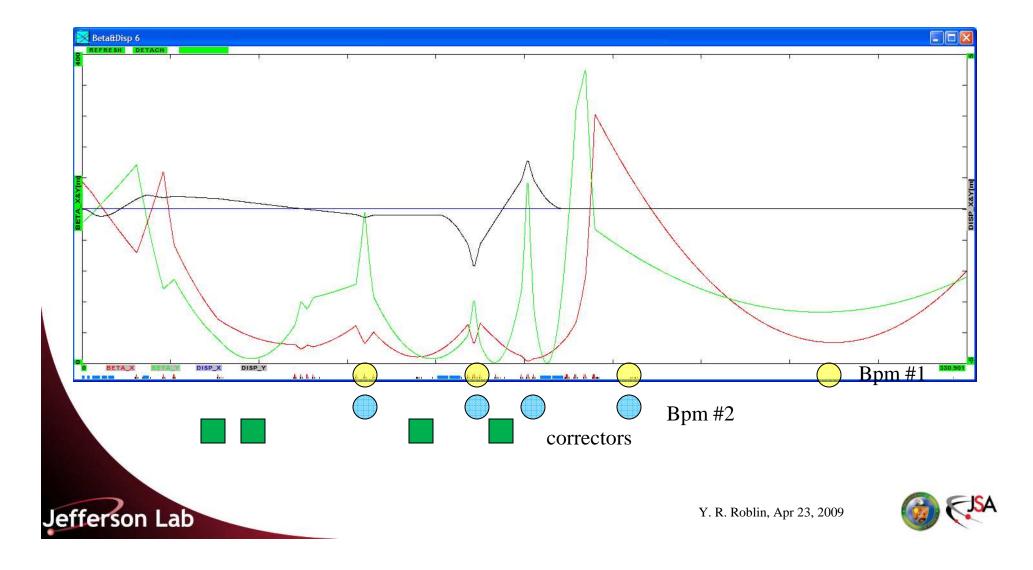
### Hall D Fast Feedback System

Performance and configuration





# **Fast Feedback specifications**


- Stability  $\sigma_x < 200 \mu m$ ,  $\sigma_y < 200 \mu m$  at collimator
- Ability to run without active collimator
- Current range  $500nA < I < 5 \mu A$
- $\sigma_x < 200 \mu m$ ,  $\sigma_y < 200 \mu m$  at radiator
- I<1  $\mu$ A f up to third harmonic of 60Hz
- I>1  $\mu$ A f up to 1Khz

Jefferson Lab

• Alternate bpm choices must be available



# Hall D optics configuration



# **Input conditions**

- Simulated Mismatching/rematching the beamline
  - 9 different mismatched configurations
- Simulated incoming orbit fluctuations:

Jefferson Lab

 $-\sigma_x, \sigma_y = 1 \text{mm RMS}, \sigma_{x'}, \sigma_{y'} = 1 \text{ } \mu \text{rad RMS}$ 



# Performance with active collimator for various input conditions

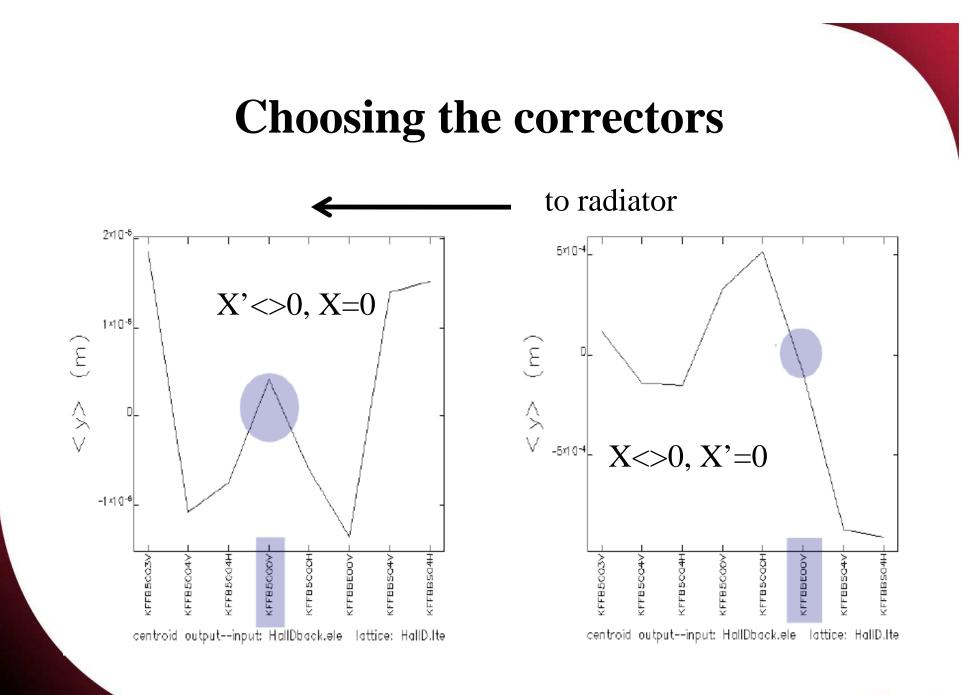
| Trial | $\beta_x$ | $\beta_{y}$ | $\alpha_x$ | $\alpha_y$ | correctors                                                   | $\sigma_x$ | $\sigma_y$ |
|-------|-----------|-------------|------------|------------|--------------------------------------------------------------|------------|------------|
| Base  | 1.0       | 1.0         | 0.0        | .0.0       | FFB5C00H,FFB5C04H,FFBBE00V,FFBBS04V                          | 47         | 10         |
| Τ1    | 0.5       | 0.5         | -1.0       | -1.0       | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 41         | 16         |
| T2    | 0.5       | 1.0         | 0.0        | 0.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 72         | 18         |
| Τ3    | 0.5       | 2.0         | 1.0        | 1.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 101        | 20         |
| T4    | 1.0       | 0.5         | 0.0        | 1.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 57         | 21         |
| T5    | 1.0       | 1.0         | 1.0        | -1.0       | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 55         | 20         |
| T6    | 1.0       | 2.0         | -1.0       | 0.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 32         | 14         |
| T7    | 2.0       | 0.5         | 1.0        | 0.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | 65         | 23         |
| Τ8    | 2.0       | 1.0         | -1.0       | 1.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V                       | -34        | 15         |
| Т9    | 2.0       | 2.0         | 0.0        | -1.0       | $\label{eq:FFB5C00H} FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V$ | 31         | 12         |

#### IPMBT02, IPM5C02, IPM5C12, ACTCOL

Jefferson Lab



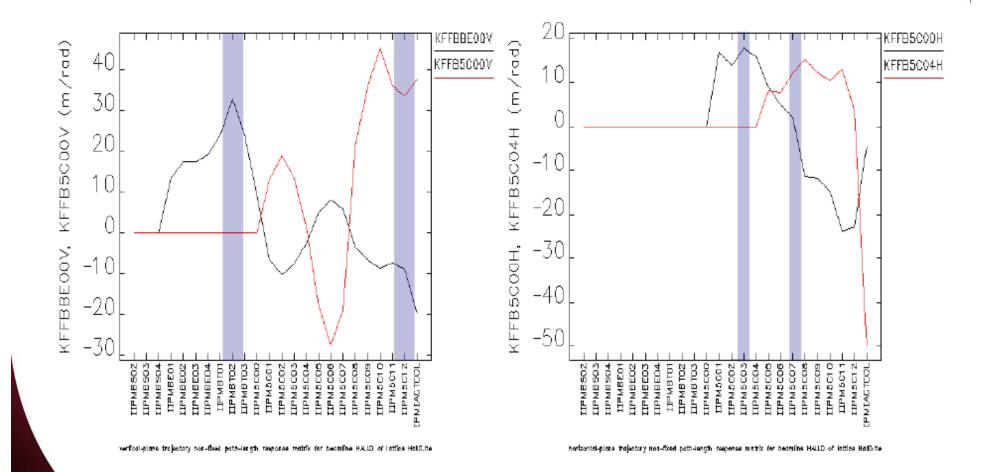
# Performance without active collimator for various input cond.


| Trial | $\beta_x$ | $\beta_{y}$ | $\alpha_x$ | $\alpha_y$ | correctors                                 | $\sigma_x$                            | $\sigma_y$ |
|-------|-----------|-------------|------------|------------|--------------------------------------------|---------------------------------------|------------|
| Base  | 1.0       | 1.0         | 0.0        | .0.0       | FFB5C00H,FFB5C04H,FFBBE00V,FFBBS04V        | 180                                   | 18         |
| T1    | 0.5       | 0.5         | -1.0       | -1.0       | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 139                                   | 27         |
| T2    | 0.5       | 1.0         | 0.0        | 0.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     |                                       | 21         |
| Τ3    | 0.5       | 2.0         | 1.0        | 1.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 176                                   | 160        |
| T4    | 1.0       | 0.5         | 0.0        | 1.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 26         |
| T5    | 1.0       | 1.0         | 1.0        | -1.0       | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 196                                   | 19         |
| T6    | 1.0       | 2.0         | -1.0       | 0.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 107                                   | 15         |
| T7    | 2.0       | 0.5         | 1.0        | 0.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 175                                   | 26         |
| Τ8    | 2.0       | 1.0         | -1.0       | 1.0        | FFB5C00H, FFB5C04H, FFBBE00V, FFBBS04V     | 104                                   | 17         |
| T9    | 2.0       | 2.0         | 0.0        | -1.0       | $FFB5C00H,\ FFB5C04H,\ FFBBE00V, FFBBS04V$ | 72                                    | 13         |

IPMBT02, IPM5C02, IPM5C07, IPM5C12

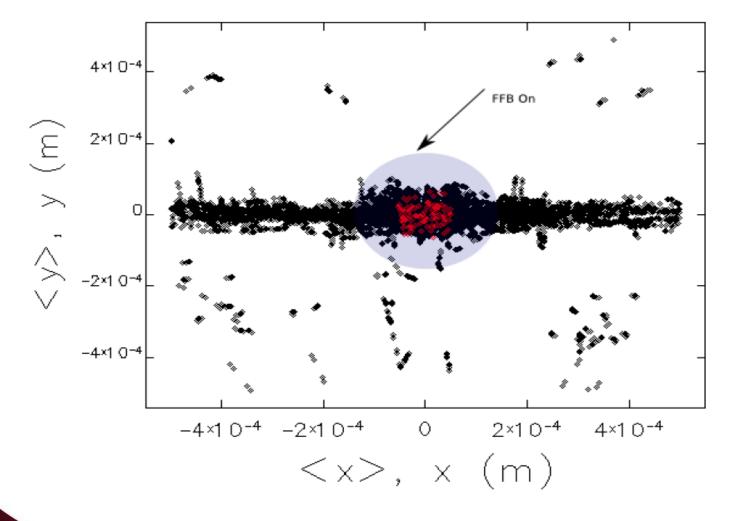
Jefferson Lab




Y. R. Roblin, Apr 23, 2009



Jefferson Lab


🎯 📢

### **Choosing the bpms**





### FFB on vs FFB off at collimator



Jefferson Lab



Y. R. Roblin, Apr 23, 2009

# **Dynamic range**

- FFB is currently configured to taper off correction past 400 Hz
- May be modified to go up to 1Khz if necessary

Jefferson Lab

• Actual bandwidth is around 2Khz so could in principle correct up to 1Khz.



# conclusions

- FFB system can meet all (most) of the requirements
- System is robust to tuning of line due to mismatches
- If mismatch greater, then will need to tune upstream of hallD
- Several choices of bpm and correctors are possible
- Correctors can easily be moved on beamline once we determine optimal configuration
- System can work with/without active collimator

lefferson Lab

