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University, Kotlářská 2, CZ-61137 Brno, Czech Republic, eEuropean Synchrotron Radiation

Facility, 6 rue Jules Horovitz, F-38043 Grenoble, France, and fInstitute of Electrical Engineering,
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The method called ‘rocking-curve imaging’ (RCI) has recently been developed

to visualize lattice imperfections in large crystals such as semiconductor wafers

with high spatial resolution. The method is based on a combination of X-ray

rocking-curve analysis and digital X-ray diffraction topography. In this article,

an extension of the method is proposed by which dislocation densities in large-

scale samples (semiconductor wafer crystals) can be quantified and their

variation across the sample surface determined in an instrumentally simple way.

Results from a nearly dislocation-free S-doped InP crystal and a semi-insulating

GaAs are presented; both display a clearly non-random distribution of

dislocations.

1. Introduction

A variety of methods and instrumental setups have been

developed in recent years to monitor crystalline perfection,

mosaicity and grain structure of single crystals and/or poly-

crystals using X-rays.

Classically, there are two kinds of X-ray methods available

to investigate the crystalline quality of a sample. X-ray

diffractometry, working in reciprocal space, reaches very high

angular resolution and is thus highly sensitive to lattice

distortions. However, it usually averages over the real-space

dimensions of the sample (millimetres). X-ray diffraction

topography, on the other hand, is a real-space imaging method

that investigates the spatial distribution of defects in a crystal

with spatial resolution of down to 1 mm. In its standard forms,

it cannot easily be used, however, to obtain quantitative

information on angular quantities (lattice misorientation etc.).

Both methods were invented many decades ago [see DuMond

(1937) and Zachariasen (1945) for diffractometry, and Berg

(1931) and Lang (1959) for topography], and have developed

into very well established techniques [for recent reviews see

e.g. Bowen & Tanner (1998) and Authier (2001)].

Various approaches have emerged in recent years that allow

both spatial and angular information on lattice imperfections

to be obtained simultaneously. Starting from diffractometry

with laboratory X-ray tubes, the incident-beam size can be

restricted by slits, and local rocking curves measured by

scanning over the sample surface. Entire semiconductor

wafers have been mapped out in this way (Goorsky et al., 1997;

Ferrari et al., 1997), and appropriate equipment is now avail-

able commercially. However, the best achievable resolution is

of the order of millimetres, making it impossible to correlate

the measured macroscopic sample properties with their

microscopic causes.

At synchrotron radiation sources, the high flux, good

collimation and small source size of the X-ray beam allow

much smaller beam spot sizes to be used in such investigations,

in particular when focusing the (white or monochromatic)

beam with highly sophisticated X-ray optics (Castelnau et al.,

2001; Larson et al., 2002; Tamura et al., 2003).

These setups have been used to quantify dislocation

densities in steel via the width of local rocking curves

(Castelnau et al., 2001), to map grain structure and orientation

in polycrystalline aluminium (Larson et al., 2002), as well as to

investigate electromigration damage in Cu and Al inter-

connect lines for microelectronics (Tamura et al., 2003).

A slightly different approach is followed by Poulsen et al. in

the method referred to as ‘3D-XRD’ (Poulsen et al., 2001;

Poulsen & Schmidt, 2003). By using a one-dimensionally

focused beam, recording diffraction patterns at several
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different sample–detector distances and analyzing the data in

a ray-tracing procedure, they determine the grain structure of

polycrystals in three dimensions.

An inherent disadvantage of all the above methods is that

they are slow, since they need to scan successively a

microbeam over the sample area and/or to make the same

measurement at a number of different sample–detector

distances. As a fundamental alternative, several groups

developed early versions of what may be summarized as multi-

exposure X-ray topography (Chikaura & Suzuki, 1993;

Köhler, 1993). These imaging methods, using a very wide

(rather than micro-) X-ray beam and an area detector, prof-

ited greatly from the increasing availability of electronic area

detectors (CCD cameras). Thus, our method of ‘rocking-curve

imaging’ (alias ‘area diffractometry’) (Lübbert et al., 2000)

realises spatial resolution not on the incident-, but on the exit-

beam side. It has been applied to determine the crystalline

quality in various semiconductor materials (Lübbert et al.,

2000) as well as in synthetic diamond samples (Hoszowska et

al., 2001) and has recently been extended to allow simulta-

neous determination of lattice misorientations in all three

angular directions (Mikulı́k et al., 2003).

A related method, referred to as ‘MAXIM’, has been

developed independently by Wroblewski et al. (1995, 2000). It

also uses spatial resolution in the exit beam, with an additional

microchannel-plate placed between sample and detector as a

collimating element. In this way, a second dimension in

angular (reciprocal) space can be scanned, and lattice para-

meter differences in highly strained samples and/or phase

coexistence be detected, at the expense of more complicated

instrumentation and larger amounts of data to be processed.

This method thus specializes on more highly disturbed

systems, polycrystals and powders, while our RCI technique is

ideal for moderately perfect (single) crystals, such as semi-

conductor wafers, the imperfections of which are to be

investigated with very high spatial and angular resolution.

In this article, we present a new extension and methodical

improvement of the rocking-curve imaging technique, which

now also allows the quantitative determination of net dislo-

cation densities in the sample surface plane via their signature

in terms of local lattice curvature. The validity of the method

will be demonstrated with examples of an InP and a GaAs

wafer, and the merits and limitations of the new procedure will

be discussed in detail.

2. Experiment

The experiments were performed on two different compound

semiconductor substrate wafers, each of 5 cm diameter. The

first, a Czochralski-grown InP (001) wafer doped with sulfur at

a concentration of 6 � 1018 cmÿ3, was expected to be of very

good crystalline quality. A zero dislocation density was

predicted in the main part of the wafer, with only some

dislocations close to the wafer edges, as verified by classical

topography on X-ray film. This sample was selected as a

reference in order to test and validate the method. The second

sample was a semi-insulating undoped Czochralski-grown

GaAs (001) wafer. Samples of this kind are known to have a

higher dislocation density, of the order of 104–105 cmÿ2,

typically distributed in a W-shaped pattern (high dislocation

density in the centre and along the wafer edges, lower density

between).

The X-ray diffraction experiments were performed at the

ID19 beamline of the ESRF, Grenoble (France). The X-ray

beam from the wiggler source was monochromated by a

vertically diffracting Si-111 double-crystal monochromator to

a photon energy of 9 keV (� = 1.37 Å). The beam was then

directed onto the wafer sample, which was set to the diffrac-

tion position for the 004 reflection in a horizontal scattering

plane (�–� geometry). Bragg angles for this reflection were

27.99� for InP and 29.17� for GaAs. The crucial advantage of

this beamline is the very long source-to-sample distance of

145 m; this allows one to obtain a wide beam (15 � 40 mm)

while not compromising the very low angular divergence.

Thus, the entire sample area could be covered in just four

vertical slices, while the lateral dimensions of the sample easily

fit into the beam width due to the effect of lateral projection

by the Bragg angle.

The diffracted beam profile was recorded by a digital

FReLoN CCD camera (Labiche et al., 1996) with 10242 pixels.

The camera was set reasonably close to the sample (distance

15 cm); a coarse pixel size of 40 mm was used, thus obtaining a

maximum field of view of 4 � 4 cm. The lateral spatial reso-

lution is basically determined by the pixel size, with ‘lateral’

being defined perpendicular to the exit beam. On the sample

surface one has additionally to take into account the back-

projection of the pixel on the surface plane, and the mean

information depth. The latter is determined by the absorption

length and, more importantly for rather perfect crystals, by the

extinction length of X-rays in the material. A sketch of the

entire experimental geometry is shown in Fig. 1.

After adjusting the sample and camera positions to the

reflection positions, the sample was rotated around the vertical

axis in very small angular steps (0.0005�) over a total range of

up to 0.20�. A CCD image of the intensity distribution in the

diffracted beam (a digital X-ray topograph) was recorded at

each individual angular position, and the entire series of

topographs stored on a computer. The sample was then

vertically translated and the procedure repeated until the

entire wafer surface had been covered.
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Figure 1
Geometry of a rocking-curve imaging (RCI) measurement: a wide
parallel X-ray beam from the wiggler source is monochromated by a
vertically diffracting two-crystal Si-111 monochromator. After horizontal
diffraction by the sample, the signal is detected by a CCD camera placed
at the scattering angle 2� with respect to the incident beam.



In a second step, the sample was rotated by 90� around its

surface normal, and the entire measurement repeated. In this

way, lattice tilts of the (004) planes along two perpendicular

directions could be measured across the entire wafer area.

3. Data analysis

The initial stage of data analysis followed the principles

described by Lübbert et al. (2000): the series of digital topo-

graphs recorded along the rocking curve of the sample can

alternatively be viewed as thousands of local rocking curves

recorded simultaneously in parallel. The data were therefore

reorganized in order to extract curves of diffracted intensity

versus rocking angle for each individual image pixel. The

shape of these ‘local rocking curves’ was then analyzed in

terms of peak height, peak width (FWHM) and angular peak

position, and the resulting values plotted as spatial distribu-

tions (maps).

In our previous investigations, the map of FWHM values

was used as an indicator of crystalline quality. In what follows,

we take a new approach by focusing exclusively on the maps of

angular Bragg peak position, and analyzing them in terms of

specific local changes of lattice curvature. These can then be

interpreted as a typical signature of dislocations, thus allowing

their density to be quantified.

Generally, a change in Bragg angle �B can be caused by

either lattice tilts �’ or lattice parameter variations �d/d,

according to the equation

��B ¼ ÿ tan �B ð�d=dÞ ��’: ð1Þ

The relative importance of both contributions was analyzed by

recording and evaluating the rocking-curve imaging series

twice, in 0 and 180� azimuth (rotation around the sample

surface normal). The average and the difference of both

measurements yield the lattice parameter variation and lattice

tilts, respectively. The results confirmed that the effect of

lattice parameter variations is negligible in our case (below

10ÿ4).

This fact supports our interpretation of spatial resolution

being directly related to pixel size. Larger lattice parameter

variations in the sample would lead to differences in scattering

angles, which translate into lateral shifts �x in the detector

plane according to

�x ¼ 2D�� ¼ 2D tan � ð�d=dÞ;

where D is the sample–detector distance. For our conditions,

the lateral shift is below one detector pixel provided that

strain variations are lower than �d/d = 4.8 � 10ÿ4.

Another kind of image blurring (along the vertical direc-

tion) can be caused by rather large two-dimensional tilts of

single crystallites. Their effect can be understood and analyzed

as shown by Mikulı́k et al. (2003).

In order to obtain precise values for the angular peak

positions representative of the real lattice tilts in the sample,

the measured maps were corrected for instrumental effects. In

fact, the dispersive arrangement of monochromator and

sample with perpendicular diffraction planes causes only a

narrow band across the sample surface to be in diffraction

position simultaneously. An artificial diagonal gradient is thus

visible in the experimental peak position maps. Based on a

mathematical description of the beamline geometry (Servidori

et al., 2001), this effect can be calculated and subtracted from

the experimental data. The final maps shown below were all

corrected in this way, and are therefore representative of the

real lattice curvature in the sample.

Four slices measured in this way were stacked vertically and

overlaid on each other to recover a combined map of the

entire wafer surface. To facilitate the procedure, it was made

sure in the measurement that adjacent slices overlap in a

certain region at the edges. A smooth and continuous fitting of

the external sample shape was used as a criterion for

successful overlaying. As a potential alternative, the matching

of visible internal defects could be used in the more difficult

cases of less characteristic external sample shapes or incom-

plete illumination of a (larger) sample area.

In addition to the spatial matching, adjacent slices also need

to be made to coincide in angle. In fact, raw maps of angular

Bragg peak position show sharp discontinuities across the

edges, with angular jumps on the order of some 0.01�. This was

ascribed to a slight rotational instability of the translation

stage, and was compensated by shifting each individual map by

a fixed angular offset. The spatial overlap regions were again

essential in order to determine best fit values for these offsets.

Nevertheless, a small remaining discontinuity across the edges

is still apparent in the corrected maps (Figs. 2 and 3). This may

be due to yet another mechanical instability, a slight invo-

luntary sample tilt upon translation, and could not be

compensated. Although this is unpleasant, it does affect a

single row or column of image pixels only, and in no way

perturbs the main part of the sample area.

The second map of angular peak positions (Fig. 3),

measured in the 90� azimuth position, represents the local

lattice tilts along a direction perpendicular to the first. In

order to achieve pixel-wise matching of the two combined

images, two more processing steps were performed: first, the

second image was rotated back by ÿ90�. Then, both images

were stretched to make their spatial resolutions match: in fact,

the image of the sample is compressed in the horizontal

diffraction plane by a factor sin �B, where the value of the

Bragg angle �B is close to 30� in our case. Therefore, the

camera pixel size of (40 mm)2 corresponds to a resolution in

the sample plane of 40 mm vertically by nearly 80 mm hori-

zontally in the first map, and vice versa for the back-rotated

second map. This projection effect was undone by stretching

both images in the respective direction. Finally, the resulting

images were interpolated to a common square grid of (80 mm)2

pixel size.

Dislocation densities were calculated from the measured tilt

maps in the following way (Ferrari et al., 1997). Consider the

lattice displacement field u(r). We focus on its component

along the direction of surface normal uz(x, y) as a function of

position (x, y) in the plane of the sample surface. The

measured tilts �x, �y along the two in-plane axes are related to

its gradient via
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J. Appl. Cryst. (2005). 38, 91–96 Daniel Lübbert et al. � Distribution and Burgers vectors 93



�xðx; yÞ ¼ ÿ
@uzðx; yÞ

@x
ð2Þ

and

�yðx; yÞ ¼ ÿ
@uzðx; yÞ

@y
: ð3Þ

We define a new two-dimensional vector field H as

Hðx; yÞ ¼ �xðx; yÞ; �yðx; yÞ
� �

: ð4Þ

It is then easy to see that H(x, y) is identical to the two-

dimensional gradient of uz(x, y) in the surface plane:

Hðx; yÞ ¼ ÿrrruzðx; yÞ: ð5Þ

Consider the integral of H along a closed path around some

point on the sample surface. In a perfect crystal, the integral is

zero everywhere. In a crystal containing dislocations, however,

we have (Hirth & Lothe, 1982)

ÿ
H
A

H dr ¼ �uA
z ¼

P
i2A

bi
z: ð6Þ

The residual displacement �uz is thus equal to the sum of z

components of the Burgers vectors b of all dislocations i that

cross the sample surface inside the integration area A.

By using Stoke’s theorem, we convert the expression from

the integral into the differential form, which is more suitable

for treatment by discrete digital image analysis:

ÿrrr �Hðx; yÞ ¼
@�xðx; yÞ

@y
ÿ
@�yðx; yÞ

@x
¼

1

A

P
i

bi
z: ð7Þ

In other words, by applying the curl (rot) operator to H, we

obtain for each pixel the sum of Burgers vector components of

dislocations crossing the sample surface inside the area of the

respective pixel, divided by the pixel area. In practice, this curl

operator can be simply calculated by taking the difference of

the appropriate spatial derivatives of the two experimentally

measured tilt maps. The resulting Burgers vector component

density can finally be converted into the number density of

dislocations � by defining an average z component |bz| of a

single dislocation:

�ðx; yÞ ¼
1

Ajbzj

P
i

bi
z: ð8Þ

Typical dislocations in compound semiconductors with a face-

centred cubic (f.c.c.) lattice are of the b = a/2h011i type (Hull

& Bacon, 2001), leading to values of |bz| = a/2 = 2.934 Å for

InP and 2.827 Å for GaAs.

4. Results and discussion

The resulting map of dislocation densities for the InP sample is

shown in Fig. 4. Before discussing the merits of this figure, let

us briefly clarify the origins of some obvious artefacts. The

most prominent ones are a set of sharp lines at the interfaces

between the individual slices that were combined to form the

overall image. As mentioned above, these discontinuities are

due to the imperfect matching of the Bragg peak position

maps on both sides of the respective contact line, and their

effect is limited to a single row or column of pixels. Similar, but

weaker linear artefacts are visible in the upper centre-right of
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Figure 4
Map of dislocation densities (cmÿ2) in the InP sample. Axes are in units
of pixels of 80 mm.

Figure 2
A map of angular Bragg peak positions (�), measured at the 004 reflection
of an InP sample. Axes are in units of pixels of 80 mm.

Figure 3
A map of angular Bragg peak positions (�), measured at the 004 reflection
of a GaAs sample. Axes are in units of pixels of 80 mm.



the image. In the lower centre-left, two separate regions with

wave-like patterns are visible. The origin of the latter two

effects is still unclear and must be left open.

Apart from these imperfections, the image beautifully

confirms the expectations from crystal growth: the dislocation

density in large areas of the centre of the sample is very close

to zero, indicating a very perfect crystal. The absolute values

in the few more disturbed regions are on the order of

104 cmÿ2: very close to expectations. Apart from one more

highly disturbed region in the lower centre, high levels of

dislocation density occur mainly in the four diagonal direc-

tions, with high positive densities in the upper left and lower

right, and high negative values in the other two directions.

Considering that the wafer flat at the top indicates a [110]

direction, these diagonals are easily identified as h100i types of

directions. Dislocations thus pile up at the wafer extremities

along high-symmetry directions. Looking more closely, one

notices that the zones of highest densities run along horizontal

or vertical lines. These are interpreted as dislocation bundles

concentrated along h110i types of directions. Both effects are

similar to the observations by ‘classical’ X-ray topography of

dislocation bundles in GaAs wafer made by Möck (2001). In

the present context, they can be explained in terms of dislo-

cation slip along h110i directions parallel to the wafer surface,

which correspond to the traces of easy glide (111) planes for

f.c.c. crystals on the (001) surface on the sample. The driving

force for the introduction of such dislocations during crystal

growth or cooling is the radial stress due to the temperature

gradient from the core to the surface of the ingot and the

higher value of the Schmid factor [the resolved shear stress

along easy glide directions (Hull & Bacon, 2001)] at the h100i

edges of the wafer.

The results from the InP sample thus demonstrate the

validity of our method: both the absolute values of dislocation

densities and their spatial distribution closely match the

expectations for this reference sample. The results for the

second sample, the GaAs wafer, are shown in Fig. 5. Apart

from the same kind of linear artefacts along the ‘seams’ as

above, the map displays an overall higher level of dislocation

densities, of the order of 2–3 � 104 cmÿ2. This indicates a less

perfect crystalline quality, and is again in the range expected

from crystal growth (104–105 cmÿ2). The spatial distribution,

on the other hand, less closely matches expectations: apart

from a number of extended regions with higher dislocation

densities, the distribution is rather inhomogeneous, and the

expected W-shaped profile is not obvious. However, a cellular

structure and lineages, as well as a roughly fourfold rotational

symmetry of the dislocation density distribution, are present

also in this sample.

When interpreting the results, a few features of the method

need to be kept in mind. Firstly, density values can be both

positive and negative, with the sign indicating the relative

orientation of the Burgers vector (parallel or antiparallel to

the diffraction vector Q). Thus, the results do not represent

absolute dislocation densities, but rather an effective density

describing the net difference between dislocations with the

two opposite orientations. In particular, a value of zero does

not necessarily indicate a complete absence of dislocations,

but may as well mean that the contributions from the two

orientations are balanced and cancel each other. Therefore,

the results potentially depend on the spatial resolution of the

measurement. Resolution can be enhanced below the value

used in the present study simply by choosing a smaller

detector pixel size. This will work well down to a few micro-

metres, at which scale the finite scattering volume (finite

information depth of X-rays from the sample, as given by the

primary extinction and absorption lengths, of the order of 1–

2 mm for our experimental conditions), seen from two

different azimuths, limits the achievable resolution also in the

lateral plane.

Secondly, our method is selectively sensitive to a certain

type of dislocations only: those fulfilling the conditions that (a)

their dislocation line crosses the sample surface and (b) their

Burgers vector has a component along the scattering vector.

This is particularly true for screw dislocations crossing the

surface, but equally well for some edge dislocations. Inversely,

we are not sensitive to any dislocations running parallel to

(below) the surface, nor do we detect those with a Burgers

vector parallel to the sample surface. To monitor the latter,

one could perform a second measurement in Laue (trans-

mission) geometry, such as in the work of Lübbert et al. (2000),

using e.g. a 220 reflection.

5. Conclusion

To conclude, we have demonstrated how the technique of

rocking-curve imaging, developed previously to visualize the

crystalline quality and the grain structure of a sample, can be

extended to quantify effective densities of dislocations. These

are characterized by the density of dislocation Burgers vector

components along the scattering vector. A more complete

three-dimensional Burgers vector analysis is possible by

carrying out similar measurements on a full set of three

orthogonal reflections. A great advantage over scanning

techniques is that this method does not require any sophisti-
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Figure 5
Map of dislocation densities (cmÿ2) in the GaAs sample. Note the higher
densities and the less homogeneous distribution of dislocations than in
the case of the InP sample. Axes are in units of pixels of 80 mm.



cated X-ray optics. While the spatial resolution in a first

experiment was chosen to be moderately low (80 mm), a future

extension to length scales of a few micrometres (depending on

primary extinction and absorption lengths) only requires a

smaller detector pixel size, and correspondingly longer

counting times. The analysis of our experimental data showed

that the measured shifts in Bragg peak positions were almost

exclusively due to lattice tilts, and that lattice parameter

variations were negligibly small. The distribution of disloca-

tion Burgers vector densities extracted from the experimental

data was clearly non-uniform for both the InP and the GaAs

sample. These results demonstrate that the rocking-curve

imaging method is a reliable alternative to traditional ways of

measuring dislocation densities, and can be applied to large-

scale crystals. Apart from its non-destructive character, the

main new feature of our method is that it can distinguish

between oppositely oriented dislocations, which is not the case

for the more classical methods like etch pit measurements or

‘simple’ X-ray topography. In other words, it investigates not

simply the dislocation density, but also the Burgers vector

distribution. This might provide valuable experimental input

for further developing numerical models of dislocation

evolution during crystal growth.

The method can be applied not only to bulk semiconductor

wafers, but in fact to any kind of single-crystalline structure, as

long as they display moderately low values of lattice imper-

fections. Due to the non-destructive character of the method,

applications to entire microelectronic and/or optoelectronic

devices appear particularly attractive. Opportunities for

studies of lattice strain or dislocation evolution during crystal

growth or other technological processes are obvious. In fact,

investigations e.g. on the dislocation generation in semi-

conductor lasers under operating conditions, such as those

conducted with different methods by Zeimer et al. (1999), will

profit greatly from the speed and spatial resolution achievable

with the rocking-curve imaging technique, and are already

under way.
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