
Analysis of Synthetic Diamond Wafer

Interferograms Using a Parallelized Simulated

Annealing Algorithm

Matthew Demas

University of Connecticut

Storrs, CT 06269

demas.ma@gmail.com

May 19, 2008



Abstract

Diamonds are known for both their beauty and their durability. Jefferson National

Lab in Newport News, VA has found a way to utilize the diamond’s strength to

view the beauty of the inside of the atomic nucleus with the hopes of finding

exotic forms of matter. By firing very fast electrons at a diamond sheet no thicker

than a human hair, high energy particles of light known as photons are produced

with a high degree of polarization that can illuminate the constituents of the

nucleus known as quarks. The University of Connecticut Nuclear Physics group

has responsibility for crafting these extremely thin, high quality diamond wafers.

These wafers must be cut from larger stones that are about the size of a human

finger, and then carefully machined down to the final thickness. The thinning

of these diamonds is extremely challenging, as the diamond’s greatest strength

also becomes its greatest weakness. The Connecticut Nuclear Physics group has

developed a novel technique to assist industrial partners in assessing the quality

of the final machining steps, using a technique based on laser interferometry. The

images of the diamond surface produced by the interferometer encode the thickness

and shape of the diamond surface in a complex way that requires detailed analysis

to extract. We have developed a novel software application to analyze these images

based on the method of simulated annealing. Being able to image the surface of

these diamonds without requiring costly X-ray diffraction measurements allows

rapid feedback to the industrial partners as they refine their thinning techniques.

Thus, by utilizing a material found to be beautiful by many, the beauty of nature

can be brought more clearly into view.
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Chapter 1

Background

1.1 Jefferson Lab and GlueX

1.1.1 UConn and JLab

The University of Connecticut’s Nuclear Physics Group is currently working

in conjunction with Jefferson National Laboratory on a Department of En-

ergy sponsored experiment called GlueX (Gluonic Excitations Experiment),

depicted in Fig. 1.1. The purpose of GlueX is to measure gluonic excitations

in the spectrum of nuclear matter in the hopes of finding novel particles

known as exotic mesons. The results of this experiment will be used to test

predictions made within the Standard Model of particle physics.

1.1.2 The Beam Line

The GlueX experiment employs the collision between a high-energy gamma

ray and a proton to serve as an abundant source of new particles called
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Figure 1.1: A schematic of GlueX

mesons. The way the gamma ray beam is formed is through a process known

as bremsstrahlung, which is the radiation produced by a high-energy electron

upon its interaction with the Coulomb field of a nucleus in a substance. The

photons of interest to GlueX need to have an extremely high energy and also

a high degree of linear polarization. Conservation of energy requires that the

incoming electrons must also be of high energy. The linear polarization of

the bremsstrahlung gamma rays is a consequence of the relative alignment

between the electron beam direction and the normal vector to the crystal

planes in the diamond radiator. To minimize the effects of multiple scattering

on the collimation of the electron beam, it is important that the diamond be

as thin as possible. It has been determined that the optimal thickness of the

diamond bremsstrahlung radiator to be used in GlueX is about 20 µm.
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1.1.3 Synthetic Diamond Wafers

Diamond is the hardest substance known to man. In the case of a bremsstrahlung

radiator this property translates to its being radiation-hard, that is, resistant

to crystal damages due to ionizing radiation. However, the diamonds must

also be very thin - - on the order of 20 µm. Manufacturing monocrystalline

diamonds of this thickness is extremely difficult.

Jefferson Lab has obtained several synthetic diamond wafers from the com-

pany Element Six that specializes in the growth of large synthetic diamond

monocrystals. Current manufacturing processes involve growing finger-sized

ingots from a small seed, through a high-pressure, high temperature growth

process. These diamonds are then cut into several thin slices, and then

ground down to achieve the desired thickness. These wafers appear perfect

when examined under a microscope, but they contain hidden stress due to

defects that appeared during the growth process, and possibly during sub-

sequent cutting and grinding steps. These stresses may cause the diamond

to deform when its thickness is reduced to 20 microns, degrading its perfor-

mance as a bremsstrahlung radiator.

1.1.4 Determining Diamond Deformities

The stresses and strains mentioned above can be measured by looking either

at the surface of the diamond slices or by looking at the internal crystalline

structure. Using a very large accelerator known as a synchrotron light source,

x-ray diffraction experiments can be used to determine the latter, while a
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simple table-top laser interferometer can be used to determine the former.

The University of Connecticut Nuclear Physics Group has obtained beam

time at the Cornell High Energy Synchrotron Light Source (CHESS) to per-

form measurements of the former type. While such measurements provide

the most comprehensive information regarding the integrity of the diamond

structure, they require considerable planning and human resources to carry

out. In many cases, just knowing the shape of the diamond surface is suf-

ficient to guide the manufacturing and mounting process. The goal of this

research project is to develop means for extracting the shape of a diamond

surface from the interference images of the crystal taken in a Michelson in-

terferometer (see Sect. 1.3.2), with an optically flat mirror used as a reference.

1.2 Electromagnetic Theory

1.2.1 Electromagnetic Radiation

James Clerk Maxwell published his paper On Physical Lines of Force in

1861 which introduces the set of four equations that are known today as

Maxwell’s equations. Four years later he published A Dynamical Theory

of the Electromagnetic Field. In this second paper, Maxwell derived the

result that light is actually an electromagnetic wave, as depicted in Fig. 1.2

(courtesy of Ref. [1]).
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Figure 1.2: An electromagnetic wave

1.2.2 Superposition and Interference

Light waves (much like mechanical waves) have the property that their ampli-

tudes add when they overlap. However, unlike mechanical waves, overlapping

is not a sufficient criterion for interference. An extra condition arises from

the vector nature of the oscillating electric and magnetic fields. In order to

interfere, the light waves must have the same polarization.

1.3 Interferometry and the Michelson Inter-

ferometer

1.3.1 Interferometry

Interference occurs when radiation follows more than one path from its source

to the point of detection. It may be described as the local departures of the

resultant intensity from the law of addition, for, as the point of detection is

moved, the intensity oscillates about the sum of the separate intensities from

each path. Light and dark bands are observed, called interference fringes.[2]
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Figure 1.3: An interference “fringe pattern” from a Michelson interferometer

Interferometry is the splitting of a light beam into two or more paths and

the recombining of those different beams in the manner described below,

to measure the difference in optical path length between the two paths [3].

Fig. 1.3 (courtesy of Ref. [4]) shows an interference pattern from a Michelson

interferometer (discussed in Sect. 1.3.2). As described by the above quote

from Ref. [2], the light and dark bands result from the waves’ constructive

and destructive interference. Light bands result when waves of the same po-

larization are in phase at the detector, whereas the darkest part of the dark

bands result when the waves are π radians out of phase.

The simplest solutions to Maxwell’s equations in free space (see App. A.3)

are plane waves. When two plane waves combine, the total electric field

amplitude has the form:

E(r, t) = A1e
i(k1·r−ωt) + A2e

i(k2·r−ωt) (1.1)
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However, the human eye does not see amplitudes, rather it sees intensities

(i.e. the absolute value squared of the amplitude):

I(r, t) = |(E(r, t)|2 =
∣∣∣A1e

i(k1·r−ωt) + A2e
i(k2·r−ωt)

∣∣∣2 (1.2)

The above expression is a mathematical representation of an interference

“fringe pattern” such as the one illustrated in Fig. 1.3. The amplitudes A1

and A2 are generally complex and can be written in polar form:

Ai = Aie
iφi ε̂ (1.3)

This allows one to write the complex amplitude in terms of a real amplitude

(Ai) and a real phase φi. This phase term is important when extracting in-

formation from the fringe pattern, as path length differences between beams

1 and 2 result in the light and dark patterns described above.

If one views the interference pattern on a plane perpendicular to the direction

of propagation of the wave, the viewing plane can be defined as z = 0 and

thus the intensity pattern can be thought of as an amplitude and a phase

varying with x and y (Ai = Ai(x, y), φi = φi(x, y)).

I(x, y) =
∣∣∣A1e

iφ1 + A2e
iφ2

∣∣∣2 (1.4)

1.3.2 The Michelson Interferometer

The Michelson Interferometer was invented in 1882 by Albert A. Michelson.

Its original purpose was to measure the difference in path length seen by
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light beams travelling along perpendicular paths through the device in order

to determine the motion of the experiment through the æther. The failure

of Michelson’s experiment to detect absolute motion later helped to support

Albert Einstein’s theory of special relativity. Michelson has been called the

“father of visible light interferometry” and “was awarded in 1907 the Nobel

prize in physics for ‘his optical instruments of precision and the spectroscopic

and metrological investigations he has executed with them’ ” [2].

Figure 1.4: A Michelson interferometer

The Michelson interferometer is considered to be the epitome of a class of

two-beam interferometers that feature a “division of amplitude” [2]. Fig. 1.4

(courtesy of Ref. [5]) depicts a diagram of a Michelson interferometer. In the

diagram, a beam of light is emitted from a source at the left and directed to-

ward a semi-transparent mirror (beam splitter) that is at an incidence angle

of 45◦. The front surface of the beam splitter is coated with a thin layer of

some conducting material (e.g. silver) whose thickness is chosen to split the

incident beam intensity equally into reflected and transmitted beams. Each

of these beams travels to its respective mirror and is reflected back toward

14



the beam splitter. Back at the beam splitter each of the returning beams

is split again, with one ray returning back toward the source and the other

toward the detector. The two waves that are directed toward the detector

interfere and produce a fringe pattern, while the waves that are directed back

toward the source are absorbed.

D⊥
1 −D⊥

2 = σfree E
‖
1 − E

‖
2 = 0

B⊥
1 −B⊥

2 = 0 H
‖
1 −H

‖
2 = Kfree × n̂

Table 1.1: Boundary conditions for electric and magnetic fields

It is interesting to know the phase shifts that occur when the beam of light

is both reflected and transmitted through the conducting layer of the beam

splitter. In order to determine these quantities, one must solve Maxwell’s

equations using the boundary conditions (Table 1.1) for an interface between

two media. For the case considered here, there are no free charges or currents

at the interface, so σfree = 0 and Kfree = 0. For the sake of simplicity one

can take the angle of incidence to be normal to the beam splitter. Despite

the fact that the actual Michelson interferometer utilizes a beam that is at

oblique incidence to the beam splitter, all of the essential features of the

problem are retained with fewer complications if the incidence angle is taken

to be 0 degrees.

Using the boundary conditions and the solutions to the wave equations in

homogeneous media, one obtains a system of linear equations that can be

solved as follows.
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Mv = b (1.5)

where

M =



−1 1 1 0

Z−1
1 Z−1

2 −Z−1
2 0

0 eik2a e−ik2a −e−ik1a

0 Z−1
2 eik2a Z−1

2 e−ik2a −Z−1
1 e−ik1a


(1.6)

v =



Er

Ef

Eb

Et


; b =



1

Z−1
1

0

0


(1.7)

with the solution v = M−1b. It should be noted that a is the thickness of the

conducting layer, Z1 =
√

µ0

ε0
and Z2 =

√
µ0

εAg
. The components of the vector

v are as follows:

• Er is the amplitude of the reflected wave,

• Ef is the amplitude of the forward moving wave,

• Eb is the amplitude of the backward moving wave,

• Et is the amplitude of the transmitted wave.

The incident wave number k1 = 2π/λ where λ is the wavelength emitted by

the monochromatic source. Inside the conductor the wave is described by a

complex wave number k2 =
√

n2
2k

2
1 + ik1σZ1 where n2 is the refractive index
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Figure 1.5: Transmission probability versus thickness of the silver conducting

layer.

of the conducting material at frequency ω = k1c and σ is the corresponding

conductivity. Fig. 1.5 shows the probability of transmission versus thickness.

Fig. 1.6 shows the phase shift of both the transmitted and reflected waves

versus thickness. The thickness that corresponds to 50% transmission occurs

around 1 nm. The corresponding phase shifts for this thickness can then be

determined from Fig. 1.6.

1.4 Surface Resolution Approximation

An important part of topological interferometry is that the surface profile

is imprinted on the phase of the wave reflected from the sample surface.

Plane wave solutions can be used when the height of surface features is much
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Figure 1.6: Phase shifts of the transmitted (lower) and reflected (upper)

waves versus thickness of the conducting layer.

smaller than the features’ transverse size. Huygen’s principle can be used to

estimate the distance the reflected wave propagates before there is significant

smearing due to transverse diffusion of the phase gradient.

1.4.1 Huygen’s Principle

Huygen’s principle states that each point on a wavefront (surface of constant

phase in a propagating wave) can be treated as the source of an outgoing

spherical wave. When a plane wave is incident on a curved surface, the shape

of the surface is imprinted on the wavefronts of the reflected beam, but the

details of the shape diffuse as the reflected wave propagates. For nearly flat

surfaces this diffusion will only occur gradually, with fine structures being
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smeared out first and larger-scale structures persisting to longer distances.

In a quasi-planar model of the diamond surface, Huygen’s principle can be

used to determine the minimum feature size on the surface profile that can

be resolved using light of wavelength λ, after the reflected beam has traveled

a distance L. The quasi-planar model of the diamond surface states that the

feature height of the diamond’s surface is much smaller than the character-

istic transverse size of surface features. Under this assumption, the diamond

surface is approximated by a mosaic of flat tiles that are joined together.

Light waves reflected from these tiles can be approximated as the superposi-

tion of many beams of light (beamlets) emitted by the individual tiles. The

divergence angle θ of each beam is given by the Rayleigh diffraction limit

θ d = λ (1.8)

where d is the diameter of the tiles. As each beamlet travels away from the

surface, its radius grows in a conical fashion. Two tiles of equal size that are

side-by-side will no longer be able to be resolved after the edge of one beam

begins to overlap with the center of its neighboring tile. The distance L up

to which a feature of size d can still be resolved is given by

θ =
d

L
(1.9)

From Eq. 1.8 and Eq. 1.9 a relationship can be obtained that gives the size

of resolvable features on the diamond surface that remain after the reflected

wave has traveled a distance L.

19



d =
√

Lλ (1.10)

For example, if the total distance between the sample and the detector in

the Michelson interferometer is 10 cm and the wavelength of the light used

is 600 nm, then the size of resolvable features, d, of the diamond surface

is 2.5 × 10−4 m. Features below this length scale will not be resolved. X-

ray diffraction measurements as described in Sect. 1.1.4 have shown that

the important structural features of the diamond wafers under study in this

project have a typical length scale of 1mm, indicating that an interferometer

with L ≤ 40 cm is suitable for these measurements.
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Chapter 2

Methods

2.1 The Michelson Interferometer

Fringe patterns from the synthetic diamond wafers were created in Univer-

sity of Connecticut Professor George Gibson’s optics lab using his Michelson

interferometer. The diamonds were mounted in place of one of the optical

mirrors and images were taken with a CCD camera. The CCD camera had

a pixel size of 20µm× 20µm. The light source used was a helium-neon laser

with a peak wavelength of 633nm. The distance from the sample to the cam-

era was 10cm. Within the quasi-planar approximation described in Sect. 1.4,

surface features of transverse size 250µm or larger are resolved in the images.

Three sets of images were taken. The first set included only the reference

beam and displayed a nearly uniform intensity profile with a few minor op-

tical defects coming from dust particles on the optical elements. The second

set of images were taken with the reference beam removed and exhibits in-
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(a) (b)

Figure 2.1: The Michelson interferometer with the reference mirror removed

(a), and a fringe pattern obtained with a real diamond crystal in this config-

uration (b).

terference between reflections coming from the front and back surfaces of

the diamond wafer (Fig. 2.1). The third set of images exhibit interference

between both the reference mirror reflection and those from the front and

back surfaces of the diamond wafer (Fig. 2.2). In accordance with the quasi-

planar approximation, each of the reflecting surfaces appear at the detector

as a plane wave with its surface height multiplied by the laser wavenumber

imprinted on the phase of the wave, amplified by a factor of two. This ampli-

fication results from the wave having to travel both to the surface and back

from it following reflection. Surfaces of constant phase in the reflected beam

can thus be considered to be a map of the physical surface

φ(x, y) = 2S(x, y) (2.1)
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(a) (b)

Figure 2.2: The Michelson interferometer including the reference mirror (a),

and a fringe pattern obtained with a real diamond crystal in this configuration

(b).

where φ is the local phase of the quasi-plane wave and S is the shape of the

physical surface. Each quasi-plane wave also has a corresponding amplitude

(A = A(x, y)) to accompany the phase.

2.2 Two-Wave Interference

The fringe pattern shown in Fig. 2.1 exhibits the interference of the reflected

waves from the front and back surfaces of the diamond wafer. This 2-wave

interference pattern can be expressed as

I2 =
∣∣∣Afronte

iφfront + f Afronte
iφback

∣∣∣2 (2.2)

where the factor f = 0.9 takes into account the loss of intensity in the beam
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reflected from the back surface relative to the front due to the additional two

boundary crossings. A fringe pattern of this type is not sensitive to the two

surface profiles individually, but only to variations in the thickness of the

diamond wafer. While this quality does not help in determining the absolute

shape of the diamond wafer, it does provide important information on the

uniformity of the wafer-thickness resulting from the thinning process.

2.3 Three-Wave Interference

Fig. 2.2 shows the interference of the light waves reflected from the front and

back surfaces of the diamond, as well as the reference mirror. Its interference

pattern has the form

I3 =
∣∣∣Arefe

iφref + Afronte
iφfront + f Afronte

iφback

∣∣∣2 (2.3)

which includes an additional term within the absolute value squared. Unlike

the two-wave pattern in Sect. 2.2, the three-wave fringe pattern contains in-

formation on the non-planarity of the individual diamond surfaces in addition

to the non-uniformity of its thickness.
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Chapter 3

Fringe Pattern Analysis

3.1 Introduction

Creating simulated fringe patterns is a relatively easy task. All one needs

are two or three model surfaces and a computer program to interfere the

simulated wavefronts. Each combination of surfaces makes a single fringe

pattern. However, the task of going from a fringe pattern back to the orig-

inal surfaces is not as easy and, in general, not unique. Many different sets

of surfaces can lead to the same fringe pattern. Only by imposing certain

smoothness criteria on the shapes of the surfaces can the inverse problem be

made well-defined.

Methods of fringe pattern analysis can be sorted into two main categories:

“temporal (phase-shifting) methods and spatial methods” [6]. According to

Ref. [6], interferogram analysis began in the 1960’s with the work of Carre,

Rowley and Harmon, who pioneered the temporal method. However, this
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form of analysis relies on the availability of many images taken while the

sample is shifted by a fractional number of wavelengths precisely along the

interferometer beam axis. To circumvent this problem, a number of spa-

tial analysis methods were developed which were capable of analyzing single

fringe patterns to obtain the underlying surface shapes. With advances in

both experimental control and computing power, current methods of fringe

pattern analysis utilize combinations of both experimental and computer-

based procedures to produce more accurate results than were previously at-

tainable [6].

3.2 Fringe Pattern Analysis Methods

3.2.1 phase-shifting Technique

The phase-shifting technique relies on being able to adjust the offset posi-

tion of the sample in the interferometer in such a way that the difference

in the phase between two interference patterns is known. For each pixel in

the image, the intensity varies sinusoidally with k δz where δz is the off-

set coordinate and k is the laser wavenumber. Generally the maximum and

minimum of the interference fringes are a-priori unknown, together with the

phase offset φ at δz = 0. Thus a minimum of three of these offset images

(“frames”) is needed to uniquely extract the values φ for each pixel.

With the availability of improved precision mirror mounts, the phase-shifting

technique with sub-micron translation stages, has re-emerged as a practical
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method, as the ability to measure and implement the phase shift comes under

much greater control. However, this technique does require a more expen-

sive experimental setup, and requires some experience in optical alignment

to carry out correctly.

3.2.2 Fourier-transform Method

Figure 3.1: The Mexican hat function

The Fourier-transform method of interferograms was created in 1982 by the

authors of Ref. [7]. It was originally intended as an alternative to Moire

Topography and the phase-shifting technique [7], [8]. However, as originally

proposed this method was ineffective at analyzing closed fringe patterns (i.e.

those whose intensity map contain closed contours). A revision to the method

solved this problem by utilizing a Cartesian-to-polar coordinate transform

[9], the result of which could then be analyzed using the original method

proposed.
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The revised Fourier Analysis method does have several limitations. The first

requirement is that the “measurement wave front be a monotonic function in

the direction of the carrier frequency” [9]. The notion of a “carrier frequency”

refers to the regular patterns of nearly straight equi-distant fringes that ap-

pear in an interferogram when the normal vectors of the sample and mirror

are deliberately displaced in angle. In this case, departures from straight

and equidistant fringes are the signature of the sample surface profile. For

instance, if a surface resembling the Mexican hat function shown in Fig. 3.1

(courtesy of Ref. [10]) were analyzed by the revised Fourier Analysis method,

the result would look like an inverted cone with a rounded top. In order to

analyze a fringe pattern generated by such a surface, an additional fringe

pattern giving the carrier frequency must be given as an additional input.

3.2.3 Regularization Algorithms

The regularization method was created for the specific purpose of automat-

ically demodulating “noisy” fringe patterns. Regularization algorithms in-

volve evaluating the estimated phase field with a cost function against the

actual image and then imposing the smoothness criterion. This method is

begun in a region of the image where the intensity is locally flat, and then

extended into adjacent regions until the entire image is covered and a global

minimum is reached in the cost function [11], [12].

The algorithm is comparable to the way crystal growth occurs, starting from

a seed. One drawback of the method is that it is unable to take advantage

of global information to resolve local ambiguities in whether the surface is
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locally increasing or decreasing height.

3.2.4 Artificial Neural Network Method

Figure 3.2: Schematic of a neural network

The human brain is composed of nearly 5 billion neurons, each of which have

the apparently simple job of receiving, integrating and transmitting nerve

pulses. The complex interconnections between many functional units give

rise to the functionality of the brain. This principle was postulated in the

1940’s by McCulloch and Pitts who theorized that a similar approach could

be applied to computing [13]. Using a network of simple independent com-

puting units (“neurons”), one might be able to mimic the brain and thereby

create complex behavior from simple components.

Differing from most computer programs, artificial neural network software

requires a “learning” phase to adapt itself to the problem being undertaken.

The neural network organizes the neurons into three distinct layers: input

neurons, output neurons, and hidden neurons, as depicted in Fig. 3.2 (cour-
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tesy of Ref. [13]). It is important that neurons in any layer communicate

only with neurons in an adjacent layer. After their creation, the network

of neurons is “trained” under one of three training regiments: supervised,

reinforced or unsupervised learning. Supervised learning involves constant

feedback being given to the neural network during the training sequence.

Reinforced learning can be defined by the use of simple “good” and “bad”

evaluation to the program after each run. A neural network with unsuper-

vised learning is given an output goal, but receives no feedback from the

trainer during the learning phase. Given time constraints and the desire for

a reasonable output, supervised or reinforced learning schedules are usually

adopted. The result of the learning phase is a set of weight factors by which

each neuron computes the average of its inputs to form its output [13].

Neural networks are frequently employed for problems in complex pattern

recognition, inspired by the impressive powers of the brain in this area. The

method can either involve a system of many neurons linked together to ana-

lyze an entire image, or a small number of neurons can be used to analyze the

image section by section. The former requires both a long learning period

and a large number of neurons. Thus it is both computationally expensive

and time intensive. Sub-image analysis with artificial neural networks can

be accomplished with much more limited computer resources, but is suitable

for only a restricted set of problems [13].
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Chapter 4

Simulated Annealing

4.1 Optimization

Optimization can be defined as the “identification of global extremities of

mathematical functions” [14]. The task of finding such a global extremity

can range from very easy to very difficult, as the complexity of the function

in question grows. Optimization problems arise in a vast array of fields that

include biology, chemistry, engineering, computer science, physics and many

others. Simple optimization problems can be solved using elementary calcu-

lus, and, as the difficulty increases, variational principles may be employed.

However, at a certain point, analytical solutions may no longer be possible

and computer algorithms must be employed. There exist an extremely large

number of these computer algorithms, ranging from deterministic search al-

gorithms to various Monte-Carlo techniques [15].
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4.2 History

The first paper on simulated annealing was published in 1983 by Kirkpatrick,

Gelatt, and Vecchi, who sought to emphasize the “deep and useful connection

between statistical mechanics . . . and multivariate or combinatorial optimiza-

tion” [16].

4.3 Method

Simulated annealing is based on the fact that in physical systems whose

ground states are highly ordered are able to self-assemble starting from dis-

ordered states if their temperature is lowered gradually, starting from a high

enough initial temperature. In the case of physical annealing, it is the Boltz-

mann factor e−E/kbT that governs the relative probability that any state of

free energy E is attained by the system in equilibrium at temperature T . In

more general optimization problems, the state of the system is represented

by a candidate solution called a configuration, and the energy of the config-

uration is represented by a “cost function” whose global minimum defines

the true solution. In statistical mechanics, the system undergoes a random

walk in configuration space, so that it visits all possible states of the sys-

tem with some probability, but as the temperature is reduced, states with

energies near the ground state become increasingly probable. In simulated

annealing, a similar random walk takes place, whose steps are governed by

the Boltzmann factor so that it minimizes the physical system, and at low

temperature is increasingly confined to configurations of the lowest cost.
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4.4 The Metropolis Algorithm

The Metropolis Algorithm was created in 1959, by Metropolis et al. in an

effort to model a collection of atoms in contact with a heat bath [16]. The

Metropolis algorithm is based on the representation of a state consisting of

N interacting atoms by a point in 6N -dimensional phase space. The tempo-

ral evolution of the system in phase space is replaced with a chain of points

(configurations) whose sequence is the result of a Monte Carlo selection pro-

cedure. The energy of a configuration in the chain is compared with the

energy resulting from a random perturbation. If the perturbed energy is

lower, that displacement is accepted and the chain continues from the new

point. However if the value of the perturbed energy is higher, the value of

the Boltzmann factor (e−∆E/kbT ) is compared to a uniform random num-

ber between 0 and 1. If the random number is greater than the value of the

Boltzmann factor, the displacement is accepted, and if not it is discarded [16].

A variation of this algorithm is employed by Ref. [16], where the energy is re-

placed by a quantity known as the cost function (the value to be optimized)

and the temperature is replaced by a controlled quantity that mimics the

physical process of annealing. Larger increases in the cost function, particu-

larly when the temperature is low, result in a Boltzmann factor closer to 0,

and thus are less likely to be accepted.
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4.5 Parallel Simulated Annealing

Simulated annealing has been shown to be an effective means for finding

a near-global minimum for large combinatorial optimization problems [16].

Compared with deterministic searches, simulated annealing typically requires

much greater computing resources. Since users of optimization algorithms

want to find solutions in the most time-efficient manner without sacrificing

the quality of the solution, simulated annealing is often overlooked. However,

if one can parallelize the algorithm to run on multiple processors, the amount

of time that it takes to find an acceptable solution is decreased.

The Parallelized Simulated Annealing (ParSA) library created by Georg

Kliewer and Karsten Klohs [17] provides a general framework in C++ for

implementing simulated annealing on a parallel computing platform. Two

modules present within the ParSA package are the SA Scheduler and the

SA Solver. Within the SA Scheduler module, the user is able to choose

between a variety of annealing strategies, each of which is supported by a

SA Solver module which interfaces to the user’s classes where the specifics

of the optimization problem are implemented.

The parallel processing strategy used by ParSA is as follows. At each tem-

perature setting, several independent chains are generated, each of which is

worked on by a set of cooperating processes called a cluster. Each processor

in the cluster is called a node. One special node known as the head node,

collects cost function information from the other nodes, called slave nodes.

The head node communicates with the slave nodes using the MPI library,
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which is a “specification for message-passing, proposed as a standard by a

broadly based committee of vendors, implementors, and users. . . designed for

high performance on both massively parallel machines and on workstation

clusters” [18].

A simulated annealing run consists of two phases, the warming-up phase and

the cooling phase. Each of these periods are punctuated by the equilibrium

point and the frozen point, respectively. The warming-up phase ends when

the system is said to reach equilibrium. The cooling phase ends when the

system is frozen. The purpose of the warming-up phase is to ensure that the

final solution does not depend on the initial configuration, while the cooling

phase determines the quality of the solution that results.

4.5.1 Aarts Strategy

Scheduler

Aarts temperature scheduling is done completely adaptively, that is, the

temperature of each portion of the run is controlled by feedback from the

history of the run. In the warming-up phase, an initial acceptance ratio χ0 is

chosen by the user, together with a starting configuration. The region around

the starting configuration is explored by taking many perturbations of the

initial configuration, and comparing the cost function with the initial value.

At the end of the warming phase, an initial temperature T0 is computed as

T0 = ∆C(+)

(
ln

m2

m2χ0 − (1− χ0)m1

)−1

(4.1)
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where m1 and m2 are the number of neighboring configurations with better

and worse cost function values, respectively, and ∆C(+) is the mean value of

the differences between the cost function of all worse solutions [17]. After a

stable value is achieved for T0 equilibrium is reached and phase two begins.

The temperature in phase two is reduced according to

Tn = Tn−1

(
1 +

ln(1 + δ)Tn−1

3σTn−1

)−1

(4.2)

where σ(Tn−1) is the standard deviation of the values of the cost func-

tion encountered during the current temperature step and δ is the so-called

distance parameter. The size of δ determines the speed of the reduction of

the temperature [17]. An Aarts run is said to be frozen when the derivative of

the smoothed mean value of the cost function is smaller than the user-defined

error ε [17].

Solver

The solver portion of the Aarts scheduler follows a divide-and-conquer strat-

egy in which the head node keeps track of all of the best solutions presented

by each of the slave nodes, and at each temperature step the slave nodes

each follow an independent Metropolis chain. At the end of each job, the

best solution cataloged by the head node is given as the solution of the run.

It should be noted that at the beginning of each temperature step, all of the

slaves adopt a common configuration as their starting point.
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4.5.2 MIR

Scheduler

The warming-up phase of the MIR scheduler proceeds in an adaptive manner

similar to the Aarts scheduler. At the end of this period, the starting and end-

ing temperature is defined according to the following formulas: Tstart = ∆Cmax

χ0

and Tend = ∆Cmin

χ0
. If the user sets the end temperature parameter, this value

is used in place of the calculated one. After this, the job enters phase two.

In phase two, the temperature is cooled according to a geometric sequence

defined as: Tn = (alpha)×Tn−1, where alpha ∈ (0, 1) is selected by the user.

Higher values of alpha result in the temperature being lowered more slowly,

whereas lower values of alpha result in quicker cooling.

Both higher and lower values of alpha have their potential merit. Higher val-

ues allow more of the solution space to be searched while holding the number

of steps at each temperature constant. This ensures that the initial config-

uration is not reflected in the final configuration and that a greater portion

of the configuration space is searched. However, the downside of this lies in

the fact that if the temperature is kept relatively high for the duration of

the run, the algorithm does not get a chance to “down-climb” into a “valley”

in solution space and settle upon a potentially good solution. On the other

hand, lower values of alpha result in the temperature being lowered very

quickly and less hill-climbing being done. Thus, the run descends in solution

space more quickly than its cousin with a higher alpha. This strategy has

the downside that too much quenching of the temperature may result in not
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enough of the solution space being explored.

For very large or complex problems it is often more effective to use multiple

runs where the temperature is rapidly quenched, as opposed to using a single

run which cools more slowly. There are two reason why quicker multiple

runs may be more effective. The first reason is that slowly cooled runs might

spend too much time wandering before settling into the neigborhood of a

good solution. The second reason is that search spaces are often highly

segmented, and success in a search can often depend on taking the correct

branch in the search sequence. By using many runs that are cooled quickly, a

large number of solutions will be found, some of which will be within the set

of what are deemed good solutions i.e. solutions with a cost function value

less than Costmin. The probability that a solution χn found by an MIR run

will not be within this set is given by

P (χn /∈ Costmin) ∼
(

K

n

)α

(4.3)

n is the number of steps in the run, and K and α are parameters that depends

on the problem. Once these parameters are determined empirically, it is then

possible to estimate the optimum run length required to obtain an acceptable

solution.

Solver

The number of runs completed in phase two depends on the parameters

Betta Runtime, Minimum Runlength, Maximum Runlength and Samples.

The first three of these parameters determine the number of runs per sam-
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ple. The first run in a sample is of length Minimum RunLength, which

is a user-defined quantity which serves as a reasonable approximation of

the neighborhood size in the solution space. For subsequent runs in the

sample, the run length is increased by the factor Betta RunTime until

Maximum RunLength is reached, at which point the sample is complete.

This sequence is repeated Samples times to complete the optimization job.
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Chapter 5

Testing

5.1 Solutions

Now that both the problem (deciphering interferograms) and a proposed

method of analysis (simulated annealing) have been presented, a parametrized

model of an interferogram must be created so that ParSA can be used to find

the interfering surfaces. As mentioned in Sect. 1.4, the most interesting fea-

tures of the diamond wafers are of order 1 mm in transverse size. Since the

diameter of the diamond is around 5 mm, these features are not discontinu-

ous, but smooth and gradual. This physical insight can help determine what

mathematical basis set to use to describe the diamond surface (i.e. the am-

plitude and phase terms in Eq. 2.3) so that simulated annealing may be used

to extract the fringe pattern. One such basis is the Legendre polynomials.

Solutions to each of the amplitude and phase terms can then be thought of

as a weighted sum of the elements of a matrix of the Legendre polynomials

Pij = aijPi(x)Pj(y) (5.1)
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where aij is the coefficient of the ijth element of the matrix Pij, Pi(x) and

Pj(y) are Legendre polynomials of order i and j in the x and y directions,

respectively, and i, j = 1, ..., n where n ∈ N.

In Sect. 2.1 it was determined that the reference mirror was almost perfectly

flat. This planarity makes it convenient to define the phase of the reference

mirror as zero. With this simplification, only two amplitude and two phase

terms remain in Eq. 2.3 to be optimized against the image data.

5.2 Test Problem

Figure 5.1: Test problem fringe pattern

A 50 px× 50 px test interferogram was created from three model surfaces, as

depicted in Fig. 5.1. A configuration file was arranged for the MIR scheduler
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and solver, with parameters given in Table 5.1.

Betta Runtime 1.1

Maximum RunLength RunFactor ∗GetLocalN()

Minimum RunLength GetLocalN()

Samples 10

RunFactor 5

GetLocalN() 105

Table 5.1: Parameter values used in the submitted jobs

The highest allowed order of Legendre polynomial allowed for each of the

amplitude and phase terms is given in Table 5.2.

Aref 1

Adiamond 1

φdiafront 3

φdiaback 3

Table 5.2: Highest order Legendre polynomial allowed for each amplitude

and phase in the test problem.

A chi-squared value was picked as the cost function for comparisons between

the test interferogram and candidate solutions found by the simulated an-

nealing algorithm.
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5.3 Running ParSA

ParSA jobs with the alpha parameter set to 0.5 and 0.9 were submitted. It

was predicted that the job with the more aggressive cooling schedule (i.e. the

job with alpha = 0.5) would show better performance in finding solutions to

the test problem, according to the argument presented in Sect. 4.5.2. This

hypothesis could be tested by determining the α and K parameters given in

Eq. 4.3. Relative performance under each of the cooling parameters could

then be evaluated by determining which job would converge most efficiently.

In order to create plots to determine the α and K parameters, a maximum

acceptable cost function value (Costmin) must be chosen. The initial configu-

ration for all of the simulated annealing runs assumed uniform Aref , Adia = 1

and φdia1, φdia2 = 0, which resulted in a cost function of 108. Solutions with

cost function values less than 1% of this initial value are visually indistin-

guishable from the actual test problem. Thus, 106 was determined to be a

valid value for Costmin.

With the maximum acceptable value for the cost function defined, the prob-

ability that a run of length n will not converge can then be found using bino-

mial statistics. The binomial distribution B(n, N ; p) =

 N

n

 pn(1− p)N−n

gives the probability of observing n successes out of N trials, given the mean

success probability p. In binomial statistics, one takes N and n as given by

experiment and uses them to estimate p. The Bayesian estimator for p given
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N and n is

p̂ =
nf + 1

N + 2
(5.2)

where N is the total number of runs of length n and nf is the number of

failed runs. The variance of the estimator p̂ is given by

V (p̂) =
(nf + 1)(N − nf + 1)

(N + 2)2(N + 3)
(5.3)

which provides an estimate for the statistical error in the value of the esti-

mator p̂ for the sample of N runs.

A log-plot of p̂ versus n can be obtained and α and K can be determined

from the slope and y-intercept of a linear fit. The standard deviation of each

measurement can the be determined by the following relationship

σ =
√

V (p̂) (5.4)

where σ is the standard deviation on the measured values for p̂. The linear

fit returns the best values for α and K based on these data, together with

their respective errors.
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Chapter 6

Results and Conclusions

6.1 Visual Comparison

6.1.1 Interferograms

Fig. 6.1(b) shows the best solution found during several simulated annealing

runs on the three-wave test problem described in Chap. 5. A visual compar-

ison with the exact solution depicted in Fig. 6.1(a) shows that the solution

is a good one. Solutions with cost functions of the same order of magni-

tude were repeatedly found. No two exactly were alike, but all had a similar

resemblance to the input image.

6.1.2 Surfaces

Fig. 6.2(a) and Fig. 6.3(a) show the surface profiles for the front and back of

the test diamond, respectively, where the incident light travels down along

the vertical axis in the figures. Fig. 6.2(b) and Fig. 6.3(b) show the corre-
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(a) (b)

Figure 6.1: The test interferogram created from three random surfaces (a),

and the best solution found amongst several simulated annealing runs (b).

sponding solutions found during the best simulated annealing run described

in Sect. 6.1.1. The test diamond surfaces are the same shape and give the

diamond a uniform thickness. The surfaces appear to be planar, but in actu-

ality they are not, as they have a small contribution from the P2 2 element in

the Legendre matrix sum (Eq. 2.3), which gives it some curvature. This cur-

vature can be seen in the test interferogram in the form of the complex light

and dark band structure. If the surfaces were to have been completely pla-

nar, the resulting interferogram would only have featured a series of straight

equally-spaced parallel light and dark bands. As noted in Sect. 6.1.1, the

interferogram solutions found by simulated annealing were nearly identical

to the test interferograms. This is surprising because the solutions for the

surfaces are actually sloped in the opposite direction! This sign error results

from the ambiguity present in the problem due to the fact that a mirror trans-

formation of the diamond through a horizontal plane results in an unchanged
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interferogram. The spacing between the two solution diamond surfaces also

features an ambiguity resulting from the periodic nature of light. As de-

picted in the solution, the surfaces are separated by about 12 wavelengths.

If the algorithm were to have found a solution with the same surface features

but with either of the surfaces displaced in height by an integral number of

wavelengths, the solutions would be equivalent to the ones shown.

(a) (b)

Figure 6.2: The front diamond surface used to generate the interferogram in

the test problem (a), and the best solution found amongst several simulated

annealing runs (b).

6.2 Run Length Optimization

For each of the jobs described in Sect. 5.3, the Bayesian estimator p̂ for the

probability of non-convergence versus run length n was obtained, together

with its statistical error. Run lengths n = 105 to n = 4.5×105 were analyzed

for two different values of the cooling parameter alpha. A linear fit was
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(a) (b)

Figure 6.3: The back diamond surface used to generate the interferogram in

the test problem (a), and the best solution found amongst several simulated

annealing runs (b).

obtained for each of the log-log graphs, of the form

ln p̂ = α ln K − α ln n (6.1)

where p̂, n, K and α are as described in Sect. 5.3. By finding the slope

and y-intercept of the linear fit, a best estimate for K and α were obtained,

together with their errors.

6.2.1 MIR performance

The plot for alpha = 0.5 is shown in Fig. 6.4. The linear least-squares fit has

a slope of −0.0273 ± 0.0103 and a y-intercept equaling 0.297 ± 0.127 with

a reduced χ2 value of 1.0. Using Eq. 6.1, α and K were determined to be

0.0273± 0.0103 and (5.31± 2.4)× 104.
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Figure 6.4: Log of probability of non-convergence versus log of run length

for alpha = 0.5.

The alpha = 0.9 plot is depicted in Fig. 6.5. The slope and y-intercept of the

fit have values of 0.0047±0.0060 and −0.070±0.074 with a reduced χ2 of 0.55

K and α were determined to be (0.03±1.2)×108 and −0.0047±0.0060. Runs

of greater lengths would be needed to determine these parameters with any

degree of precision. This serves as an indicator to use more aggressive cooling

strategies on problems of this nature, as much more frequent convergence was

found for the alpha = 0.5 case.

6.2.2 Sequential Performance

Given the α and K parameters found from the alpha = 0.5 case, the number

of steps that are required for a single run to achieve 50% probability of success
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Figure 6.5: Log of probability of non-convergence versus log of run length

for alpha = 0.9

is on the order of 1019, according to Eq. 6.1. It would take a single processor

on the order of 500 million years to take this number of steps! The shear size

of this number demonstrates the power of the MIR strategy, when compared

to sequential runs.

6.2.3 Optimizing Run Length

The run length that maximizes the probability of convergence can be deter-

mined using the method of Lagrange multipliers. The total number of steps

T is given by

T = Rn (6.2)
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where R is the number of runs and n is the run length. The probability of

obtaining at least one successful run out of R runs is given by

Ps = 1− (Pf )
R = 1−

(
K

n

)Rα

(6.3)

where Pf is the probability of non-convergence on any given run. Optimizing

Ps under the constraint of fixed T is equivalent to finding an extremum of

the function L(n, R, λ)

L(n, R, λ) = 1−
(

K

n

)Rα

+ λ(T −Rn) (6.4)

where λ is a Lagrange multiplier. Setting the partial derivatives of Ps with

respect to R and n equal to zero,

∂L

∂R
= −α ln

(
K

n

)(
K

n

)Rα

− λn = 0 (6.5)

∂L

∂n
= RαKRαn−Rα−1 − λR = 0 (6.6)

and solving for n

ln
(

K

n

)
= −1 (6.7)

n = Ke (6.8)

the optimal number of steps can be found to be (1.44± 0.65)× 105.

6.3 Conclusions

In this thesis, the problem of determining diamond surface deformities using

laser interferometry is addressed. A Michelson interferometer comprised of
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a helium-neon laser, a reference mirror at the end of one leg and a diamond

wafer at the end of the other produced interferograms containing information

about the diamond surface. The interferograms result from three-wave inter-

ference between the reference mirror and both sides of the diamond. These

types of interferograms cannot be solved using traditional methods. A novel

method for their analysis was presented in the form of a simulated annealing

algorithm. This problem is a challenging one for numerical search methods

because of the very large search space and the large number of local minima in

the cost function. Additionally, Monte Carlo techniques suffer from very long

run times on these large problems. This obstacle was overcome by utilizing a

parallelized multiple-run strategy which distributed the job amongst a mid-

sized cluster of 24 processors. A 50px×50px test interferogram was created,

and visually indistinguishable solutions were found repeatedly. Convergence

for different cooling parameters was tested. The superiority of using many

shorter runs over a single run of greater length was shown by demonstrating

that single runs would take on the order of 500 million processor-years to

achieve a 50% probability of convergence. The optimal run length for the

multiple-runs strategy was found to be on the order of 105, which happened

to coincide with the value used in runs on the test problem.

Future work should be devoted to testing the effects of increasing the size of

the test problem from 50 px× 50 px until its size is comparable to the actual

diamond three-wave interferograms (300 px × 300 px). Low resolution solu-

tions (i.e. ones found with lowers maximal orders of Legendre polynomials)

should be used to find an initial configuration for runs with higher resolu-
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tion. Temperature scheduling may have to be modified during these runs, as

the warming-up algorithm in the existing program is designed to ensure that

the final configuration does not depend on the starting configuration. This

test would investigate the claim made by the authors of Ref. [16] that coarse

features are determined at higher temperature values whereas fine features

are exposed at lower values.

In this paper, simulated annealing was shown to be an effective method for

diamond wafer interferogram analysis. Before this work was done, the only

means for obtaining surface information from the diamonds was through

x-ray diffraction measurements, which required much planning, time and

human resources. However, with the effectiveness of simulated annealing

demonstrated, surface information can now be obtained by simply analyzing

interferograms with a computer cluster. This flexibility will help to expedite

the construction of the beam line at Jefferson Lab’s Hall D. Once Hall D is

complete, GlueX can take place and new physics can be explored!
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Appendix A

Theory

A.1 Maxwell’s Equations

A.1.1 In Vacuum

Gauss′ Law : ∇ · E = 0

Gauss′ Law for Magnetism : ∇ ·B = 0

Faraday′s Law : ∇× E + ∂B
∂t

= 0

Ampere′s Law : ∇×B− µ0ε0
∂E
∂t

= 0

(A.1)

A.1.2 In the Presence of External Media

Gauss′ Law : ∇ ·D = ρfree

Gauss′ Law for Magnetism : ∇ ·B = 0

Faraday′s Law : ∇× E + ∂B
∂t

= 0

Ampere′s Law : ∇×H− ∂D
∂t

= Jfree

(A.2)
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Note that for linear media:

D = εE

H = 1
µ
B

(A.3)

A.1.3 In Conducting Media

Ohm′s Law : Jfree = σE

Continuity Equation : ∇ · Jfree = − ∂
∂t

ρfree

Gauss′ Law : ∇ · E = 0

Gauss′ Law for Magnetism : ∇ ·B = 0

Faraday′s Law : ∇× E + ∂B
∂t

= 0

Ampere′s Law : ∇×B = µε∂E
∂t

+ µσE

(A.4)

Note: σ is electrical conductivity.

A.2 Wave Equations

A.2.1 In Vacuum and Linear Media

∇2E =
1

c2

∂2E

∂t2
(A.5)

∇2B =
1

c2

∂2B

∂t2
(A.6)

A.2.2 In Conducting Media

∇2E =
1

c2

∂2E

∂t2
+ µσ

∂E

∂t
(A.7)

∇2B =
1

c2

∂2B

∂t2
+ µσ

∂B

∂t
(A.8)
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A.3 Wave Equation Solutions

E = E0e
i(k·x−ωt) (A.9)

B =
1

v
E0e

i(k·x−ωt) (A.10)

Note: v = c
n

and n =
√

εµ.

60


