 case MRA_ERR_PROCESS_ABORTED:

 // Process has been aborted by local user.

 case MRA_ERR_DATA_TRANSFER_ERROR:

 // Unable to transfer all bytes in file. Retry.

 case MRA_ERR_CRC_ERROR:

 // Data has been corrupted. Unable to verify Cyclic Redundancy Check. Retry.

 fail = 1;

 break;

 }

 }

 else

 fail = 0;

 if (fail)

 goto close;

 // STEP 6

 // Run Script "c:\\metropro\\cur_dir\\measure.scr"

 mra_ClearLastError();

 err = mra_RunScript(out_script, errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_NO_ACCESS_INTERFACE :

 // There is no communication channel with MetroPro. Connect first.

 case MRA_ERR_INVALID_OPERATION :

 // A script is running in MetroPro and its results

 // need to be obtained prior to performing any other operation.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER :

 // Connection has been lost. Disconnect and reconnect.

M E T R O P R O R E M O T E A C C E S S

62

 case MRA_ERR_DATA_TRANSFER_ERROR :

 // Unable to transfer data. Retry.

 fail = 1;

 break;

 }

 }

 else

 fail = 0;

 if (fail || errBuf[0] != '\0')

 {

 // There was an error loading and/or opening the script and/or sending

 // the runscript command

 printf("\nError = %s", errBuf);

 }

 if (! fail)

 {

 // STEP 7

 // If run script request did not fail and was received by MetroPro

// successfully, then query for results.

 while (nbytes <= 0)

 {

 mra_ClearLastError();

 nbytes = mra_IsScriptDone(errBuf);

 if (nbytes < 0)

 {

 err = mra_GetLastError();

 if (err != MRA_ERR_NO_ERR)

 switch(err)

 {

 case MRA_ERR_QUERYING_SERVER :

 // Fatal Error. Process is unable to get information from server.

 // Make sure functions are being called in the right order. Retry.

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_INVALID_OPERATION :

 // A script is running in MetroPro and its results

 // need to be obtained prior to performing any other operation.

 case MRA_ERR_SERVER_ERROR :

 // Disconnect and reconnect.

 case MRA_ERR_DATA_TRANSFER_ERROR :

 // Unable to transfer data. Retry.

 fail = 1;

 break;

 }

 }

 // DO OTHER CLIENT SOFTWARE PROCESSING WHILE

 // WAITING FOR METROPRO TO FINISH EXECUTING

 // SCRIPT.

 }

E X A M P L E U S E R P R O G R A M S

63

 if (nbytes > 0)

 {

 // STEP 8

 mra_ClearLastError();

 err = mra_GetScriptResults (MpErrorMsg, MpOutput, errBuf);

 if (errBuf[0] != '\0' && err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch(err)

 {

 case MRA_ERR_GETTING_RESULTS_DATA_ERR :

 // Fatal Error. Process is unable to get results from script

 // execution. Disconnect, reconnect and retry.

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_NO_ACCESS_INTERFACE :

 // There is no communication channel with MetroPro. Connect first.

 case MRA_ERR_INVALID_OPERATION :

 // A script must be completed in MetroPro in order for this function

 // to work properly. Functions mraRunScript and mraWaitScriptDone

 // or mraIsScriptDone must have been called first in order

 // to obtain script results.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER :

 // Connection has been lost.

 case MRA_ERR_PROCESS_ABORTED :

 // Process has been aborted by user.

 fail = 1;

 break;

 }

 }

 else

 {

 // Script execution was successful.

 if (MpErrorMsg[0] == '\0')

 {

 printf("\nCommand execution was successful!");

 if (MpOutput[0] != '\0')

 {

 // If output expected from script execution.

 printf ("\nMetroPro output = %s", MpOutput);

 }

 }

 // In case that MetroPro doesn't report an error code.

 if (MpErrorMsg[0] != '\0')

 printf("\nReceived Error = %s", MpErrorMsg);

 if (err > 0)

 {

 // Script execution failed.

 if (MpErrorMsg[0] != '\0')

 {

 // There were errors in script execution.

M E T R O P R O R E M O T E A C C E S S

64

 printf ("\nMetroPro error = %s", MpErrorMsg);

 }

 }

 }

 }

 }

 }

 // Step 9

 // Close connection.

 mra_ClearLastError();

 err = mra_Close(errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_OPERATION:

 // Connection already closed.

 case MRA_ERR_INVALID_HANDLE:

 // Unable to close connection. Invalid handle.

 case MRA_ERR_NO_ACCESS_INTERFACE:

 // There is no connection to close.

 break;

 }

 }

 }

 close:

 // STEP 10

 // Close DLL.

 FreeLibrary(mpClientLib);

 mpClientLib = NULL;

 mra_Initialize = NULL;

 mra_RunScript = NULL;

 mra_IsScriptDone = NULL;

 mra_GetScriptResults = NULL;

 mra_Close = NULL;

 mra_PutFile = NULL;

 return 0;

}

E X A M P L E U S E R P R O G R A M S

65

Example 3 – Transfer, Run and Query a
MetroScript Command

This C program uses MetroProRemoteAccess.dll to run a single MetroScript command remotely in
MetroPro and query MetroPro to establish if the command execution has finished.

/* runcommand.c

* Algorithm:

 * 1. Load MetroProRemoteAccess.DLL.

 * 2. Get Process Addresses for function needed.

 * 3. Verify all functions were loaded.

 * 4. Establish connection with MetroPro.

 * 5. Send Run Script command to MetroPro.

 * 6. Query MetroPro to see if script is done.

 * 7. Get Script Results.

 * 8. Close Connection

 * 9. Unload DLL.

 *

 * Short sample: Obtain the value of the peak to valley result in Micro.app

 * x = getval(getid (("surface wavefront map / results / peak valley / pv "), "um")

 */

#include "mpClient.h"

int main()

{

 int fail = 0,

 ok = 0,

 scriptDone = 0,

 dll_ok = 0,

 err = 0,

 nbytes = 0;

 char errBuf[BUFSIZ];

 char MpErrorMsg[BUFSIZ],

 MpOutput[BUFSIZ],

 script_cmd[BUFSIZ],

 username[MAX_USERNAME_LENGTH],

 password[MAX_PASSWORD_LENGTH];

 int messages;

 bool_t log_operations;

 HINSTANCE mpClientLib;

 memset(errBuf, '\0', BUFSIZ);

M E T R O P R O R E M O T E A C C E S S

66

 // STEP 1

 // Load DLL.

 mpClientLib = LoadLibrary("MetroProRemoteAccess.dll");

 if (mpClientLib != NULL)

 {

 // DLL loaded.

 printf("\nDLL loaded successfully.");

 // STEP 2

 // Get Process Addresses for DLL functions needed.

 mra_Initialize = (MRAINITIALIZE) GetProcAddress(mpClientLib, "mraInitialize");

 mra_IsScriptDone = (MRAISSCRIPTDONE) GetProcAddress(mpClientLib, "mraIsScriptDone");

 mra_GetScriptResults = (MRAGETSCRIPTRESULTS) \

GetProcAddress(mpClientLib, "mraGetScriptResults");

 mra_Close = (MRACLOSE) GetProcAddress(mpClientLib, "mraClose");

 mra_GetLastError = (MRAGETLASTERROR) GetProcAddress(mpClientLib, "mraGetLastError");

 mra_ClearLastError = (MRACLEARLASTERROR) GetProcAddress(mpClientLib, "mraClearLastError");

 mra_IsClientOnline = (MRAISCLIENTONLINE) GetProcAddress(mpClientLib, "mraIsClientOnline");

 mra_SendMetroScriptCommand = (MRARUNSCRIPT) \

GetProcAddress(mpClientLib, "mraSendMetroScriptCommand");

// STEP 3

 // Verify that all functions were loaded.

 if(! mra_Initialize || ! mra_RunScript ||

 ! mra_IsScriptDone || ! mra_GetScriptResults ||

 ! mra_Close || ! mra_GetLastError ||

 ! mra_ClearLastError || ! mra_IsClientOnline ||

 ! mra_SendMetroScriptCommand)

 {

 // Not all functions were loaded. Check spelling.

 dll_ok = 0;

 }

 else

 {

 // All functions were loaded successfully.

 dll_ok = 1;

 }

 }

 else

 {

 // Error loading DLL. Check file.

 printf("\nError. Unable to load MetroProRemoteAccess.dll");

 }

E X A M P L E U S E R P R O G R A M S

67

 // Begin Remote Control of MetroPro.

 if(dll_ok)

 {

 // STEP 4

 // Establish Connection with MetroPro. Set username and password.

 strcpy(username, "my_username");

 strcpy(password, "my_pwd");

 // Turn server info messages on.

 messages = 1;

 // Turn client logging on.

 log_operations = TRUE;

 mra_ClearLastError();

 err = mra_Initialize (errBuf, username, password, messages, log_operations);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

 case MRA_ERR_ALREADY_CONNECTED:

 // Already connected to MetroPro.

 case MRA_ERR_UNABLE_TO_FIND_CFG_FILE:

 // Can't find mraClient.cfg. Make sure it's in local directory

 case MRA_ERR_INVALID_OPERATING_SYSTEM:

 // Must use Windows NT.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER:

 // Machine with name as specified in mraClient.cfg cannot be found on network.

 case MRA_ERR_INVALID_USERNAME_OR_PASSWD:

 // User could not be authenticated.

 case MRA_ERR_NO_NP_SERVER_AVAILABLE:

 // A Named Pipe server cannot be found on machine specified in mraClient.cfg

 case MRA_ERR_NP_CONNECTION_TIMEOUT:

 // A named pipe connection timeout has occurred.

 // Named pipe server is currently not available

 case MRA_ERR_UNABLE_TO_CREATE_NP_CLIENT:

 // Internal error. Cannot create named pipe client.

 case MRA_ERR_UNABLE_TO_ESTABLISH_LINK:

 // Unable to perform initial software handshake. Disconnect and reconnect.

 fail = 1;

 break;

 }

 }

M E T R O P R O R E M O T E A C C E S S

68

 else

 {

 // Connection was established successfully.

 fail = 0;

 }

 if(! fail)

 {

 // STEP 5

 mra_ClearLastError();

 strcpy(script_cmd, "measure");

 err = mra_SendMetroScriptCommand(script_cmd, errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_INVALID_OPERATION :

 // A script is running in MetroPro and its results

 // need to be obtained prior to performing any other operation.

 case MRA_ERR_UNABLE_TO_SEND_COMMAND :

 // General Error. Disconnect and reconnect.

 case MRA_ERR_STRING_TOO_LONG :

 // Command string should be less than 512 characters.

 case MRA_ERR_UNABLE_TO_FIND_FILE :

 // Unable to find tmp file.

 fail = 1;

 break;

 }

 }

 else

 fail = 0;

 if (fail || errBuf[0] != '\0')

 {

 // There was an error loading and/or opening the script and/or sending

 // the runscript command

 printf("\nError = %s", errBuf);

 }

 if (! fail)

E X A M P L E U S E R P R O G R A M S

69

 {

 // STEP 6

 // If run script request did not fail and was received by MetroPro successfully, then

// query for results.

 while (nbytes <= 0)

 {

 mra_ClearLastError();

 nbytes = mra_IsScriptDone(errBuf);

 if (nbytes < 0)

 {

 err = mra_GetLastError();

 if (err != MRA_ERR_NO_ERR)

 switch(err)

 {

 case MRA_ERR_QUERYING_SERVER :

 // Fatal Error. Process is unable to get information from server.

 // Make sure functions are being called in the right order. Retry.

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_INVALID_OPERATION :

 // A script is running in MetroPro and its results need to be

 // obtained prior to performing any other operation.

 case MRA_ERR_SERVER_ERROR :

 // Disconnect and reconnect.

 case MRA_ERR_DATA_TRANSFER_ERROR :

 // Unable to transfer data. Retry.

 fail = 1;

 break;

 }

 }

 // DO OTHER CLIENT SOFTWARE PROCESSING WHILE

 // WAITING FOR METROPRO TO FINISH EXECUTING

 // SCRIPT.

 }

M E T R O P R O R E M O T E A C C E S S

70

 if (nbytes > 0)

 {

 // STEP 7

 mra_ClearLastError();

 err = mra_GetScriptResults (MpErrorMsg,

 MpOutput,

 errBuf);

 if (errBuf[0] != '\0' && err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch(err)

 {

 case MRA_ERR_GETTING_RESULTS_DATA_ERR :

 // Fatal Error. Process is unable to get results from script execution.

 // Disconnect, reconnect and retry.

 case MRA_ERR_INVALID_PARAMETERS :

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_HANDLE :

 // The client handle has become invalid. Disconnect and reconnect.

 case MRA_ERR_NO_ACCESS_INTERFACE :

 // There is no communication channel with MetroPro. Connect first.

 case MRA_ERR_INVALID_OPERATION :

 // A script must be completed in MetroPro in order for this function to

 // work properly. Functions mraRunScript and mraWaitScriptDone or

 // mraIsScriptDone must have been called first in order to obtain

 // script results.

 case MRA_ERR_NP_UNABLE_TO_FIND_SERVER :

 // Connection has been lost.

 case MRA_ERR_PROCESS_ABORTED :

 // Process has been aborted by user.

 fail = 1;

 break;

 }

 }

 else

 {

 // Script execution was successful.

 if (MpErrorMsg[0] == '\0')

 {

 printf("\nCommand execution was successful!");

 if (MpOutput[0] != '\0')

 {

E X A M P L E U S E R P R O G R A M S

71

 // If output expected from script execution

 printf ("\nMetroPro output = %s", MpOutput);

 }

 }

 // In case that MetroPro doesn't report an error code.

 if (MpErrorMsg[0] != '\0')

 printf("\nReceived Error = %s", MpErrorMsg);

 if (err > 0)

 {

 // Script execution failed.

 if (MpErrorMsg[0] != '\0')

 {

 // There were errors in script execution.

 printf ("\nMetroPro error = %s", MpErrorMsg);

 }

 }

 }

 }

 }

 }

 // Step 8

 // Close connection.

 mra_ClearLastError();

 err = mra_Close(errBuf);

 if (err != MRA_ERR_NO_ERR)

 {

 err = mra_GetLastError();

 switch (err)

 {

 case MRA_ERR_INVALID_PARAMETERS:

 // Make sure parameters have the right data type.

 case MRA_ERR_INVALID_OPERATION:

 // Connection already closed.

 case MRA_ERR_INVALID_HANDLE:

 // Unable to close connection. Invalid handle.

 case MRA_ERR_NO_ACCESS_INTERFACE:

 // There is no connection to close.

 break;

 }

 }

 }

M E T R O P R O R E M O T E A C C E S S

72

 close:

 // STEP 9

 // Close DLL.

 FreeLibrary(mpClientLib);

 mpClientLib = NULL;

 mra_Initialize = NULL;

 mra_RunScript = NULL;

 mra_IsScriptDone = NULL;

 mra_GetScriptResults = NULL;

 mra_Close = NULL;

 return 0;

}

73

Error Codes
Appendix

A

This appendix lists the error codes and descriptions produced by the
MetroProRemoteAccess.dll.

Code Name/Description

0 MRA_ERR_NO_ERR
The operation completed successfully.

1 MRA_ERR_INVALID_PARAMETERS
Invalid parameters have been passed to the function. Look at function description to
check for parameter data types.

2 MRA_ERR_PROCESS_ABORTED
The client application was previously aborted. If connected, you must close the
connection and reconnect in order to control MetroPro remotely.

3 MRA_ERR_INVALID_HANDLE
The handle to the communications device is in an invalid state. Either there is no
connection or a fatal error has occurred while connected. If this error occurs while
transferring data or running a script, disconnect and reconnect to MetroPro. Do not
attempt to do anything else.

4 MRA_ERR_NO_ACCESS_INTERFACE
There is no connection with MetroPro at the present time. If this error occurred while
connected, disconnect and reconnect. The client application must have either a Named
Pipe Interface to control MetroPro.

5 MRA_ERR_SERIAL_PACKET_TIMEOUT (obsolete)
The maximum amount of time allowed in mraClient.cfg for receiving data has elapsed.
This error occurs if using a serial communications interface and no incoming data is
detected while expected. Make sure null the modem cable is properly connected. Retry
operation. If it fails again, disconnect and reconnect to MetroPro.

6 MRA_ERR_NP_PACKET_TIMEOUT
The maximum amount of time allowed in mraClient.cfg for receiving data has elapsed.
This error occurs if using TCP/IP (named pipes) for controlling MetroPro and no
incoming data is detected while expected. Make sure the data cable is properly
connected and that the server is running properly. Use function mraRunLoopBackTest
to verify that data can be transmitted back and forth. Retry the operation. If it fails
again, disconnect and reconnect to MetroPro.

7 MRA_ERR_SERIAL_READ_TIMEOUT (obsolete)
The maximum amount of time allowed in mraClient.cfg for reading data has elapsed.
This error occurs if using a serial communications interface and unable to read all the
data expected. Make sure null modem cable is connected properly. Use function
mraRunLoopBackTest to verify that data can be transferred between MetroPro and client
process.

M E T R O P R O R E M O T E A C C E S S

74

Code Name/Description

8 MRA_ERR_NP_READ_TIMEOUT
The maximum amount of time allowed in mraClient.cfg for reading data has elapsed.
This error occurs if using TCP/IP (named pipes) interface and unable to read all the data
expected. Make sure data cable is connected properly. Use function
mraRunLoopBackTest to verify that data can be transferred between MetroPro and client
process.

9 MRA_ERR_SERIAL_CONNECTION_TIMEOUT (obsolete)
The maximum amount of time allowed in mraClient.cfg for connecting to MetroPro
using a null modem cable has elapsed. Make sure cable is connected properly and that
the Remote Access Server in MetroPro is running and expecting a client connection.

10 MRA_ERR_NP_CONNECTION_TIMEOUT
The maximum amount of time allowed in mraClient.cfg for connecting to MetroPro
using TCP/IP (named pipes) has elapsed. Make sure data cable is connected properly
and that the Remote Access Server in MetroPro is running and expecting a client
connection.

11 MRA_ERR_NP_UNABLE_TO_FIND_SERVER
Unable to find the server (MetroPro) computer as indicated in mraClient.cfg. Make sure
that the name of the computer where MetroPro is located has not been misspelled and
that the computer where MetroPro is located can be accessed by other computers from
the network.

12 MRA_ERR_NP_UNABLE_TO_READ_DATA
Unable to read data using TCP/IP. Use function mraRunLoopBackTest to verify that
data can be transferred between MetroPro and client process. If this fails, disconnect and
reconnect to MetroPro.

13 MRA_ERR_SERIAL_UNABLE_TO_READ_DATA (obsolete)
Unable to read data using serial communications. Use function mraRunLoopBackTest to
verify that data can be transferred between MetroPro and client process. If this fails,
disconnect and reconnect to MetroPro.

14 MRA_ERR_SERIAL_UNABLE_TO_WRITE_DATA (obsolete)
Client is unable to send data to MetroPro using serial communications. Use function
mraRunLoopBackTest to verify that data can be transferred between MetroPro and client
process. Check cable. Disconnect and reconnect to MetroPro.

15 MRA_ERR_NP_UNABLE_TO_WRITE_DATA
Client is unable to send data to MetroPro using TCP/IP (named pipes). Use function
mraRunLoopBackTest to verify that data can be transferred between MetroPro and client
process. Make sure data cable is connected properly. If this fails, disconnect and
reconnect to MetroPro.

16 MRA_ERR_UNABLE_TO_FIND_CFG_FILE
Unable to find mraClient.cfg file. File must be located in the same directory with
MetroProRemoteAccess.dll and the client application. This configuration file is required
to establish a communications interface with MetroPro.

E R R O R C O D E S

75

Code Name/Description

17 MRA_ERR_INVALID_OPERATING_SYSTEM
MetroPro Remote Access only works under Windows NT 4.0 SP1 (or higher) or
Windows 2000. Attempts to run it under Windows 95, 98, ME, XP or any other
operating systems will fail.

18 MRA_ERR_UNABLE_TO_ESTABLISH_LINK
Unable to perform initial message exchange with MetroPro after opening
communications device. Use mraRunLoopbackTest to verify that data can be transferred
to MetroPro. If this fails, do not attempt to do anything else. Disconnect and reconnect
to MetroPro.

19 MRA_ERR_NO_NP_SERVER_AVAILABLE
When using TCP/IP to connect to MetroPro, a named pipe server (in MetroPro) is
detected but not available for connections. This error occurs when a connection is
attempted to MetroPro, but there is another client already connected to the server. Try
again later when MetroPro is available.

20 MRA_ERR_UNABLE_TO_CREATE_NP_CLIENT
This error occurs when an internal fatal error does not allow MetroProRemoteAccess.dll
to create a named pipe client even though a named pipe server is available when trying to
establish a connection through TCP/IP.

21 MRA_ERR_SERVER_ERROR
This error is received from MetroPro when a fatal error occurs in the server processing of
client commands. Do not attempt to perform any other commands. You must disconnect
and reconnect to MetroPro.

22 MRA_ERR_DATA_TRANSFER_ERROR
Process is unable to transfer data. This error occurs when not all of the bytes expected
are read or written to the communications device. Retry the transfer.

23 MRA_ERR_UNABLE_TO_FIND_FILE
Process is unable to find wanted file for binary data transfer. Check the file path and
name and verify that the file does exist.

24 MRA_ERR_PROCESS_TIMEOUT
Process has timed out during the data transfer operation. Try again.

25 MRA_ERR_UNABLE_TO_PROCESS_CRC
Process cannot obtain a CRC (Cyclic Redundancy Check) value for data transfer. Verify
file exists in path.

26 MRA_ERR_CRC_ERROR
Process cannot verify CRC (Cyclic Redundancy Check) value for incoming vs. outgoing
data. Use function mraRunLoopBackTest to test the data transferring process. Retry
transfer.

27 MRA_ERR_UNABLE_TO_WRITE_TO_DISK
The disk is full. Free some space to write received data.

28 MRA_ERR_ALREADY_CONNECTED
A connection is already opened. Do not attempt to connect until after connection has
been closed or lost.

M E T R O P R O R E M O T E A C C E S S

76

Code Name/Description

29 MRA_ERR_LOOPBACKTEST_ERROR
Unable to perform echo test for data transfers. Do not attempt to perform any other
commands. If connected, disconnect and reconnect to MetroPro.

30 MRA_ERR_UNABLE_TO_ECHO_DATA
Process is unable to echo data while performing communications test. See code 29.

31 MRA_ERR_UNABLE_TO_SEND_COMMAND
This error occurs when trying to send a single MetroScript command of length zero.

32 MRA_ERR_STRING_TOO_LONG
This error occurs when trying to send a single MetroScript command of length larger
than 512.

33 MRA_ERR_UNABLE_TO_STOP_SERVER
This error occurs when the command to stop MetroPro from running a script cannot be
transferred. Use function mraRunLoopBackTest to see if data can be transferred.

34 MRA_ERR_UNABLE_TO_KILL_SERVER
This error occurs when the command to terminate MetroPro’s Remote Access Server
cannot be transferred. Use function mraRunLoopBackTest to see if data can be
transferred.

35 MRA_ERR_INVALID_OPERATION
This error occurs when trying to perform an operation while a script is running in
MetroPro. You must make a call to mraGetScriptResults to complete the process of
running a script. Do not attempt to put or get a file, run a single command or script until
after getting the results of the script execution.

36 MRA_ERR_INVALID_USERNAME_OR_PASSWD
This error occurs when the username and/or password passed to the mraInitialize
function are invalid.

37 MRA_ERR_INVALID_SERVER_INDEX
This error occurs when the server tag in mraClient.cfg is not within the valid range of
allowed server indexes. The valid range is from 1 to 32.

38 MRA_ERR_UNABLE_TO_FIND_SERVER_TAG
This error occurs when there is no server tag in mraClient.cfg. A server tag ([server n])
is required for establishing the right link to MetroPro.

39 MRA_ERR_UNABLE_TO_LOAD_SCRIPT
This error occurs when a script cannot be found on MetroPro’s computer for execution.
Transfer the script first using function mraPutFile and retry.

40 MRA_ERR_UNABLE_TO_DELETE_FILE
This error occurs when the file being deleted does not exist or is inaccessible.

41 MRA_ERR_UNABLE_TO_RESUME_POLLING
This error occurs when attempting to resume connection polling between the remote
client and MetroPro. You must disconnect and reconnect in order to have predictable
client/server model behavior.

42 MRA_ERR_UNABLE_TO_SUSPEND_POLLING
This error occurs when attempting to suspend connection polling between the remote
client and MetroPro. Try again. A thread collision may have occurred.

E R R O R C O D E S

77

Code Name/Description

43 MRA_ERR_UNABLE_TO_CREATE_SERIAL_CLIENT (obsolete)
This error occurs when function mraInitialize is unable to create a serial client. Verify
that right port is indicated in mraClient.cfg. Verify that serial port in MetroPro is
available and that the Remote Access Server is running.

44 MRA_ERR_SERVER_SUSPENDED
This error occurs when the server is suspended. Server rejects all incoming requests.
Resume the server in MetroPro by pressing F11 and try again.

45 MRA_ERR_NACK_RECEIVED
This error is returned when an error in communications has happened. Try again.

46 MRA_ERR_UNABLE_TO_TERMINATE_METROPRO
This error occurs when the call to mraTerminateMetroPro fails. This may occur because
there is no connection or because MetroPro process is unable to end. Verify there is a
valid connection by calling mraIsClientOnline and that the server is not suspended by
calling mraGetServerStatus.

47 MRA_ERR_INCOMPATIBLE_SCRIPT
This error occurs when the server receives a command to run a script that requires user
interaction in MetroPro. This error can be bypassed by modifying the server
configuration file by adding an optional script parameter to it. For more information read
the configuration settings section of Getting Started in this manual.

Code Name/Description

-1 MRA_ERR_GETTING_RESULTS_DATA_ERR
Process is unable to get results from script execution.

-2 MRA_ERR_QUERYING_SERVER
Process is unable to get information from server. Make sure functions are being called in
the right order. Retry.

M E T R O P R O R E M O T E A C C E S S

78

(1) Definition found in Microsoft Developer Network version 6.0 79

Glossary
Appendix

B

Application

A computer program running on the Client side of the Remote Access.

Asynchronous

See Non_Blocking definition.

Baudrate

Transmission rate for a serial port. Valid baud rates are: 110, 300, 600, 1200, 2400,
4800, 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000, and 256000.

Blocking

An input / output mode for communications between two processes, which blocks the
processes until it has finished reading or writing data or a timeout occurs. If performing a
read operation, the process will wail until it has finished reading all the bytes needed
before doing anything else. If performing a write operation, the process will wait until it
has finished writing all of the bytes in the buffer.

Buffersize

Maximum amount of data, in bytes, that is transferred between two processes in a single
read or write operation.

Client

An application, process or program, other than MetroPro, that intends to control MetroPro
remotely.

CRC

Cyclic Redundancy Check (CRC) A common technique for detecting errors in data
transmission. In CRC error checking, the sending device calculates a number based on
the data transmitted. The receiving device repeats the same calculation after
transmission. If both devices obtain the same result, it is assumed the transmission was
error-free. The procedure is known as a redundancy check because each transmission
includes not only data but also the additional redundant values for error checking. (1)

DLL

A Dynamic Link Library, which contains functions that can be called by a process for a
specific purpose.

Interface

Method of communication between two computers, processes, or applications.

M E T R O P R O R E M O T E A C C E S S

80 (1) Definition found in Microsoft Developer Network version 6.0

IO_Mode

Input / Output mode for communications between two or more processes.

LAN

Local Area Network. Used by named pipes to transfer data.

MetroPro

Copyrighted software provided by Zygo Corporation to handle Zygo’s metrology and
interferometry instruments.

mraClient.cfg
mraServer.cfg

Configuration files provided by Zygo Corporation that contains all the necessary settings
to establish a remote communication with MetroPro.

MetroProRemoteAccess.dll

Dynamic Link Library provided by ZYGO that contains all of the necessary functions to
control MetroPro remotely.

MetroScript

Programming language used by MetroPro that can be used to control ZYGO’s metrology
instruments.

Named Pipe Interface

A communications interface that uses named pipes to transfer data between two or more
processes located remotely or in the same computer through a Local Area network.

Named Pipe

A communications object used for transferring data between two processes. Named
Pipes use the underlying Local Area Network and its protocols to transfer data.

Named Pipe Client

Process using MetroProRemoteAccess.dll to control MetroPro Remotely.

Named Pipe Server

MetroPro.

Non_Blocking

An Input/Output mode for communications between two processes. Read and Write
operations do not wait for completion. They return immediately. Whether the data was
transferred successfully, can be checked later. This mode gives more flexibility to
integrating MetroProRemoteAccess.dll with other software.

G L O S S A R Y

(1) Definition found in Microsoft Developer Network version 6.0 81

Non_Overlapped

See Blocking definition.

Overlapped

See Non_Blocking definition.

Process

A computer program.

Script

A text file of extension “.scr”, which contains MetroScript commands.

Serial Communications Interface

A communications interface that uses serial ports (RS-232) to transfer data between two
or more processes.

Serial Port

An input/output location (channel) that sends and receives data to and from a computer's
central processing unit or a communications device one bit at a time. Serial ports are
used for serial data communication and as interfaces to peripheral devices, such as mice
and printers. (1)

Server

MetroPro software provided by Zygo Corporation.

SIO

Serial Input Output

Synchronous

See Blocking definition.

Timeout

Maximum amount of time it can pass before a function fails.

