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How good are your fits? Unbinned multivariate
goodness-oi-fit tests in high energy physics.
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ABRETRACT: Mullivariate analyses play an important mole in high energy physics. Such analyses
often involve performing an unbinned maximom likelihood fit of a probability density Tunction
(p.dty o the data. This paper explores o variety of unbinned methods for determining the good-
ness of Ot of the pd o the date. The application and perfommance of each method is discussed
in the context of a real-life high energy physics analysis (a Dalite-plot analysis). Several of the
methods presented in this paper can al=o be used for the non-parametnic determination of whether
two samples originate from the same parent pald. This can be used, e.g. o determing the quality
of a detector Monte Carlo simulation without the need for a parametric expression of the efficiency.
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1. Iniroduction

Mlultivariate analyses are playving an increasingly prominent role in high encrgy physics. In such
analy=es a physicist will often employ an unbinned maximum likelihood fit of 2 probability density
functiom (p.d.fy to the data. The Ot paelll is then vsed to extract the desired information (e.g..
some set of observables) from the data. When perfornming this type of analysis it is impaortant to
determine the level of agrecment between the fit pe. b and the data. Unfortunately, the maximum
likelihood value (mloc) itsell cannot be used 1o delermineg the goodness of Gt {g.o ).

A common practice in high energy physics is to instead hin the data and compute & ¥* valoe.
This statistic can be vsed to test the goods however, it does have its limitations, In muoltivariabe
problems the available phase space is typically sparsely populated; this is knoamn in the statistical
literature a5 the curse of dimensionality [1]. Emploving a coarse binning scheme is often reguired
in this siluation 1o avoid having an abundance of low occupancy bins.  IF the bin occupancics
are Lo lowy, then the significance of any discrepaney between the data and the O polll. is often



overcstimaterd when using the §* method (see. eg. Rel. [2]). OF course, if the hin sizes ane oo
large then it may not be possible to compare the finer strocture of the G p.df with the dota. Apart
fromm this, binning data always mesulls in a loss of information; thus, ong wouold expect unbinned
gl methods to perfonn better in multivariate problems.

There are a large number of unbinned multivariate goo @ tests available in the statistical lit-
crature (see, cop, Rell [3] however, most of the high energy phy=ics community appears Lo be
unaware of their existence. Because of this, many high energy physicists use the binned §* method
even in analyses where it power is expected to be minimal. Others employ goo £ tests thal are not
found in the statistical literature, Eg.. consider a multivariate analysis where o pod.f. has been fit
to the data vs=ing an unbinned maximoum likelihood Gt Many high eneegy physics analys=es have
attemptedd o wse the molv., #ge. to detemmine the g.of. An cutline of the procedore used is as
follonws: the data is [t w obtain 27, the Gt pod L. is used o generate an ensemble of Monte Carlo
data sets; the goof. is determined vsing 2, from the data and the distribution of m.1v.s obtained
fronm the MMonte Carlo. This approach may sound reasonable, bot it is fatally Dawed and, in fact,
often fails to provide any information regarding the gaod. [4] (see Appendix A Tor a detailed dis-
cussion). Hather than sttempting to invent new unbinned moltivariate goodfl wests, a momre prodent
approach for high enerey phys=ics would be o study the applicability and perfformance of the goo L
methods published in the statistical literature. This paper carries oot such o study.

Even for one-dimensional data, thers is no uniformly mosl powerful (uanap) goodll test: fe.,
o best is the most powerful in all situations. The popularity of the ¥~ test in high enerpy physics
is a lestament o ils versatilicy and power but il does nol mean cthat it is the voanop, goodfl test Tor
one-dimensional daca. There are many situations where other lests are more powerful. Eg.. the
Kolmogorow-Smimoy test is tvpically better soited for comparing two samples (rather than a sam-
ple and a pod . The sitvation for the unbinned multivariate cose is the same; Lo, thers is nowm.p.
test. Thus, it is vitally imponant o stody the performanee of the available unbinned muolivariace
g.ouf methodds in the context of real-world high energy phy=ics analyses.

This paper carnies out a svalematic study of the performance of a variety of unbinned multivari-
ate g.o . methods in the context of a Dalite-plot analysis. Por each method, the vnderlying coneept
uzed to test the ool is discossed firsl. This is Tollowed by an overview of the formalizm with a
strong emphaszis on hova 1o apply the method in a high energy physics analysis. The perfommance
of cach method is then studied in detail, including examining the effects of west bias, Guidelines for
dealing with nuisance parameters (including, in some cases, explicit determination of the regions
of validity) is also provided. Finally, a high energy physics muoltivariate goo . road map is outlined
in Section 4. It is al=o worth noting that several of the methods discussed in this paper can be wsed
for the non-parametnic detemmination of whether two samples originale from the same parent pod £
This could be used, eg. . o determine the gquality of a detector Bonte Carlo simulation without the

necd fora porametnc expression of the efficiency.

2. Toy=-Model Analysis

A Dalitz-plot analysi=s provides an excellent westing ground for multivanate go D echnigues, It
is oflen the case in these analyses that a pod L owith vnknown parameters and of unkonown quality
is Al w the data in o (or more) dimensions. Determining the gaodl of the podof to the data is

I=d



Daughters & Mass  Width  Fil Fraction

a. b 0 0.3 (025 %
a, b 27 0.6 (.05 2%
a. o I 0.4 (104 | 85
a. o 0 n.7 0.1 435
b I (.35 (1.1 L ¥
b ot 075 (.02 | 75
a, b, e nem-resonant %

Table |. Besomnces included in the Dalitz-plot model vsed in this paper.

crucial in these types of analyses. Caleulating the gaodl. is complicated by the fact that Dalice-
plot distributions are tvpically highly non-uniform and rapidly varying. Becavse of this, even with
moderate statistics binned goof. tesls are oflen inadeqguate,

In this paper I consider the decay X — abe, where my = 1 oand m, = mg = m,. = 0.1 ane the
paricle masses (in some units) All four particles are pseudo-scalars; @2, they all have a spin-
parily of 0 . The model Tor the Dalite-plot distribution of this decay is constructed using the
isobar formalism in which the total amplitode is writken as the coherent sum of contributions from
resonant and nonresonant erms:

A(X) = ape'™™ 4 E.:?,.a""ffar"r[.l.’]. (2.1)

InFg. 2.1, % = (m?, m’ | represents the position in the Dalite plot and 2e'™ describes the complex
amplitude for each component. The terms o7 (X) denote the resonance amplitndes and contain
conlributicns from Blac-Weisskop! barmrier form foctors 5], relativistic Breit-Wigner line shapes 1o
dezcribe the propagators and spin Factors obtained vsing the Zemach fomalism [6G]. All amplitodes
are evalvated vsing the gft++ package [7]. The properties of the resonances included in this
moddel, along with their fit fractions, are shown in Table 2.

The pod.f. is casily obtained from the twotal amplitude as f(X) = | #(3)*/ ||.# (5)) dx, where
the normualization to unity is explicit. Fig. | shows the Dalite-plot distribution obtained from this
p-d.I. The details concerning the resonances are nol imporant to this paper; however, it is worth
noting that this distribution possesses the complex, mapidly varving strocturess that are present in
many Dalite-plol (and other high energy physics) analyses. The presence of such features facillitabe
testing the robustness of the gaodf methods discussed belog,

[ will com=ider three different population sizes in this study: low (g — 100 mediom (e y
10000; and high (g 10000, Example Dalite-plot data sets with these three sample siees are
shown in Fig, 20 Analysis of o Dalitz-plot data set with less than 100 events is ditficult due to
the sparseness of the data. Determining g.odl in a Dalitz-plot analyvsis with gy 3 10000 svents
is typically pessible even using binned methods. Thus, stodying data set=s of these three saomple
sizes should sulfice to ascertain the applicability of any unbinped multivarate g.od. methoo o a
Palite-plot analys=is.

An ensemble of 100 data sets of cach of the thres sample sizes listed above will be produced
and analyxed in this stucdy. For each data sel, the god. of the following pod s will be exaomined:
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Figare 1. (Color Choline) The Dalitz-plot pod.f. used to genemis the data in my toy-model analysis. Mote

the log scale on the = (color) axis.
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Figare E. Example low (left), medivm (middle) and high (right) statistics toy-model data sei=. The number
of events generated is 100, 1000 and 1OEKED, respoctively.

Mlosd el PILE.

The same pod.f. s vsed o generate all of the toy-model data sets. Le, it is the parent distri-
bution of every data set examined in this study., The p-value distribution obtained for each
ensemble of toy-model data sets must be Aat imodule statistical Auctuations) for any goo T
miethod when the test pod i is the parent pod £ (see Section 33, In g real-world analysis, one
doess not have access o this pad.f. Tt is examined here as an important systematic check of
each goo I method.

Fit 1 EILE

The pa.f. obtained for each data set by fitting the wy-model pod.f, with all resonance pa-
rameters free (a total of 15 free parameters], o the data. Each toy-model data set has ils own
Fit I podf. In the absence of test bias, the p-value distributions obtained for Fit [ should also
b flat; however, becavse of the fact that each Fit T podf. is oblained from a At o the data
sl being analyvzed, some test bias is expected. The consistency of cach g.o.f. method will be
judged by the size of the observed lest bias.



Fit 11 F.ILE,
The p.i.f. obtained in the =ame way as that in Fit [ but with the /7 — 1 resonance in the b
syslem - that has a 109 Gt fraction - removed. These pod.fs have a large discrepancy relative
tor the Model pod.f. butl in a small region of phase space. The power of each g.od. method
will, in part, be judged by how well it is able 10 reject Fit 11,

Fit 111 RILE
The podf. obtoined in the some way as that in Fit 1ot with the non-resonant teem - that has o
1'% fit Fraction - remerved. These pod. s have a small discrepancy relative to the Bodel pod.f
but in a larpes region of phase space (all of it). This pod L i= very similar o what one wouold
obtain using a slightly deficient background estimation. The power of each g.oof. method
will also be judged by how well it is able o reject Fil TTL

3. Goodness-of-Fit Methods

Thes goal of the Dalite-plot analysis carried out in this paper is to test the good ol each of the pad s
defined in Secticn 2. The notation used here, and throoghoot this paper. is as follows: © denotes the
parent pd.f. of the data; 5 denotes the test pod ;2 denotes the D-dimensional vector of variahles;
and iy denotes the number of events inoa data sample. For gach goodf method, o test statistic, T, is
defined that quantifies (in some way ) the agreement betaeen the data and the test pad.f. For all of
thie methods presented in this paper, larger values of T correspond to g worse level of agreement
(b this is not a universal property of all g.of. methocds).

The p.ol £ of the test statistic, g7, may depend on the test pod T, e, g may not be distribution
free (as it is, eg., for the ¥* test for a fixed number of degrees of freedom). The significance of
any discrepancy between the data and the test pod L. is quantifed by the p-value, which is defined
as follows for the case where larger T-values cormespond (o worse levels of agreement;

P J{ 2, (TdT" (3.1)

Thusz. the p-value is the probability of nding 8 T-value comesponding to lesser agreement than the
observed] T-valoe, T is important to note that the p-valoe is not the probability that F = G I
is, in fact, the parent distribution of the data, Le, iF f = §. then the p-valoe distribation is uniform
on Lhe interval belween wero and one. For this case, the p-value is the same as the confidence level.
Cine can reject the hypothesis = i at confidence level @ if p <= 1 — ) e.p, the test hypothesisis
rejectad at 95% confidence level il g = (.05,

The statistical literature on g.o . is vast. It is not possible to test every available goo [ method.
Mlany of the available methods use similar concepls in constnucting their g.o . tests, Thave divided
up the methods [ have found inte Gve categonies: mixed-sample methods; point-to-point dissim-
ilarity methods; distance to nearcst-neighbor methods; local-density methods; and kernel-based
methods, I have chosen o implement and stody cne method from each cabegory o delermine its
applicability w0 the Dalitz-plot analysis described in Section 2. 1 note here that T have ignored
methods specifically designed to fnd highly localized diserepancies (g unexpected peaks)in the
data. Such methods can be vselul, g, for signal discovery; however, they are not well soited to
thie analyzis perfommed in this paper. Finally, the notation used in the original poblications i=s (in
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Figare 3. Example distributicons of data randomly sampled From the pod.E's £ (2] (hlack open squares ) and
Jolx] Cred crosses) For the cases: (left) G000 = (5 (x); (right) G030 2 f5(x). The two samples are optimally
mixed i (0 = 20 but not so if 5 () 2 falx]. This fact iz exploited by goool tosts in the mixed-sample
cabegory.

many cases) different than that vsed in this paper. 1 hove opled for using, as much as possible, a
consistent set of notation for all of the methods described in this paper.

3.1 Mixed-Sample Methods

I two data =¢l= are combined to form o pooled sample, the mixing of the two samples is only
optimal if they share the =ame parent distribution (see Fig, 33, This fact can be used o determine
gl [3, 9. The method described belosr does notl regquire any knowledpe conceming the pod 0y
of cither of the samples; thus, it could be used, eg., to determing the guality of a detector BMonte
Carlo simulation withoot the nesd For a pprametnc expression of the efficieney. Tt counld also be
u=cd o study the stability of data taken by an expenment by comparing data samples taken during
different time periods.

Pricr to presenting this category of methods, the concepl of neares-neiphbor evenls musl
b introduced. To determing which events are the nearest neighbors oo any given evenl in a data
sample, one first needs to define the distance between events in the muoltivariabe space. One option
is to use the normalized Evclidean distanee which is defined o=

) n T — 2
& — 5,7 E( ’H__ J) : (3.2)

where the w, walues are used to weight cach of the vanates. Becaose of the Fact that the two
invariant mass ranges in the Dalitz-plot analysis considered in this paper are the same, 1 chose (o
L= b | for ench v ithe Exclidean distance). Another choice (that is more desirable when the
allowed values of the variates are nol egquivalent) is to seteach v, valoe to be the rool mean square
of the daia for the +* variate. One could also simply chose 1o set each vy, — ™% — ™0 The
conclusions drawn from the goolf. test should not depend on the choice of distance function vsed,
provided o reasorable choice is made (analogows o the choice of binning scheme when perfonming
the ¥~ test). Once the distance between events is determined, the #% event’s np nearest neighbors
are simply the events with the ny smallest distances from the & event.

— -



Following Rel. [3], let {&. .5 } and I %, } be two independent random £-dimensional
samples from the distributions corresponding to the p.d 075 ((0) and (L (%), respectively. For my
toy-modal Dalite-plot analys=is, the two data sets will be the data and a Monte Carlo data set sam-
pled From one of the At pod s, For now 1T will keep the notation generic as this method is applicable
to any sitwation where one wants 1o determing whether two data sets share the same parent distri-
buticn.

The statistic that will be used o test the hypothesis 0 = & is defned as foll ows:

Ag+np Nk

T E E I(i. k). (2.3

.l:l,;Ur

where [{i, k] = 1if the #" event and its £'* nearest neighbor belong 1o the same sample and J{i, k) = 0
otherwi=e, and wmy; is the number of nearesl-neighbor events being comsidered. The quantity T is then
simply the mean fraction of like-sample nearest-neighbor events in the pooled sample of the two
data sets. The expectation value of T is larger for the case §, # (i due to the lack of complete
mixing of the tao samples that occurs if their parent distributions are not the same. For the extreme
example shown in Fig. 3, one can see that the left panel has T == 1/2 (0, = 5, while the right panel
has T == 1.

For the case where f, — f, the quantity [T — pp ) /oy has o limiting standard normal distribo-
tiom: £e.. it has a mean of @ero and a width of one, where the mean is easily Tound to be

Aaltte — 1)+ melng — 1)

nin—1) 3.4

Ly

using & = #, +ng. Por the special case v, = ng, gy = 120 The variance is much more difficult to
caloulate since il depends on the podof. The limiting valoe is given by

_ . Il fnn nip?
lim aF — — | 208 408 (3.5)
P 7 I g\ n? n

see Appendix B for g detailed discussion on this quantity. The convergence o this limil is so fast
that Fg. 3.5 can be vsed o oblain & good approximation of o even for £2 = 2 forcertain values of
2, 0y and gy this is discossed in detoil below in the context of the Dalite-plot analysis.

A slated above, Tor the Dalite-plot analysis considened in this paper the two data sets are the
data {whose parent distribution is ) and o Monte Carlo sample obtained From the pod 1 to be tested
(whose patent distribution is denoted by fo) The hypothesis 1o be tested is that = fo. Bg. 3.3 can

be rewritlen For the Dalitz-plot analysis as

My +-Nag- 0L

Y Y e (3.6)

.l:l.;(.lr_. i) = 5

where f{i.&) = 1 il the i event and its £" nearest neighbor ane either both data or both Monte
Carlo events and (i, &) — O otherwise. 1t is worth noting that T is easy 1o calcolate (it is simply o
hookkeeping exercise).

The expectatiom value of T is also easy to oblain from Bg. 3.4, Thus, the only infomation
required Lo obtain the gofoare the values of o and ng that should be vsed. Generating more



Mlonte Carlo daca recluces the slatistical uncerainty on 5. Similarly, collecting a larger number of
nearest-neighbor events reduces the statistical uncertainly on the local population density around
cach evenl: howvever, the power of the method will obviously be meduced it the region of phase
space reguired o collect eoach event’s gy nearest neighbors becomes loo large Canalogous o using
very wide hins in a ¥ test). The constraints on n,, and »; required to insure the validity of Eg. 3.5
are discussed in detail in Appendix B, 1 have found that the values ne. — 100, and mg = 10 satisfy
all of the melevant concerns and constraints on these quantities.

In all of the resolts that follees the values of By = 10 5, and ng 10 are usedd. For these
values, the mean, ur, and varanee, cl—: al T are easily found from Bgs. 304 and 3.5, respectively.
The pull is then given by (T — pe)/ar. The pull distributions for the low, mediom and high
slatistics ensembles (ng Loy, 1000 and  1OC0G, respectively) obtained by mixing each dala =ef
with a Momle Carlo data set (r,. = 10 ny) sampled from the Model pod . are shoram in Fig. 40a).
The agresment of the results obtained with the expected (standard normal) distribution is excellent.
This is confirmation that the approximation for o given in Eg. 3.5 is valid for all three sample
sies considersa] here.

Fig. 4{b}) shows the pull distributions (obtained in exactly the same way as for the Model pod. 10
For the Fib 1 pod 175, The agreement with the predicted distnbalion is very good; however, there is o
small test biass gy == — 0.3 Tor cach valoe of ry. Recall from Section 2 that such a bias is expected
because cach Fit I pod.f. i= obtpined from a it to the data. This means that the agreement between
the Fit I Monle Carlo and the data is slightly betier on average) than that of two data sets randomly
sampled from the same parent distribution.

Because larger values of T are expected if & . rejecting the hypothesis © = f; at level @ is
a one-sided cut om the pull. Eg., the cuts (T — pe) ) ar = 128 and 164 correspond Lo rejecting at
9% and 5% conlidence level, respectively. The rejection powers ot 95% confidence level for the
Mlodel and Fit T pad.f's ars shown in Table 2.0 Because of the relatively small number of data sets
vzed in each ensemble, there is a small uneertainty (a few percent) on each valve, The deviation
fromm the expected rejection rale of 5% is within a few percent For both the Model and Fic T padis,
This is further confirmation that the approcimation for o given in Egq. 3.5 is valid for all thres
sample sizes considered Tor the values of n and »g vsed in this stady, 10 al=o demonstmles that
the elffect of the small test bias on the rejection performance at 95% confdence level is only a few
percent and can safely be ignomed.

Figs. 4y and (d) show the pull distributions obtained for the Fit 1T and Fit T pod 75, respec-
tively, The rejection posvers at 5% confidence level for the Fit 1T and Fir T pod.£s are shown in
Tahle 2. The rejection power for Fit 11 is excellent for gy — 10000, good for gy — 1000 and poor for
ry = 1000 For Fit I the rejection power is fair for ry = L0000 and poor for ey = 1005 Thus, this
method appears o be betler at rejecting a large localized discrepancy than a small omnipresent one.
The method presented in Bell [3] is casy to use and understand and has decent rejection power, it
wionld make a vseful addition 0 the high energy physics go £ toolkit.

3.2 Poinl-to-Poinl Dissimilarily Methods

11 the parent pud £ of the data is known, then the statistic formed From the integral of the quadratic
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Fip,ll'c d. (Color Online i Pull distributions obtained |‘.-_'|-' mi:ing lovwr l:l'.-|1.|i: dotted 1, medium (red dashed ) and
high (zcolid hlack hislograms) siatistics data sets with Monte Carle daia obiained from the following pod £
using the mixed-sample g.o - method of Rel” [8]: (a) Model, (B Fit L (21 Fit I (d) Fii 1L The Cselid black)
curve shown in pancls (a) and (k) represents the expected (standard nocmal) poll distribation. The (solid
black) vertical lime showen in panels () and (d) represents the 95% confidence-level cul value; dala sels with
(r— }..I]'.II."EI‘.P = 164 are I.'I.'jl\:\\'_'l.l.".‘l at this level. See Secticn 3.1 for further discussion on these resulis

i Model | Fitl  Fitll  Fitll
10006 A A% 1R 35%
1000 2% 4% T3% 5%

o | 6% | 3 5% 3%

Table 2. Rejection power al 93% confidence level using the mixed-smmple method of Rel. [8].
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can ke used as a measure of goodl Since | is ool knowwn, T cannol be calealated. OF course, if
wiere known there would al=o be no reason 1o perform a ik

Aomore general Toom of B, 3.7 involves cormelating the difference between the two pad. s
at different points in the multivariate space using a weighting function, denoted by wi|x — 27|, as
Foallonges [100, 11, 12, 13]:

zl ff (%) — folX)) (F (8 — folx')) wila —3'[)dads’, 18]

Motice that Eq. 3.7 is simply Eg. 3.8 for the case w(|5— 1) = &(|F —2'|). Expanding the term in
the integrand yvields

1 . . . . 2 apy g
S S5+ folfh00#) — 268 fa(#)] Wil — S (29)

which can be calculated vsing only the daca and a Monte Carlo data sel sampled fom i as follows;

" {u - J] Eq‘-r[||.""—_|""|:|

M- = e

J]En“[lt — (- YowilE —E G

(1]

}
Mo I:nm FEIT -

Thuz, T i wvery casy o coloulate. 1 also note here that the expectation valoe of T is larger for the
case 7 .
The Tollowing choices for the Functional form of W) are used in the statistical literatore:

Rl [101] uses I,|F[1] xy Rel. [11] uses wix) — x; Refs. [12, 13] use Wwix) L i) = —logx and
!

)] = & 2120 Rl [12], which was written by physicists, observes that J'-:-rlh:. case i)
Ei. 3.8 is the electrostatic enemgy of bwo charge distributions of opposile sign. Rell [ 12] also notes
that the electrostatic energy is minimized if the chamges neatralize each other, £, if f = f5. This
wis the motivacing Tactor behind che derivation of their method.
The optimal choice for the weighting function depends on the podlf. to be tested. Since Dalite-
el I_ﬂ'

plot p.d.f.s vary rapidly, [ chose wuse yix) = e L thus, from this point forward Tadll follos
el [12] which alters Eqg. 3. 10 slightly by writing

ng. Mgy

F=-3 E‘FEP’ - ”Il—” . Y wilE =, (3.11)

”I"l I I

The replocement of 1 /ng(n;— 1) with 1 ,."ni i= macke: doe tothe better =mall number propeics of the
latter expressiom. The term in Eg. 3,10 that depends only on the Monte Carlo is dropped because
its statistical Auctuations should be negligible (assoming w % w0 Perhaps, from a theometical
pemspective, it would be better © keep this tenm; however, in practices [ found that including it
greatly inereased the processing time bot had no effect on the performance of the method.

Bef. [12] al=o suggests that, mather than vsing a constant valoe for o in §x). the choice
o) oe 1/ (%) improves the power of the test. Thus, Thave chosen to use the following weighting
funection:

1||"'|: |-f| __.r;l;-l o :.-':-rr[.r'_--r.rl.-:'_.l_ i3.123

— 10—



where a(X] = &/ (2] [&2"). T have incloded the factor of [dx’, which is simply the area of the
Dalite plot in this analysis, becavse the mean value of J(x) [ @3 is one. This makes the interpre-
tation of & much easier. 1 nole here that in my tests of this method the variable &(X) did perform
significantly better than vsing o constant o.

Giiven this choice for Wix), T can now be caleulated from the data and a Monte Carlo data set
sampled from the test podf. The number of Monbe Carlo events generaled should be muoch larger
than the number of data (R, 2= Rg) o ensure that slatistical Auetuations in the Monte Carlo are
negligible. Unlike for the mixed-=ample method. there is no inherent limit on e, here, The only
limiting factor is the amount of processing time. 1 will postpone the discussion on the lomes nuisance
parnmeter, &, until later but nobe here that its optimal value can be estimated by examining i Le,
il can be oblained froom the physics or inberest.

Cince the Monte Carlo is generated and a value for & is chosen, T can be calculated: however,
the distribution of ¥ for the case = i is not known which means that the p-valoe cannot b
culeulated. Although it cannot be calealated, the pevalue can be estimated using o re-sampling
method knoeamn as the permmdation fest. This approach involves combining the data and Monte
Carlo data into o pooled sample of gize ng -+ Bm-. A sample of size ngy is then randomly deawn
from the pooled sample and temporarily labeled “data™ while the remaining gy events are labeled
“Momte Carlo.” The test statistic, denoted Tperm, is then caleulated with these designations for cach
evenl. This process is then repeated Rperm limes 1o oblain {I,.',_.m IFHT }. The p-value is then
simply the fraction of limes where T < T, Fora more detailed discussion on this echnique. see
Appendix O,

[n all of the resulis that follorar the value & = 0001 is vsed (this quantity is discussed in detail be-
low), The p-valve distributions for the low, medivm and high statistics ensembles Gy = 100, 1000
and 10000, respectively) oblained vusing cach data set and a Monte Carlo data sel sampled from
the Model podf. are shown in Fig. 50a). The agreement of the results obtained with the predicted
(Hat) distribution is excellent. This is confirmation that the permutation technique does produce
valid p-values for all three sample sizes considered. Fig, 50b) shows the p-value distributions [or
the Fit I pod.fs fobtained in exactly the same way as for the Mode] pod . The agreement with the
predicted distribution s very good; however, there is o small test bias (o small positive slope) Tor
= 1000, Again, such a bias is expected because cach Fit 1 padf. is obtained from e Gt to the data.

Hejectiom of the hypothesis F = ot level & is simply done by requining the p-value be less
than | — & (eg. p =< 0005 at 5% conlidence level). The mjection powers at 95% conhdence level
For the Model and Fie T pod£Cs ame given in Table 3. The deviation From the expected rejection rate
of 5% is within a few percent for both the Model and Fit 1 pdls for & = 0,01, This is further
conlirmalion that the permutation technigue is valid for all three sample sices considered in this
stucly. 11 also demonstrates that the effect of the small test bias on the rejection performance at 95%
conlidence level is only a few percenl. Figs. 50c) and (d) show the p-value distributions obtained
Foar the Fit IT and Fit T pod 05, The rejection powers at 959 confidence level for these pod Es are
given in Table 3. The rejection power for Fi I is excellent Tor ey — 10000 and 1000 and fairly poor
For i = 1000 For Fit I the rejection power is good for gy = L0000, Fair for s — 1000 and poor
For my = 100, These are impressive resolts given the relatively low level of discrepancy between
the data and the Fit 1T and Fit T pod 275,

The results obtained using & = 001 are impressive, bot how does one koo what value Lo
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Fip,ll'c K I;['.u]ur Dnlinc_l _u-\'u]ul.' distributicn: obtained from low l:l'l|.|.|.-|.' -::|-::-l1L'\-c:|:I, medium I_n:\-::l -:|:|5|'.u.'|.'|_l
and high {sclid black hisiograms) staiistics daim sets from the [ollowing p.d.[Cs u=ing the poini-to-poini
dizsimilarity gl method of Ref. [12]: (@) Model; (B) Fii I; ic) Fit I (d) Fie L Daia seis whose p-values
arg less than 005 are rejected at 95% confidence level (by definition). See Section 3.2 for further discussion

on the=e resuliz

ny Model Fit I Fit 11 Fit 111
10000 | [:54:6)% | [B:24:1)%  [100:100:100:100]%  [+1:78:81:77 %
1000 [Toec29]% | [5:42:3)% [93100:100:71]%  [9:12:15:29])%
100 | [S:6:%2)% | (5520 ]% [11:14: 10015 [S:4:3:1 %

Tabibe 3. Rejoction power at 95% confidence level for = [0UL:0.005:20.001:0005] using the point-to-point
diszimilarity method of Ref. [12]. See Section 3.2 [or discussion on the value of &.

choose for &7 Table 3 shows the rejection power gt 95% confidence level for the & values 0001,
0,005, 0.01 and 005, The wnits of & are those of mass squared (see Fg. 3.12); thus, the gquan-
tity +/&, which has approximate values 0.03, 007, 0.1 and 0.22, has units of mass. The method
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presented in this section performs best for 0.07 < /& < 0.1, The typical resomance width in the
Dalite-plol model used in this analysis is T LT, B, = 006, where (T, and T', are the fil
fractions and widths of the resonances, respectively, The prefemead range for & can be mearitlen
using this quantity as I"< /& < 2"

This result is not surprising. The widths of the resonances serve as 4 measure of how rapidly
the pod I, varies. 1If v'o < [then the p-d.I. is approximately constant in the Gaussian region around
each event. IF +'& = 2T then the finer structure in the p-i.f. is lost in the comparison. From this
one can conclude that the physics of interest can be used to estimate the optimal value of &, In
practice, il would be adyvisable to obtain p-valoes for several & values in the expected optimal
region. The conclusions drman about the quality of the ft should not depend on this guantity
(provided a reasorable choice is made). If a strong dependence is observed, then further study
uzing Monte Carlo may be necessary. 1 note here that for other types of high energy physics
analyses a different choice for Wi — &) may perform better. Additional Monte Carlo studies
may be necessary in these coses,

This method has excellent rejection power for both large localized discrepancies and =mall
omnipresent ones, even Tor foirly low-slatistics data sets. Coneeptually, it is not as ecasy o un-
demstand as some other methods, g, the mixed-sample method deseribed in Section 3.1, 1t also
requires a rather large amount of processing tdme (@1 hr) for ng = 100003 doe to the fact that
the vse of the permutation technigue is required. These downsides are nol enough to oul-way ils
excellent performance. For o Dalitz-plot (or similar) analysis, this method is a very powerlul goo L
tool,

3.3 Dislance to Mearesl Neighbor Melhods

The distance from any event Lo ils nearest neighbor is imversely proportional to the magnitude of
the parent pod.d in the region around the event. Le, in g region where the parent pod . is larger
(=maller) the density of events will also be larger (smaller); thus, the events will be closer waether
i farther apart) on average. This Fact can be vsed to constuct a g.o I test.

Ref. [14] defines the following statistic for the #7 event in a data set:

L, = exp (—ﬁ'_,. ,.'II _ #‘_.":.I:.I::Idf) = expl—ny fo (X Va (BT")). (313

El.b

where BT is the distance from the evenl to ils nearest neighbor and Vo R) o< B is the -

dimensional hyper-spherical volume of mdius & The approximation
Jf’ e VR = fo( TV (R, (3.14)

which is valid if the hypersphere centered at 5 with radivs 87" is sufficiently small such that f3[x) is
approximalely constant inside of i, is mads o avoid having to do the integral. Given the power of
modern compubers, il is possible to omit this substitution and do the integral numerically; however,
1 Found that this had no effect on the mesults. For the case = (o, the distibution of O values is
approeimately uniform (see Appendix 1 for o detailed discussion).

Fig. & shows the & distributions obtained fora single high statistics (ny = 100000 data set. For
thiz Mlocde] and Fit 1 podof7s the distributicns are in good agresment with the expected (unilorm) one.
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Fi;l'.".ll'c [ Distributions for the U statistic of Ref. ||-'1| defined in |':r.|. 313 Fora xin.l_.zl-\.' hiEh slatistics
[y = VXKD data set for the following pod.f's: (a) Model; (b] Fit [; (<) Fit IL; (d) Fit 111 The (solid ned) line

shows the expectod (uniform) distribution.

The Fit T & distribution has a significant deviation From this, while the Fit T distribution does not.
Based on these plots one would expact (for ey = 100000 this method 1o have good mejection power
For it 1T and poor rejection power for Fit 110

Cibtaining & goo L valoe simply imvolves testing the uniformity of the one-dimensional O dis-
tributions. This can be done in a number of ways (e.g., using a ¥~ test); the method suggested in

Rel. [ 14] is to use the statistic

b i
T =Y (U —ifng). (3.15)

where {L"I"} iz the set of ordered & valoes, Fig. 7(a) shows the T distributions obtained using this
mecthod for the Model pad.f. Becanse of the Fact that the unilormity of the & distributions is only
approgimate, the observed location of the 95% confidence-level cut is not at the valoe expected if
the podf of the & distribution was truly uniform. This is discussed in more detail below. Fig, 7
also shoows the T distributions for the Fie 1 Fir 1T and Fie T pad s The rejection poseers ab 959
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i solid black hisiograms) statistics dala sets from the following p.d.fs using the disimnce o nearesi-neighbor
g.o-f. method of Ref. [14]: (a) Madel; (b3 Fit 1; (<) Fit II; {d) Fit . The expecied and observed locations of
a '15% confidence-lovel cut are shown by the solid and dashed lines, respectively. See Section 3.3 for further

dizcussion on the=e resulis.

confidence level for all four pod s are given in Table 4. For Fit 11, the rejection power is excellent
100CEY, fair Tar ny
for all data set sizes considered in this study.

Foar ny 10060 and poor for gy = 100, The rejection power is poor for Fit 111

ny | Model [ Fitl Fit 11 Fit 111
OO0 | S(170% | Tileys 1000 1000% 6 16)%
1000 | 3120% | H120%  ARGLE S(120%

00 | TN | Tens &l4% TR

Tabibe 4. Bejection power for T = 0.700.45) comesponding 10 the obsorved lexpected ) %5% confidence level
limit of the distance o nearesl neighbor method of Ref. [14].
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This method is very easy touse, has no nuisance parameters and requires very litkle processing
time. Unfortunately, it is not very powerful. The theoretical 95% confidence-level cul rejects too
many dala sels doe to the fact that the & distributions are only approgimately unilorm for the
case = fi. Becanse of this, T do not think the p-valoes are worth calenlating (especially given the
peraer of the previows bao methods); hoarever, that does not mean this method is vseless, Producing
the £F distributicon is fast and easy and can reveal any large discrepancies between the fit pod 12 and
the data. For this reason, this method does Cab least) have a place as a diagnostic tool. Futhemmore,
it could be vseful to publish the & distributiom for a very high-dimensional analysis o provide an
casy o interprel demonstration of the gualitative agreement between the data and the Gt pod.f

3.4 Local-Densily Methods

The local density of evenls in a region around each event in the data set can be compared Lo the
density expected from a test podlf to determine the g.o £l This idea was introdueed in Bel [15] asa
way ol lesting a two-dimensional distibution for complete spatial mndomness, £e., westing whether
a distribution is consistent with a uniform Poisson process. For this (2-0 homogenecous) case the
expected mumber of evenls contained inside a circle of radivs r around the 7 event in the data set
is given by

|
Y g g <) [ra_.-—J:lE: (3.16)
J=1 = :
where Fitrue | = 1, filalse] = 0and A is the total area that the events arne allowed to occupy. T, 3,16
simply states that the expected oumber of events inside of the circle is the wotal number of events
multiplicd by the fraction of the total allowed ares oocopied by the cirele wsed to collect the events,
If the circle centered at 1) with radius rintersects the boundary of the allowed data region, then an
edge comection factor is also required (this is discussed in detail belowd.

Bef. [15] vses the sum of the Eg. 3,16 valoes Tor cach event o define the K Tunction as follows:

A2 .. C o -
Kir) E E;EJ'HI;—I” < r) fali, i), (3170
o fe] o

where a[i, f) is the edge correction factor for the circle centered at ©; with radivs [ —x;|. There is a
Lot of discussion in the literature concerning dilferent ways of caleulating ali. f). Ref. [15] suggests
uzing the fraction of the circumference of the circle that lies inside the allorved data region. 1 found
that rancomly sampling points within the circle and counting the fraction that Fall in the allosved
data region works best. This method i= not discussed in the references T have read; however, this is
miost likely due to the limited computing posweer available at the time these references were wrilten.
With the power of modem computers, this approach is guite feasible (although, it is still worth
while to first check whether any part of the circle exits the allowed data region prior to doing the
caloulation).

The expectation value of Eg. 3.17 is easily caleulated to be {K{r)} = mr(ns— 1) /ng = mr.
Typically in two dimensions the quantity L[r) \rr':&’[r],."rr- introciueed in Bel. [16], is used instead;
this quantity has {L(r)} = r. The g.o.f. is then determined by examining how well the K(r) or L)
distributiom agrees with the expecied one. Tor a Poisson process, larger values of K and Loare
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cxpected ifthe process is non-uniform. The reasoning is identical to that vsed above For the mixed-
sample methods, If the process is non-uniform, then the evenls will tend to cluster together. This
resulls in there being more events (on average) inside the circles drawn around each event which, in
tum, leads o larger K and £ values, Using the K and £ distributions to determine goof is discussed
in mere detail below:

An exlension for the inhomogensous case (Le, Tor non-uniform pad 2s) for 2 dimensions is
provided in Ref. [17]. The generalived & funclion is writlen as

1 S HE-E<n) .
K = s (318
(r) Vi ; L7 v(i, 7] folx) (X))

where Vi is the tolal allowed £-dimensional hyper-volume and vii. j) is the D-dimensional equiv-
alent of @ii, j)in Fg. 3.17; e, itis the allowed hyper-volume fraction of a hypersphere centered at
Xy with madius |¥ — x|, The factor of Vp appears in the denominator of Fg. 3018 while the factor of
A appears in the numerator of Eg. 3.17. This difference is simply doe to the inverse-hyper-volume
units of the pod L. factors included in Eqg. 3018 (that are not present in Bg. 3.17).

For a Dalitz-plot analysis Vi is the total area of the Dalite plot and v(7, 7} is the fraction of the
circle centered at i with radins [ — x| thatis inside the kinematically allowed region of the Dalite
plot. Becavse of the fact that a Dalite-plot analysis is two-dimensional, the gquantity Lir] idefined
in the same way as for the inhomogeneous case) can be used. Fig, § shows the L{r) distributions
for each of the podfC's examined in this study along with the expected (linear) distribotion. The £
Funetioms oblained using the Model and Fit 1 pod.20s are in excellent agresment with the expected
resull. Motice that for Jarge values of r the Fit T L function dips below the Lir] = r line. Recall
that larger values of L indicate a discrepancy between the it and parent pod 75 thuos, this dip is not
evidence of g discrepancy in the Gt pod 2 TEis actually evidence of o small test bins, The Fact that the
test bias increases with increasing ris expected. For large values of ¢, large regioms of phase space
are used o callect each event’s neighbors resulting in a much coarser comparison bebaween the
p-i.f. and the data. This is not a pathology; it simply means that the K and £ statistics become less
meaninglul for large values of r (analogous Lo a histogram with only a few large bing).

Figs. #ic) and (d) also show the L(r) distributions for the Fit 1T and Fit 10 p.d £s, respectively.
Both have Lir) = r for all r values considered. To obtain a god valee, the significance of these
deviations from the expected distribution necds to be quantified. T0is important o realize that the
values Lir | and L] are not independent measurements. 1IF 7y < 5, then all of the weighted
events used 1o obtain L{r) ) are also used 1o obtain L{r; ). Because of this one cannol vse, e.g., a 3
test to determine the significance of any deviations of L{r) from L(r) = r.

Fef. [15] suggests a procedure that requires sampling an ensemble of Monte Carlo data sets
fromm the lest padod. (fy in this case) each with n,,. = ry. For the data and each Monte Carlo data set
the maximum deviation from the expected distribution,

T = (L(r) = Pl (3.19)

is then caleulated. Recall that for a Poisson process, lorger valoes of T correspond o o lesser
level of agreement between the fit and parent pod.f0s; thus, o one-sided cot on T is employed. The
fraction of the Monte Carlo dats sets whose T wvalue is larger than that of the data is then used o= the
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Figare 8. Disiributions for the Lir) statistic of Rel. [17] for a single high statistics (g = KK data sel
For the following pod. s (o) Model; (b Fie I (el Fid 1L (di Fie T The Csolid med) line shows the expected
(Lir] = r1 distributicon.

p-value. There are still oo nuisance parameters thal nesd to be determined: the step size in e and
the maximum value of r. Meither of these quantities appears © be very important. As discussed
abowve, the test bias (which drives T dowoward s) inereases with increasing r, thus, it is unlikely that
the value vsed for T owill come from a very lamege rvalue. | chose mgy such that o circle with radios
Ffmae comtained (on average) aboul 10% of the events, The step size also determines the minimum
value of rat which cvents are collected, This simply needs 1w be chosen 1o be large enough such
that some events do contribate o K or F for ey

Fig. Wa) shows the p-valoe distribution obtained for the Model pddl The distribution is in
good agreement with the expected (unifonm) one. Fig, Whi shows the p-valoe distribution obtained
foar the Fit T pod.f. The agreement with the expected distribution is very good; however, thens is a
smiall test hias for ey =0 10000 This =, again, expected and is small enoogh o safely be ignored.
Figs., We) and (d) show the p-valoe distributions obtained for the Fie I and Fit T pofs, while
thie rejection power a1l 95% condidence level for all four po s is given in Tahle 5. The rejection
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method of Rt ||F|: fad Modsl; (k) Fit I () Fie s (di Fit T Data sets whose _rf-vuh.u.'.-:. are less than 005

are rejected at 95% confidence lewel by definition). See Section 3.4 for further discussion on these rosulis.

poraer For Fit 11 is excellent for ay = 10000, very good for sy = L0 and poor for ng = 100, For
Fit I, the rejectiom power is good Tor ny 1000, fair for ny 10 and poor For sy = 100,
Civerall, these results are impressive. The poor performance at gy — 100is not surprising since this
mecthod relies on wsing each event’s neighbors 1o obtain an estimate of the local density. For very
low slatistics dala, this density estimation is difficolt doe to the small number of neighbor events
contained within each hypersphers (or circle for the Dalitz-plot analysis).

This method has excellent rejection poraer for lage localized discrepancies and gooed mejec-
tiom power for small omnipresent ones (excluding low stalistics data sets). 1t is al=o faicly easy
to understand conceptually. Unfortunately, determining the p-valoes is an involved process that
requires generating an ensemble of Monte Carlo dota sets and o large amount of processing time. I
the resources ame available o calculate the p-valoe, then the mejection posver of the method makes
it o worthwhile endeavor. Even withoutl calculating the p-valoes, the method con siill ke useful.
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Llsing just the data and no Monte Carlo one can produoce the & or L distribution. About 530% of my
toy-model data sets have L(r) = r % rfor Fit L This is expected given that the £ ovaloues are highly
comalated and that the test bias increases with increasing r. Thus, iF one is Otting data with the toe
parent pod-I. (with some free parameters), then there is gboul a 50% chanee that Lir] < r % roal
which point one can say that p = 0.5, Of course, one should be suspicious if there appears 1o be a
large test bias, ie, a larpe downwards tum in the K or L distribation. Regardless of whether or no
the p-value is calculated, the K or £ distribution plot could be o useful addition to any publicalion.
Cine can also include the 95% confidence-level band on the plot for reference il the ensemble of
Mlontle Carlo is produeed (see Rel. [15] for examples).

3.5 Kernel-Based Melhods

In Section 3.2 [ noted that the integral of the guadratic difference between § and fy,
o I -
r =3 [Ute - koY s, (3.20)

could be vsed as a measure of gool. if the parent pod.f. of the data were known, Since | is nol
known, ¥ cannol be caleulatedd;, hovaever, if f can be approgimated, then T can also be approxi-
mated. This is the approach taken by kernel-based goo f, method s,

Aoprobability density estimate (pode) can be obtained through the use of a kemel function
defined as follows for I dimensions:

L g (- ;
.-"ﬂ':-'f‘:' ”.I"l-"[ﬂ.n':l'l:ll I” ( b[”.n'] ) [.".2|]

where &(ny) is the bandwidih and w is a weighting function. A simple example is shown in Fig. 10

. _r:I.']

For illustrative purposes. The parent pod L o be approximated is ©(x) o ¢ . Aovery small dala
sel (g — 100 is randomly sampled From this pod.f (the extremely small sample sice was chosen
500 Lhe construction of the paode. could be illustrated on the plod). The frst step in kernel-based
p-d.e. construction is choosing a weighting function. In principle this could take on just aboul any
Functicmal form (see Bel. [18] for the limited list of mestrictions); however, in practice it is typically
chosen to be cither a Gaossian line shape or uniform with a cotoff windeow. Fig. [Oshows the pad.e’s
obtained using a standard nomal Cravssian weighting function for three different bandwidths. The
quality of the p.d.e. is highly dependent on the value chosen for the bandwidth (discossion on how
to choose the bandwidth is given below).
Once the pode. [, (%) has been constructed, then the gof. can be obtained by examining the
slatistic [ 1 %] )
T = nybin P2 J'I [ £ (E) — fal &) di, (3.22)
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(red, solid lines) is formed |'~:|-' .-:lerning the values of the “tighling functions at each walue of x.

Ref. [20] suggests replacing (3] by fo., (1) (the expectation value of the pd.e ot X) to remove
the bias that arses from wsing J5(5). Le.. there is oo guarantes that the kernel-based pod.e is not a
hia=sed estimate of the tue pod.f (especially near the edges of the allowed data region; thus, it is
hietter touse the pale. of fo instead of foitself. The test statistie defined in Bg. 3222 has an expected
mean of gr = bng) iy w?(z)dz and an expected varianee of

o7 EJ'II(JII W ¥ ;}u-[:}d:):.::'_}-Jfr._.f{_r'}d_f. (3.23)

LInfortunately, the theoretical mean and variance values given above are oflen not accurate For Gnike
sample sizes; thus, the p-value oblained vsing them is not reliable [ 197, 1 found this (o be troe in
my analysis. The quality of the py and o values given above vaned deastically as a funcltion of
B(mg). Ciiven that the valoe of &y must be chosen (somewhat arbitrarily) by the experimenter,
this is a dizsnstrous result.

Since one cannot trost the p-values oblained using the theoretical (limiting) T distribation,
somme Torm of data-driven method muost be vsed 1o caleulate the p-value. 1 have chosen to vse the
penmulation test vsed in Section 3220 1 have not explorned whether some other re-sampling method
(e.g.. hootstrapping. jackknifing, efc; see Rell [21]) would perform better. The application of the
penmulation test for this method is identical to the point-to-point dissimilarity method of Ref. [12].
A Monte Carlo data =set is sampled from 5 and vsed, along with the data, to calculate T from
Eg. 3.220 A set of random permutations of the labels “data™ and “Aonte Carlo™ (keeping ny and
Bme Tixed) are then vsed o estimate the distibuation of 77 and, in tom, the p-valoe. A detailed
dizcussion on this technigue is provided in Appendix C.

The results presented below were obtained using a normal Gavssian weighting function. [ also
tried wsing a uniform weighting function with o cotolT window:, this had little effect on the esoles. 1
found that the choice of handwidth is much more important than the choice of weighting funclion.
Fig. 11 shows the p-value distributions obtained vsing 4 constant bandwidth of 5w, ] = 0,01, while
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are rejected at 95% confidence lewel by definition). See Section 3.5 for further discussion on these rosulis.

the rejection power at @5% confidence level forcach poad D is given in Table 6. This valoe was found
to b the optimal one in Section 3.2 when using a Gavssian weighting function in the point-to-point
dizsimilanty method of Befs [12, 13]. The pvalue distribotion oblained for the Model pod.f. isin
good agrecment with the expected (uniform) one. This validates the vse of the permutation test
for this method. The test bios obtained for Fic ©is faicly small {a few percent) and can safely be
ignored. Crverall, the rejection power obtained for Fit 1T and Fit 0 for this value of the bandwidth
is Fairly poor.

Data-driven methods for choosing a bandwidih do exist; horaever, they are designed 1o produce
the best possible pod.c. (not the most reliable goolf test, Eg., the rele-af-theomd for the bandwidth
of a multivariate Cravssian kernel is By II.I'J:fr" (221 One could alsouse the variate-dependent
bandwidth &) G,.;'frf “ where o, is the standard deviation of the data in the ' variate [22].
For ey = 10000 these formulas produee bandwicths that are too large to be vsed ina goodd tese The
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Talile 6. Relection power al 95% confidence level of the kemel-based method of Ref. [19] using
birg = 1101, See Section 3.5 for discuszion on the value of the bandwidih.

same reasoning used in the previous section tooargue that the test bias increases with increasing
hyper-spherical racivs applies here as well, As the handwidth increases, a larger fraction ol the
data set contributes o the pod.e. at each value of ¥, While this doess improve the quality of the pod.e.,
il al=o results inoan increased test bias. 1 have verified this in the Dalitz-plol analysis performed
in this paper. The method presented in this section regquires all of the overhead of the point-o-
point dissimilanty method of Rell [12]; however, it is not as powerfol or reliable, 11 is casy (o
understand conceptually, bt this alone is not =suffcient to recommend its use in o Dalite-plot (or
similary analysis,

4. Discussion

In this paper | have studied the pedormance of a vanely of unbinned muoltivariate g.oof. tests when
applicd o a real-world high energy physics analysis (o Dalitz-plol analysis). The vasiness of the
statistical liverature om this topic makes it impossible o study all of the available tests. Instead, 1
chose 1o categorize the tests based on the underlying concept wsed o determine the g.aod. In each
of these calegories one method was tested and the following results were obtained:

Mlixed-Sample Melhods
The method presented in Ref. [2] is casy 1o vse and conceptually it is casy to understand.
It is excellent at rejecting large localived discrepancies but fairly poor atb mjecting small
connipresent cnes. The pevalues can be calealated analytically. This method would make o
nice addition to the high energy physics goo l toolkit

Poini-lo-Poinl Dissimilarily Methods
The method presented in Rels, [120 13] has excellent rejection power for Both large localized
dizcrepancies and =mall omnipresent ones, Delermining the p-valoe requires re-spmpling
the data (using the pemmutation test) which vses a relatively large amount of processing time.
The method is not as casy Lo understand conceptoally as some of the other methods wested in
this paper. These doamsides are nol enough to out-way its excellent performance; this is a
very powerful goodf, ool

Diistanee lo Nearest-Neighbor Melthods
The method presented in Rell [14] is easy o wse, requires very little processing time and
is conceptually foirly sasy o understancd;, however it is nol very posaerfol. The U7 statistic
it defines does provide a vseful casy-to-visualive diagnostic ool (especially for very high
dimenzional analyses), bal il gquantitative usefolness a2 a9 goodd test is limited.
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Local-Densily Melhods
The method presented in Rel. [17] has excellent mjection power for loge localived discrep-
ancies and good mjection power for small omnipresent ones. [t is Faicly easy to understand
conceptually and provides a nice visual element in the & and £ distributions. Determining
the p-values requires gencrating an ensemble of Monle Carlo data sets and a large amount of

processing time. This is a very vsefol goof. tool

Eernel-Based Melhods
The method presented in Rell [19] rguires all of the overhead of the point-to-point dissim-
tarity method of Refs. [12, 13] bul is nowhere near o= powerful or relinhle. Tt is casy Lo
understand conceptually: however, this is not sulficient justibcation to make it a useful high
energy physics goo L tool

In Section 1 1 noted that no good. test is the most powerful in all sitvations {even in one
dimension). Thus, ther: cenainly is not a universal unbinned multivanats g.o 0 road map svitable
for all high energy phy=ics analyses; however, that does nol mean that some general guidance on
hivar o apply the god. methods studied in this paper cannot b provided. The following is an

approximale road map for applying these gao . methods tooa high energy physics analysis:

= Starl by plotting the & distribution from the distance o nearest-neighbor method of Bel, | 14].
This is easy to dooand regquires very little processing time and no Monte Carlo daca. Any clear
deviations from uniformity indicate that the Gt pod.f. is not in good agreement with the data.
This i=s especially uselful for high-dimensional analyses where it can often be difficull to
obtain even a gualitative comparison between the data and the Gt pod.T.

o Mext plot the &(r) or L{r) distribution from the local-density method of Ref. [17]. This also
requires a small amount of processing time and no Monte Carlo data. 10 the values ame less
than the expected ones (e.g., if £{r) < r 7 r) then the p-value will be at least approximately
(1.5, Thus, one would sccept the it unles= a large Ot bias is suspecled doe tooa pronounced
doramweard turn in the K or L distribution.

# Mext, pencrale a Monte Carlo data set from the Gt podll. and obtain the p-valoes from the
mixecl-sample method of Refl. [8] and the point-o-point dissimilarity method of Rels. [12,
13]. This requires a relatively large amount of processing tme: however, access o bhoth of
these p-values should ke sulfficient to aecept or reject the test hypothesis.

= Finally, if Monte Carlo generation is nob oo expensive (processing wise), then generate an
en=emble of Monte Carlo data sets and calculate the p-value using the local-densicy method
af Bef. [17]. At this point the significance bands can also be added tothe £ or L distribution
plots (o nice addition il these are 1o be published).

All of this informaticm can then be vsed to either accept or reject the hypothesis that the Gc podof.
is the parent pod.f. of the data. Exactly how this is done is analysis dependent. Clearly, the ideal
sitwation is that all of the wsts either aceept or reject this hypothesis making the conclusion obviogs,
I, howewver, the mesults are mixed, then one needs to carefully examing how cach of the goo L
methods applies to the speciiic pod.f. being tested and attempl o resolve (or, ol least, understand)
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the conflict. The agreement between the gool methods Tor the Dalitz-plot analvsis performed in
this paper (following the road map above) was excellent

5. Conclusions

In conelusion, the statistical literature on unbinned multivaniate goo.f. tests is vast. Rather than sim-
ply applying the ¥ test to every analysis or attempling Lo invent new unbinned multivariate goo T
tests, the high energy physics community would be better served Lo study the power and applica-
hility of the g.of. methods published in the statistical literature. Finally, it would be worhwhile 1o
perform studies similar to this one for other types of high energy physics analvses. This should be
straightforward following the work presented in chis paper.
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A. Goodness-of-Fit from Likelihood Values

Many high energy physics analyses have attempted o use the mulv., 2. 895 9 measure of gof
The method used involves the following steps: the data is Ot o obtain 25, the At pad.f. is vsed
o generate an ensemble of Monte Carlo data sets; the goodf. is determined vsing s from the
data and the distribution of m.Lv."s obtained from the Monte Carlo. This method is not published
anywhere (that 1 have been able o Gnd) in the statistical lieratare. 1 is Patally Qowed and shooldd
not ke usecl. One can easily see this method is Qawed by applyving it to the hypothesis fo = constanl
(where the likelihood only depends on #yd; however, in this Appendix [ widll follow Bef. [4] and
apply it W o more ilustrative example.
Bef. [4] does an excellent job demonstrating the Qaws in this method by applying it to the
following simple one-dimensional pod i
£(x) —L X (A1)

where X is an unknoan pammeter © be estimated Froom a Gt to the data. The likelihood for a data
sel with ny events is given by

—lop ¥ EI:_.I,I'I FlogXT. (A2
fe=1
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p-value = 0.52

150

100

30

Figare 12, Data sampled randomly from a uniform distribution on the intersal [, 10, The line ropreseni=

the resull= of a A1 of the p.d-l. given in Eq. A1 b the datm. The p-value obtained vsing the method described
in Appendiz A is (.52,

The m.Lyv., which occurs when d log 27 /dX =0, is

—log Fge =g (1 +logX), ¥ = —¥ 1. (A3
fd o

From Fg. A.3 one can see that ¥, is a simple function of X3 thus, all data sets with the same
sample mean, regardless of what their parent palf. is, wdll have the same good. valoe using this
method for the pod @ defned in Eqg. ALl

Tor illustrate why this is o dizastrovus, comsider a data set that consists of g = 1000 svents
sampled randomly from a uniform distribution on the interval [0, 1), A fit of the pod.f. given in
Fig. Al 1o this data vields X = 1/ 2 with the corresponding m.Lv. given by Eg. A3 Fig 12 shows
the results of this it Clearly, the it pod L. does not reprodoce the data; however, applying the goo L
method deseribed in this Appendix yields o p-valoe of 0520 What went wrong? The ensemble of
Wonle Carlo dala sels were generated using the value of X obtained from the data. The sample
means of these data sets are then just statistical Auctuations around X Since the m.Lv. is a simple
Functiom of the sample mean, one would expect the good valoe to always be approximately 0.5 for
thi= pod £ (regardless of what the troe parent pod 4L of the data is). This method is al=o nol invanant
under change of variables and is binsed; see Bel. [4] Tor more discussion on these lopics,

[n this example 2, provided no infonmation about the gof. In general, unless the lest-
statistic pud.f. is known (which is the case, e, Tor the ¥ test) then the test statistic used to oblain
estimators for the unknown parameters in the podofoand the one vsed 1o determine go . should be
wieakly correlated. IF the correlation is strong (which is clearly the case when they are the same
statistic), then the goo L test is redundant. OF coumse, the deficiencies in this method are nol always
thi= dizastrous for more complicated pod s In some cases this method can expose discrepancics
hetween the Ot pol.Coand the data. 1 is important to realize that this does not make it o valid poo L
mecthod; it makes it a cross check. “To be a valic goaod. method it muost Cat least) produce a uniform
p-value distribotion il f = - This method, in many cases, does nol.
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B. Approximating cr._: for Mixed-Sample Methods

The variance of the T -statistic distribution used in Bel. [E] is difficall to ealeolate sinee it depends

on f(x). The limiling value is given by (using the notation from Section 3.1)

T £ N Manen. —ng )
i T e, ( e &Py w il = Fal ) (5.1
whers
I ﬂ|' #I:
= — lim np ke, 1. (B.2)
Lom J.El.'Ei’r - E

and py (k. ) and pa(k. ) are the mutual- and shared-neighbor probabilities, respectively (For a de-
tailed discussion of these quantities, see Rel=, [E 23]00 Rell [23] provides the following very uselul

limils:
lim mg 7 = | (B.2a)
lim 7 = I. E.3b
AILP (130

These limits comverge very quickly. Using Eq. B3 the ollowing limiting values of o are obtained:

2,2
: 2 L fwgme 0 -
lim oy = — T if n, = #y, (B.4a)
n. oy —p Ry = i
1 /n,n it
. 2 ol b
lim or — 4= Y g, M. (B4
g b g \on? it

The comvergence to these limits is o fast that Eq. Bo4b can be used to obtain a good approximation
of oy even lor 13 = 2 for certain valoes of o, . and ng.

Clualitatively, the comstraints requiresd o ensure that BEg. B.4b is a valic approximation of
Fg. B.1 are not too difficult 1o see. Recall that it is the valoes of @ and 7 thal must be ap-
proximated; however, the limit given in Eg. B4a converges Fast enoogh thal one need nol worry
ahont the term containing #) in Eqg. B3, The term containing 7 is proporiconal 1o both (i, —m:l:
and sne. This limils both heear much larger one sample can be than the other and howe lage a valoe
of ny can be chosen. [ have found that the valves », < 10 ng and g = 10 satisfy all of the rele-
vant constraints., Changing these values by a factor of tao worked fine in the studies 1 performed;
changing them by o factor of 10 did not

C. The Permutation Test

It the pod.f. of the test statistic, T, is not known or is diffealt to calealate, then it can often be esli-
mated by performing some Kind of re-sampling of the data. Then: are many e-sampling technigues
described in the statistical literoture, eg., bootstrapping, jackkniling. efe. (see, eop, Rell 2171, The
method deseribed in this appendix, melerred o as o permuotlation lest, was first proposed by Fisher
in 1935 [24]. A detailed discussion on this topic con be found in Bel. [25].

The permutation test involves combining the data and Monte Carlo data into a pooled sample
of sizen = ny+n,, . The first slep wsards oblaining an estimate For the p-valoe is toorandomly
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selact ny events from the pooled sample and wemporarnily label them “data’™; labe] the remaining e
events “Monte Carlo.” The lest statistic, denoted Ty, is then caleulated with these designations
for each event. This process can be repeated for all of the st /(nyte,, 1) possible evenl combinations;
horarever, if this mguines too moch processing time, then a random subset of combinations may
be used. This pricess resulls in producing the set of T values {TF:_.rm..
the number of event combinations wsed. The p-value is then simply the fraction of times where

pirm |, where Ny is

T« Tparm.

Why does this technigue work? Forthe cose where the test pod.f. and parent pod.f- are the same,
the assigmment of “data™ and “MMonte Carlo™ are effectively just labels. Reassigning these labels
should have no effect on the mean value of T, Futthenmore, each of the n! /(g le, ] possible event
assignment combinations could have squally well been observed by our experiment. Thus, we can
u=e Lhem to estimate the pod.f. of T and, in tam, obtain an estimate for the p-valoe.

For this paper, Tchose to vse only 100 randomly selected event combinations due to the large
number of p-values that needed o be calealated (1 analveed ensembles of data sets For modti-
ple pa.f's) The uncerainty on the p-value is obtained from the binomial distribution to be
Ty }r"m. Thus, the number of permutations regquired depends on the p-valoe ob-
toined. Eg.ifalter OO0 permutations the estimate of the p-value is 0.5, then the uncenainty on @ is
005 This is sufficient to econclude thal the agreement between the Ot pod.foand the daca is good. 1
hevarever, the p-value estimate is 006, then the uncertainty on pis 0,020 More permuotations would
bie reguired if, eg., one wanted 1o know whether or not the Gt pod L is rejected at 95% confidence
lewel.

0. Uniformity of the U’ Statistic

In this appendix 1 will prove that the LF statistic vsed in Rell [ 14] and defned in Eg. 3.13 is ap-
procimately uniform it the parent pod.l. and the test pod 1 oare squivalent, fe., il F = fa. The prool
presented hers follows the one given in Refll [ 14] but includes some additional intermediale steps
Foar illustrative purposss.

The probability that event § is less than & away from event § is given by

-5 =R’ I|Ir ) j":_|"[.l.::|.:1'.vr'. (2.1

TRy

which follews from the fact that | ()45 — 1. The probability that none of the other ng — 1 events
Falls within & of event § is then

PR R) (I—L H_."{.fjd.r‘)"ﬁ } 0.2)

Substituting ¥ = | . M w2/ (X)dx and using the fact that the value of the integral of the pof. is
monotonically non-decreasing with K yiclds

I
P ——logll, = y) = (1 —y)™ ! (.3
fnd
il = fa. Finally, making the substitution ¥ = — logz /ny vields
1 ma— 1
AL =) (I I —Jng:) . (2.4
LLH]
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For logz == —ny (which follows from the Fact that v == 13, The pod.f. For the &7's is then

d ni—1 | me
fuld) = Z P £z - (I | n—lng:) =1, (1.5

R4Z A

for ¢ " < 7= 1. Thus, for the case = [, the & distribution oblained for a data set is approx-
imately uniform. OF course, the U values for each evenl are nol independent (sinee they include
the nearest-neighbor distances) so this is nol a voe podf. Because of this, the & distribution is
cxpected o have some deviation from wniformity greater than that given in Eg. 205 (discussion on
thi= is oddly absent from Kel. | 14]).

E. Test Usages in Other Fields

While the use of unbinned multivariate goo L methods in high enerey physics is curmently very lim-
ited, many other scientific felds have been employing these technigques For some time (for decades
in =ome arcas). Below is a (very infommal) survey of hos the tests studied in this poper have been
uzeid in other figlds, Citation counts are taken from scholar.google . com.

Mixed-Sample Melhods
Rels. [8, 9] have been cited 39 and 55 times, espectively, including a number of citations
in ccology publications. The most popular eccological application of this method appears
tor b in the analysis of stable-isciope ratios. The ratios of the stable isotopes of carbon
and nitrogen in the tissue of an animal can be used o determine its dietary composition.
The mixed-=nmple g.o . method has been wsed o detemming the statistical significance of
differcnces found in carbon-nitrogen isotope space from diflerent biological samples.

Poini-lo-Poinl Dissimilarity Methods
Refs [11. 12] have been cited 40 and 11 dimes, respectively. These publications are both
recent (2004, but the list of felds citing them is already diverse; it inclodes genetics, mag-
netic resonance imaging, sociology, astronomy, efc, This technigue appears to be well soited
tor determining g.ofin o wide range of multivariate analyses, which is nol surprising given
hevar effsctive itis in a Dalitz-plot analysis.

Diistance lie Mearest-Meighbor Melthods
Ref. [14] has been cited 71 times, including a number of times in publications that deal with
testing the quality of random number generators. 11 is ecasy 1o demonstrate why, Consider
the optimally non-random set {i/n i = 0.....n—1}. Many g.of tests, including the ¥?
tzst, would nol reject a uniform Poisson hypothesis when applied to this data. The method
presented in Rell [ 14]. hosever, docs reject it since the distance From cach event Lo its nearest
neighbor is constant. This results in a O distribution that is a spike (instead of uniform).

Local-Densily Melhods
Ref [15] has a citation count of 935; this includes referencing in o few books that have been
cited almosl two thousand times cach and in a large number of ecology publications. Eeo-
lopical provesses can be non-Poizson due o factors such oz reprodoction and competition.
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Fora Poisson process, the K and £ functions take on larger values if § 5 (see Section 3.4,
If, hoowever, the process is not Poisson (Le, i the events are correlated), then the K and L
Tunctioms can also take on smaller values, Detecting such correlations is often important in
coology. It is also imporant in arcas such as public health where the method presented in
Rel. [15] has been wsed to monitor for clusters of disease. The inhomogensous extension
presenled in Rel, [17] already has 148 citations (more than one per month since its publica-
Lo,

KEernel-Based Melhods
Ref. [18] has a citation count of 418 including a number of citations in the Deld of econo-
metrics. Economic data is highly multi-dimensional. There is a lot of interest in being able
Lo properly model this data so that future trends and outcomes can be pradicted and, in tom,
obscene amounts of money made. The go . of sconomic models has often been tested using
the pud.e. approach presented in Ref=, [182, 17].

Il would appear that many other scientifc felds are much more advanced than high energy physics
when it comes to unbinned moltivariate poo . testing. Hlopefully this will change in the near future.



